Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Yeoh model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11394 KiB  
Article
A Comprehensive Experimental, Simulation, and Characterization Mechanical Analysis of Ecoflex and Its Formulation Under Uniaxial Testing
by Ranjith Janardhana, Fazli Akram, Zeynel Guler, Akanksha Adaval and Nathan Jackson
Materials 2025, 18(13), 3037; https://doi.org/10.3390/ma18133037 - 26 Jun 2025
Viewed by 472
Abstract
The current study focuses on the manufacturing and characterization of various forms of Ecoflex and their composites to improve the mechanical properties and surface texture, specifically for use in wearable sensors and electronic skin applications. Various types of Ecoflex elastomers were mixed to [...] Read more.
The current study focuses on the manufacturing and characterization of various forms of Ecoflex and their composites to improve the mechanical properties and surface texture, specifically for use in wearable sensors and electronic skin applications. Various types of Ecoflex elastomers were mixed to form blended composite materials, which could be used to tune the mechanical properties. Experimental and simulation methods were conducted to understand the mechanical behavior and material properties of the manufactured samples under large deformation (1200% strain) by various dynamic loading conditions. Further, the surface conditions of specimens were analyzed and evaluated using scanning electron microscopy and contact angle goniometer. The Yeoh model reasonably predicts the viscoelastic and hysteresis behavior of Ecoflex and its composites in accordance with the experimental data for small and large strain. The surface smoothness and moisture-resistant properties of the material surface were enhanced up to a contact angle of 127° (maximum) by adding x = 15 wt% of surface tension diffusers, with a slight compromise in stretchability. This comprehensive investigation and database of Ecoflex–Ecoflex composite can guide and help researchers in selecting and applying the most appropriate Ecoflex/blended solutions for a specific application, while providing insight into the mechanics of materials of blended materials. Full article
Show Figures

Figure 1

28 pages, 8808 KiB  
Article
Design and Dimension Optimization of Rigid–Soft Hand Function Rehabilitation Robots
by Rui Zhang, Meng Ning, Yuqian Wang and Jun Yang
Machines 2025, 13(4), 311; https://doi.org/10.3390/machines13040311 - 11 Apr 2025
Viewed by 500
Abstract
The growing population of hand dysfunction patients necessitates advanced rehabilitation technologies. Current robotic solutions face limitations in motion compatibility and systematic design frameworks. This study develops a rigid–soft coupling rehabilitation robot integrating linkage mechanisms with soft components. A machine vision system captures natural [...] Read more.
The growing population of hand dysfunction patients necessitates advanced rehabilitation technologies. Current robotic solutions face limitations in motion compatibility and systematic design frameworks. This study develops a rigid–soft coupling rehabilitation robot integrating linkage mechanisms with soft components. A machine vision system captures natural grasping trajectories, analyzed through polynomial regression. Hierarchical constraint modeling and an improved artificial bee colony algorithm optimize linkage dimensions and control strategies, achieving enhanced human–robot kinematic matching. Finite element simulations using a Yeoh hyperelastic model refine soft component geometry for balance compliance and coordination. Prototype validation demonstrates high-precision trajectory tracking, grasping across 20–70 mm objects, and steady fingertip forces during training. Experimental results confirm the system’s ability to replicate physiological motion patterns and adapt to multiple rehabilitation scenarios. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

