Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens
Abstract
:1. Introduction
2. Material and Methodology
2.1. Chemicals, Reagents, Apparatus
2.2. Pre-Treatment of Human Serum
2.3. Synthesis of Gold-Decorated Nanocomposites of Zinc and Graphene Oxide
2.4. Fabrication and Construction of Origami-Platform
2.5. Procedure for Deposition of Gold-Decorated Zinc and Graphene Oxide Nanocomposite and Immobilization on the Origami-Based Aptasensor
2.6. Binding of the DENV-Ag and DENV-Apt/Au/ZnO/GO-NC/oPAD
2.7. Stages for Electrochemical Detection
2.8. Optimization of Physio-Chemical Parameters to Analyse Origami-Based Aptasensor
2.9. Process for Human Serum Analysis, Repeatability, Reproducibility, and Stability Analysis for DENV-Ag-Apt/Au/ZnO/GO-NC/oPAD
2.10. Principle behind Sensing
3. Result and Discussion
3.1. Characterization of Au/ZnO/GO-Nanocomposites
3.2. Electrochemical Properties of DENV-Ag-Apt/Au/ZnO/GO-NC/oPAD
3.3. Effect of the Various Antigens of DENV Concentrations on the Apt/Au/ZnO/GO-NC/oPAD
3.4. Optimization of DENV-Ag-Apt/Au/ZnO/GO-NC/oPAD in Terms of Temperature and Time
3.5. Detection Limit and Precision/Accuracy (Recovery) Test of the Origami-Based Aptasensor
3.6. Examination of Specificity/Reliability (Cross-Reactivity) and Stability
3.7. Investigation in Human Serum (Healthy)
3.8. Comparative Analysis
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, S.; Hao, N.; Zhang, K.; Xing, C.; Wang, S. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: A mini review. Cellulose 2020, 27, 4173–4187. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Z.; Preston, C.; Li, Y.; Hu, L. Transparent paper: Fabrications, properties, and device applications. Energy Environ. Sci. 2014, 7, 269–287. [Google Scholar] [CrossRef]
- Onal, C.D.; Wood, R.J.; Rus, D. An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 2012, 18, 430–438. [Google Scholar] [CrossRef]
- Baeumner, A.J.; Schlesinger, N.A.; Slutzki, N.S.; Romano, J.; Lee, E.M.; Montagna, R.A. Biosensor for dengue virus detection: Sensitive, rapid, and serotype specific. Anal. Chem. 2002, 74, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Pires, T.; Pina, L.J. Biosensors as rapid diagnostic tests for tropical diseases. Crit. Rev. Clin. Lab. Sci. 2010, 47, 139–169. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.L.; Mach, K.E.; Wong, P.K.; Liao, J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014, 14, 225–244. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Mazlan, N.F.; Tan, L.L.; Karim, N.H.; Heng, L.Y.; Jamaluddin, N.D.; Yusof, N.Y.; Quay, D.H.; Khalid, B. Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta 2019, 198, 358–370. [Google Scholar] [CrossRef]
- Siew, Q.Y.; Tan, S.H.; Pang, E.L.; Loh, H.S.; Tan, M.T. A graphene-based dengue immunosensor using plant-derived envelope glycoprotein domain III (EDIII) as the novel probe antigen. Analyst 2021, 146, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Junior, B.B.; Batistuti, M.R.; Pereira, A.S.; de Sousa Russo, E.M.; Mulato, M. Electrochemical aptasensor for NS1 detection: Towards a fast dengue biosensor. Talanta 2021, 233, 122527. [Google Scholar] [CrossRef]
- Janczak, C.M.; Aspinwall, C.A. Composite nanoparticles: The best of two worlds. Anal. Bioanal. Chem. 2012, 402, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Sharma, P.; Shaikh, S.; Singh, S.; Pilloton, R.; Narang, J. Electrochemical Aptasensor Developed Using Two-Electrode Setup and Three-Electrode Setup: Comprising Their Current Range in Context of Dengue Virus Determination. Biosensors 2022, 20, 1. [Google Scholar] [CrossRef]
- Chen, H.L.; Hsiao, W.H.; Lee, H.C.; Wu, S.C.; Cheng, J.W. Selection and characterization of DNA aptamers targeting all four serotypes of dengue viruses. PLoS ONE 2015, 10, e0131240. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sharma, P.; Pilloton, R.; Khanuja, M.; Narang, J. Colorimetric biosensor for the naked-eye detection of ovarian cancer biomarker PDGF using citrate modified gold nanoparticles. Biosens. Bioelectron. X 2022, 11, 100142. [Google Scholar] [CrossRef]
- Narang, J.; Singhal, C.; Khanuja, M.; Mathur, A.; Jain, A.; Pundir, C.S. Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1586–1593. [Google Scholar] [CrossRef]
- Schoukroun-Barnes, L.R.; Macazo, F.C.; Gutierrez, B.; Lottermoser, J.; Liu, J.; White, R.J. Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu. Rev. Anal. Chem. 2016, 12, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, B.; Kumari, B.R. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Das, S.; Bernhard, C.; Varma, G.D. Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 2013, 26, 095008. [Google Scholar]
- Bramhaiah, K.; Singh, V.N.; John, N.S. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: Enhanced photodegradation rates in relation to their composition and morphology. Phys. Chem. Chem. Phys. 2016, 18, 1478–1486. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Hendi, A.H.; Hossain, M.K.; Yamani, Z.H.; Moqbel, R.A.; Hezam, A.; Gondal, M.A. UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection. Sens. Actuators B Chem. 2019, 290, 666–675. [Google Scholar] [CrossRef]
- Baral, A.; Khanuja, M.; Islam, S.S.; Sharma, R.; Mehta, B.R. Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: Excitation wavelength and morphology dependence study. J. Lumin. 2017, 183, 383–390. [Google Scholar] [CrossRef]
- Singhal, C.; Shukla, S.K.; Jain, A.; Pundir, C.; Khanuja, M.; Narang, J.; Shetti, N.P. Electrochemical multiplexed paper nanosensor for specific dengue serotype detection predicting pervasiveness of DHF/DSS. ACS Biomater. Sci. Eng. 2020, 6, 5886–5894. [Google Scholar] [CrossRef]
- El Muttaqien, S.; Khoris, I.M.; Widayanti, T.; Pambudi, S.; Park, E.Y. Simple, versatile, and practical impedimetric immunosensor based on gold nanoparticle-polyaniline nanocomposite for clinical dengue virus detection. Biochem. Eng. J. 2023, 198, 109028. [Google Scholar] [CrossRef]
- Ojha, R.P.; Singh, P.; Azad, U.P.; Prakash, R. Impedimetric immunosensor for the NS1 dengue biomarker based on the gold nanorod decorated graphitic carbon nitride modified electrode. Electrochim. Acta 2022, 411, 140069. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Patel, M.; Mondal, D.P.; Srivastava, A.K.; Dwivedi, N.; Dhand, C. Bio-inspired Graphene Nanocomposite Enabled Electrochemical Immunosensor for Detection and Quantification of NS1 Protein of Dengue Virus. Electrochim. Acta 2023, 475, 143630. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Ahsan, W.; Taha, M.M.; Albratty, M.; Najmi, A.; Farasani, A.; Abdulhaq, A.A.; Darwish, I.A. Development of screen-printed carbon electrode-based immunosensors for the electrochemical detection of dengue virus antigen. J. King Saud Univ.-Sci. 2023, 35, 102568. [Google Scholar] [CrossRef]
- Hasan, M.; Sharma, P.; Singh, S.; Mishra, A.; Azmi, Z.; Narang, J. 3D-printed cassette integrated with paper-based aptasensor for the construction of next-generation sensing tool to detect dengue virus towards plaspertronix-commercialization. Biosens. Bioelectron. X 2023, 16, 100431. [Google Scholar] [CrossRef]
S. No. | Different Stages of Origami-Based Aptasensor | Current Response |
---|---|---|
1. | oPAD | 45.11 microamperes |
2. | Au/ZnO/GO-NC/oPAD | 285.95 microamperes |
3. | Aptamer/Au/ZnO/GO-NC/oPAD | 230.84 microamperes |
4. | DENV-Ag-Apt/Au/ZnO/GO-NC/oPAD (0.0001 mg/mL) | 152.52 microamperes |
S.No. | Electrochemical Biosensor/Platform | DENV-Biomarker | Nanomaterial | LOD (ng/mL) | References |
---|---|---|---|---|---|
1. | Multiplex-genosensor based on paper electrode | DENV-all serotypes | GO-SiO2–Nanocomposite | 44.50 | [24] |
2. | EIS-based immunosensor | DENV-NS1 | Gold nanoparticles and polyaniline-based nanocomposites | 1.8 × 10−6 | [25] |
3. | Impedimetric immunosensor | NS 1 | Gold nanorod-decorated graphitic carbon nitride | 0.09 | [26] |
4. | Immunosensor | NS 1 | Ternary nanocomposite of reduced graphene oxide, polydopamine, and gold nanoparticles | 1.78 | [27] |
5. | Screenprinted electrode-based immunosensor | Dengue virus antigen | Not used | 0.0461 in human plasma | [28] |
6. | 3D-printed paper-based aptasensor | Polyvalent DENV antigen | ZnO-NPs | 100 | [29] |
7. | Origami-based aptasensor | Polyvalent DENV antigen | Gold-decorated zinc and graphene oxide-based bernary nanostructure | 100 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.R.; Singh, S.; Sharma, P.; Rawat, C.; Khanuja, M.; Pilloton, R.; Narang, J. Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens. Sensors 2024, 24, 801. https://doi.org/10.3390/s24030801
Hasan MR, Singh S, Sharma P, Rawat C, Khanuja M, Pilloton R, Narang J. Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens. Sensors. 2024; 24(3):801. https://doi.org/10.3390/s24030801
Chicago/Turabian StyleHasan, Mohd. Rahil, Saumitra Singh, Pradakshina Sharma, Chhaya Rawat, Manika Khanuja, Roberto Pilloton, and Jagriti Narang. 2024. "Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens" Sensors 24, no. 3: 801. https://doi.org/10.3390/s24030801
APA StyleHasan, M. R., Singh, S., Sharma, P., Rawat, C., Khanuja, M., Pilloton, R., & Narang, J. (2024). Ternary Nanostructure Coupling Flip-Flap Origami-Based Aptasensor for the Detection of Dengue Virus Antigens. Sensors, 24(3), 801. https://doi.org/10.3390/s24030801