24 pages, 17096 KiB  
Article
Exploring the Nonlinear Mechanical Characteristics of 3D-Printed ABS with Varying Infill Densities
by Md Zisanul Haque Bhuiyan and Khalil Khanafer
J. Manuf. Mater. Process. 2025, 9(3), 103; https://doi.org/10.3390/jmmp9030103 - 20 Mar 2025
Viewed by 705
Abstract
This study investigates the mechanical behavior of ASTM D638-02a standard uniaxial tensile test specimens fabricated from 3D-printed acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM) with a grid infill pattern at varying densities of 20%, 40%, 60%, and 100%. The research aims [...] Read more.
This study investigates the mechanical behavior of ASTM D638-02a standard uniaxial tensile test specimens fabricated from 3D-printed acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM) with a grid infill pattern at varying densities of 20%, 40%, 60%, and 100%. The research aims to provide a deeper understanding of how infill density influences the mechanical properties of FDM-printed ABS, an area critical for optimizing structural performance in additive manufacturing applications. Experimental uniaxial tensile tests reveal that as the infill density increases from 20% to 60%, the strain at break decreases from 4.7% to 3.9%; however, at 100% infill, the strain at break rises to 5.8%. Meanwhile, the average Young’s modulus exhibits an exponential increase from 513.78 MPa at 20% infill to 2394.8 MPa at full density, indicating greater stiffness with higher infill. Due to the inherent nonlinear elastic deformation of 3D-printed ABS, this study further explores the material’s behavior through finite element analysis (FEA) using Ansys Mechanical. Four hyperelastic material models—Neo-Hookean, Mooney–Rivlin (two-parameter), Mooney–Rivlin (three-parameter), and Yeoh (third order)—were evaluated using inverse analysis to determine material constants. The results indicate that while all models exhibit good correlation with experimental data, the three-parameter Mooney–Rivlin and Yeoh models achieve the highest accuracy (higher R2 values) across all infill densities. However, the Neo-Hookean model, despite being a single-parameter approach, demonstrates a consistent trend where its parameter value increases with infill density. This study provides novel insights into the nonlinear elastic properties of 3D-printed ABS and establishes a foundation for selecting appropriate hyperelastic models to accurately predict mechanical behavior in FDM-printed structures. Full article
Show Figures

Figure 1

17 pages, 4022 KiB  
Article
The Impact of the Yeoh Model’s Variability in Contact on Knee Joint Mechanics
by Łukasz Andrzej Mazurkiewicz, Adam Ciszkiewicz and Jerzy Małachowski
Materials 2025, 18(3), 576; https://doi.org/10.3390/ma18030576 - 27 Jan 2025
Viewed by 792
Abstract
The aim of this study was to assess the impact of the variability of the Yeoh model when modeling the contact of bones through cartilage in the knee in compression and flexion–extension within a hybrid knee model. Firstly, a Sobol sequence of 64 [...] Read more.
The aim of this study was to assess the impact of the variability of the Yeoh model when modeling the contact of bones through cartilage in the knee in compression and flexion–extension within a hybrid knee model. Firstly, a Sobol sequence of 64 samples and four variables representing the Yeoh parameters of the cartilage of the femur and tibia was generated. Based on these samples, 2 × 64 finite element contact models of the geometry of the sphere plane were generated and solved for healthy tissue affected by osteoarthritis. The resulting indentation curves were incorporated into a multibody knee joint model. The obtained results suggested that cartilage variability severely affected the knee in compression by up to 32%. However, the same variability also affected the flexion–extension motion, although to a lesser extent, with a relative change to the range of angular displacements of almost 7%. Osteoarthritic tissue was consistently more affected by this variability, suggesting that when modeling degenerated tissue, complex joint models are necessary. Full article
(This article belongs to the Special Issue Modeling and Mechanical Behavior of Advanced Biomaterials)
Show Figures

Graphical abstract

16 pages, 4385 KiB  
Article
The Influence of Fresh Latex Coagulation on the Parameter Characteristics of the Yeoh Hyperelastic Constitutive Model for Natural Rubber
by Li Ding, Honghai Huang, Yuekun Wang, Jianwei Li, Hongxing Gui and Yongping Chen
Polymers 2024, 16(24), 3601; https://doi.org/10.3390/polym16243601 - 23 Dec 2024
Cited by 2 | Viewed by 1316
Abstract
The coagulation of fresh latex is one of the critical processes that impacts rubber quality during natural rubber processing. Constitutive relationships are the basis for the study of the mechanical properties of rubber materials and serve as a prerequisite for material simulation studies. [...] Read more.
The coagulation of fresh latex is one of the critical processes that impacts rubber quality during natural rubber processing. Constitutive relationships are the basis for the study of the mechanical properties of rubber materials and serve as a prerequisite for material simulation studies. However, studies on the effect of different coagulation methods on natural rubber constitutive relationships have yet to be carried out, and the current models used for natural rubber constitutive relationships need to be improved. In order to investigate the effects of different coagulation methods on the hyperelastic properties of natural rubber, the impact of natural coagulation, enzyme coagulation, acid coagulation, microbial coagulation, and enzyme-assisted microbial coagulation on the hyperelastic constitutive relationship of natural rubber were analyzed in detail based on tensile experiments and the Yeoh model. The results show that after introducing a strain rate-related factor, the Yeoh model can describe well the mechanical behavior of natural rubber carbon black composites in different deformation regions, and the rubber, studied with varying coagulation methods, exhibits different mechanical properties in different deformation regions. This study provides new evidence for the study of high-performance natural rubber and serves as a reference for process selection in the primary processing of natural rubber. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Figure 1

10 pages, 1794 KiB  
Article
Development of Biofidelic Skin Simulants Based on Fresh Cadaveric Skin Tests
by Gurpreet Singh, Pramod Yadav and Arnab Chanda
Eur. Burn J. 2024, 5(4), 454-463; https://doi.org/10.3390/ebj5040040 - 16 Dec 2024
Viewed by 945
Abstract
The development of artificial skin that accurately mimics the mechanical properties of human skin is crucial for a wide range of applications, including surgical training for burn injuries, biomechanical testing, and research in sports injuries and ballistics. While traditional materials like gelatin, polydimethylsiloxane [...] Read more.
The development of artificial skin that accurately mimics the mechanical properties of human skin is crucial for a wide range of applications, including surgical training for burn injuries, biomechanical testing, and research in sports injuries and ballistics. While traditional materials like gelatin, polydimethylsiloxane (PDMS), and animal skins (such as porcine and bovine skins) have been used for these purposes, they have inherent limitations in replicating the intricate properties of human skin. In this work, we conducted uniaxial tensile tests on freshly obtained cadaveric skin to analyze its mechanical properties under various loading conditions. The stress–strain data obtained from these tests were then replicated using advanced skin simulants. These skin simulants were specifically formulated using a cost-effective and moldable multi-part silicone-based polymer. This material was chosen for its ability to accurately replicate the mechanical behavior of human skin while also addressing ethical considerations and biosafety concerns. In addition, the non-linear mechanical behavior of the developed skin simulants was characterized using three different hyperelastic curve-fit models (i.e., Neo-Hookean, Mooney–Rivlin, and Yeoh models). Moreover, these innovative simulants offer an ethical and practical alternative to cadaveric skin for use in laboratory and clinical settings. Full article
Show Figures

Figure 1

31 pages, 13872 KiB  
Article
Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging
by Su-Yeon Park, Akeem Bayo Kareem, Toyyeebah Ajibola Mustapha, Woo-Jeong Joo and Jang-Wook Hur
Materials 2024, 17(22), 5675; https://doi.org/10.3390/ma17225675 - 20 Nov 2024
Viewed by 1275
Abstract
This study comprehensively investigates the stress distribution and aging effects in Ethylene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a novel integration of hyperelastic modeling and advanced machine learning techniques. By employing the Mooney–Rivlin, Ogden, and Yeoh hyperelastic [...] Read more.
This study comprehensively investigates the stress distribution and aging effects in Ethylene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a novel integration of hyperelastic modeling and advanced machine learning techniques. By employing the Mooney–Rivlin, Ogden, and Yeoh hyperelastic models, we evaluated the mechanical behavior of EPDM and LSR under conditions of no aging, heat aging, and combined heat- and sulfuric-acid exposure. Each model revealed distinct sensitivities to stress distribution and material deformation, with peak von Mises stress values indicating that LSR experiences higher internal stress than EPDM across all conditions. For instance, without aging, LSR shows a von Mises stress of 24.17 MPa compared to 14.96 MPa for EPDM, while under heat and sulfuric acid exposure, LSR still exhibits higher stress values, showcasing its resilience under extreme conditions. Additionally, the ensemble learning approach achieved a classification accuracy of 98% for LSR and 84% for EPDM in predicting aging effects, underscoring the robustness of our predictive framework. These findings offer practical implications for selecting suitable gasket materials and developing predictive maintenance strategies in industrial applications, such as fuel cells, where material integrity under stress and aging is paramount. Full article
(This article belongs to the Special Issue Advanced Materials: Process, Properties, and Applications)
Show Figures

Figure 1

15 pages, 9506 KiB  
Article
Study on Dynamic Characteristics of Resilient Mount Under Preload
by Sung-Ju Park, Byoungjae Park, Joo-Yeob Lee, Yun-Ho Shin, Chae-Lim Jeong, Sung-Jae Kim and Kookhyun Kim
Materials 2024, 17(20), 5096; https://doi.org/10.3390/ma17205096 - 18 Oct 2024
Cited by 1 | Viewed by 1132
Abstract
Resilient mounts are essential for anti-vibration and shock absorption applications, making accurate predictions of their static and dynamic behaviors critical for effective design and mechanical performance. This study investigates static and dynamic characteristics of resilient mounts to predict their effects. Tension, compression, and [...] Read more.
Resilient mounts are essential for anti-vibration and shock absorption applications, making accurate predictions of their static and dynamic behaviors critical for effective design and mechanical performance. This study investigates static and dynamic characteristics of resilient mounts to predict their effects. Tension, compression, and shear tests were performed under quasi-static loading conditions to obtain stress-strain cycle curves. This study includes a review of the Yeoh hyperelastic model, which consists of three parameters, and discusses the calibration of these parameters to describe the hyperelastic material behavior. The parameters were validated through numerical analysis by comparing them with experimental results from quasi-static tests on the resilient mount. The dynamic behavior was further analyzed using modal analysis and frequency response simulations under various preload conditions. Results show that increasing preload significantly shifts the transmissibility curves and resonance peaks to lower frequencies. This study offers valuable insights into static and dynamic characteristics of resilient mounts, contributing to the design and optimization of vibration isolation systems for naval applications. Full article
Show Figures

Figure 1

16 pages, 5578 KiB  
Article
The Change of Sealing Property in the Aging Process of NBR Sealing Equipment Based on Finite Element Analysis
by Min Zhu, Desheng Ma, Yuan Zhou, Hanyuan Huang, Zhaoqun Shao, Fei Wu and Biao Li
Coatings 2024, 14(9), 1178; https://doi.org/10.3390/coatings14091178 - 12 Sep 2024
Cited by 3 | Viewed by 1321
Abstract
Sealing rings are the core components of flange sealing structures and play a crucial role in the storage and operation of gas generators. The aging and deformation of seals affect the safe operation of the device. This paper aims to investigate the effect [...] Read more.
Sealing rings are the core components of flange sealing structures and play a crucial role in the storage and operation of gas generators. The aging and deformation of seals affect the safe operation of the device. This paper aims to investigate the effect of rubber aging on the sealing performance of the components, which is realized by nonlinear finite element analysis. Firstly, an accelerated degradation test method was used to obtain the compression permanent deformation and stress–strain curve of rubber during the aging process. A two-dimensional finite element model of the sealing structure was constructed and the Yeoh model was utilized to describe the mechanical response of rubber. During the simulation, the contact area was modified based on the compression permanent deformation, and the Yeoh model was updated based on the stress–strain curve changes obtained by the test. The impact of key parameters such as material property changes, rubber physical section deformation, and fluid pressure on sealing performance during the seal ring aging process was systematically studied. The numerical results indicate that due to the aging deformation of rubber seals, there is a significant decrease in contact stress and contact width, as well as a shift in maximum equivalent stress area. Taking into account these findings, this study proposes a new design concept for sealing structures. This provides a relatively simple research method for studying flange sealing structure performance. Full article
Show Figures

Graphical abstract

19 pages, 6954 KiB  
Article
Prediction Accuracy of Hyperelastic Material Models for Rubber Bumper under Compressive Load
by Dávid Huri
Polymers 2024, 16(17), 2534; https://doi.org/10.3390/polym16172534 - 7 Sep 2024
Cited by 2 | Viewed by 2072
Abstract
Different hyperelastic material models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce and Ogden) are able to estimate Treloar’s test data series containing uniaxial and biaxial tension and pure shear stress-strain characteristics of rubber. If the rubber behaviour is only determined for the specific load of the [...] Read more.
Different hyperelastic material models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce and Ogden) are able to estimate Treloar’s test data series containing uniaxial and biaxial tension and pure shear stress-strain characteristics of rubber. If the rubber behaviour is only determined for the specific load of the product, which, in the case of rubber bumpers, is the compression, the time needed for the laboratory test can be significantly decreased. The stress-strain characteristics of the uniaxial compression test of rubber samples were used to fit hyperelastic material models. Laboratory and numerical tests of a rubber bumper with a given compound and complex geometry were used to determine the accuracy of the material models. Designing rubber products requires special consideration of the numerical discretization process due to the nonlinear behaviours (material nonlinearity, large deformation, connections, etc.). Modelling considerations were presented for the finite element analysis of the rubber bumper. The results showed that if only uniaxial compression test data are available for the curve fitting of the material model, the Yeoh model performs the best in predicting the rubber product material response under compressive load and complex strain state. Full article
(This article belongs to the Special Issue Mechanical Behaviors and Properties of Polymer Materials)
Show Figures

Figure 1

22 pages, 4494 KiB  
Article
Analysis of Inherent Frequencies to Mitigate Liquid Sloshing in Overhead Double-Baffle Damper
by Ashraf Ali, Mohamed Ismail, Madhan Kumar, Daniel Breaz and Kadhavoor R. Karthikeyan
Mathematics 2024, 12(17), 2727; https://doi.org/10.3390/math12172727 - 31 Aug 2024
Viewed by 1588
Abstract
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles [...] Read more.
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles and their effect are studied. In this research, the behaviour of different material baffles based on the sloshing effect and natural frequency of each baffle excited in damped, undamped, and overdamped cases is studied. VOF modelling is carried out in moving Yeoh model mesh with fluid–structure interaction between the water models for various baffle plates. The results of the water volume distribution and baffle displacement operating between a sloshing time of 0 and 1 s are recorded. Also, a strong investigation is carried out for the water volume suspended on overhead baffles by three different material selections. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

18 pages, 14683 KiB  
Article
Aging Analysis of Semiconductive Silicone Rubber for 10 kV Cold-Shrink Cable Accessories
by Jun Yu, Zhijian Zhang, Weifeng Ren, Dongxing Yang, Dian Wu, Zhiqiang Ning, Chunhua Fang and Junxiong Wu
Energies 2024, 17(3), 708; https://doi.org/10.3390/en17030708 - 1 Feb 2024
Cited by 2 | Viewed by 1300
Abstract
This study focuses on the semiconductive silicone rubber of 10 kV cold-shrink accessories. Accelerated thermal aging tests were conducted on the semiconductive silicone rubber, obtaining tensile stress–strain curves at various time points after thermal aging. The corresponding parameters of the Yeoh hyperelastic model [...] Read more.
This study focuses on the semiconductive silicone rubber of 10 kV cold-shrink accessories. Accelerated thermal aging tests were conducted on the semiconductive silicone rubber, obtaining tensile stress–strain curves at various time points after thermal aging. The corresponding parameters of the Yeoh hyperelastic model were calculated. The results indicate that the initial shear modulus of the samples decreases with the increase in the aging temperature and time. Microscopic morphology, changes in cross-sectional content, thermal residual values, and chemical structure changes of the samples after aging were studied using electron microscopy, EDS testing, TG curves, and Fourier spectra. The results show that the surface roughness of the aged semiconductive silicon rubber increases, the residual values decrease, the thermal stability decreases, the main chain absorbance decreases, the main chain integrity decreases, and the organic functional groups Si-CH3 and Si(CH3)2 decrease, leading to a reduction in organic content. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

15 pages, 9316 KiB  
Article
Identification of Apple Fruit-Skin Constitutive Laws by Full-Field Methods Using Uniaxial Tensile Loading
by Teresa Campos, Rafael Araújo, José Xavier, Quyền Nguyễn, Nuno Dourado, José Morais and Fábio Pereira
Materials 2024, 17(3), 700; https://doi.org/10.3390/ma17030700 - 1 Feb 2024
Cited by 3 | Viewed by 1652
Abstract
The protective and preservative role of apple skin in maintaining the integrity of the fruit is well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity. This study employs a combination of experimental and numerical methodologies, specifically utilising the [...] Read more.
The protective and preservative role of apple skin in maintaining the integrity of the fruit is well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity. This study employs a combination of experimental and numerical methodologies, specifically utilising the digital image correlation (DIC) technique. A specially devised inverse strategy is applied to evaluate the mechanical behaviour of apple skin under uniaxial tensile loading. Three apple cultivars were tested in this work: Malus domestica Starking Delicious, Malus pumila Rennet, and Malus domestica Golden Delicious. Stress–strain curves were reconstructed, revealing distinct variations in the mechanical responses among these cultivars. Yeoh’s hyperelastic model was fitted to the experimental data to identify the coefficients capable of reproducing the non-linear deformation. The results suggest that apple skin varies significantly in composition and structure among the tested cultivars, as evidenced by differences in elastic properties and non-linear behaviour. These differences can significantly affect how fruit is handled, stored, and transported. Thus, the insights resulting from this research enable the development of mathematical models based on the mechanical behaviour of apple tissue, constituting important data for improvements in the economics of the agri-food industry. Full article
Show Figures

Figure 1

16 pages, 8586 KiB  
Article
Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues
by Youssef Fahmy, Mohamed B. Trabia, Brian Ward, Lucas Gallup and Mary Froehlich
Bioengineering 2024, 11(1), 64; https://doi.org/10.3390/bioengineering11010064 - 8 Jan 2024
Cited by 2 | Viewed by 1983
Abstract
Many colonic surgeries include colorectal anastomoses whose leaks may be life-threatening, affecting thousands of patients annually. Various studies propose that mechanical interaction between the staples and neighboring tissues may play an important role in anastomotic leakage. Therefore, understanding the mechanical behavior of colorectal [...] Read more.
Many colonic surgeries include colorectal anastomoses whose leaks may be life-threatening, affecting thousands of patients annually. Various studies propose that mechanical interaction between the staples and neighboring tissues may play an important role in anastomotic leakage. Therefore, understanding the mechanical behavior of colorectal tissue is essential to characterizing the reasons for this type of failure. So far, experimental data characterizing the mechanical properties of colorectal tissue have been few and inconsistent, which has significantly limited understanding their behavior. This research proposes an approach to developing an anisotropic hyperelastic material model for colorectal tissues based on uniaxial testing of freshly harvested porcine specimens, which were collected from several age- and weight-matched pigs. The specimens were extracted from the same colon tract of each pig along their circumferential and longitudinal orientations. We propose a constitutive model combining Yeoh isotropic hyperelastic material with fibers oriented in two directions to account for the hyperelastic and anisotropic nature of colorectal tissues. Experimental data were used to accurately determine the model’s coefficients (circumferential, R2 = 0.9968; longitudinal, R2 = 0.9675). The results show that the proposed model can be incorporated into a finite element model that can simulate procedures such as colorectal anastomoses reliably. Full article
(This article belongs to the Special Issue Mechanobiology in Biomedical Engineering)
Show Figures

Figure 1

7 pages, 1460 KiB  
Proceeding Paper
Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials
by Subraya Krishna Bhat and Keerthan A.
Eng. Proc. 2023, 59(1), 104; https://doi.org/10.3390/engproc2023059104 - 21 Dec 2023
Cited by 2 | Viewed by 2262
Abstract
Rubber-based materials play an important role in various engineering and healthcare applications. Numerous hyperelastic models have been proposed in the long line of literature to model these nonlinear elastic materials. Due to the need to balance simplicity with accuracy, purely invariant I1 [...] Read more.
Rubber-based materials play an important role in various engineering and healthcare applications. Numerous hyperelastic models have been proposed in the long line of literature to model these nonlinear elastic materials. Due to the need to balance simplicity with accuracy, purely invariant I1-based models have been proposed, which possess certain limitations with respect to the accurate description of their mechanical behaviors. In this paper, we improve the Yeoh model, a classical and popular I1-based hyperelastic model with high versatility. The Yeoh model is modified by adding a generalized power-law type term. The model’s capabilities are analyzed under homogeneous deformation modes, such as uniaxial tensile, biaxial tensile and pure shear loading conditions. Experimental data pertaining to rubber-based materials are applied to the proposed hyperelastic model. Also, the interesting phenomenon of thin balloon expansion is investigated by applying the model to relevant experimental data on elastomeric balloons available in the literature. A genetic algorithm-based least squares optimization routine is carried out to determine the material constants while applying the reported experimental data. The results of curve fitting to experimental data pertaining to rubber-based materials showed the capability of the model to describe such multiaxial loading responses with acceptable accuracy (R2 ≥ 0.95). The model also showed the capability to describe both the limit-point instability and the strain stiffening in thin rubber balloons, demonstrating its versatility and suitability for modeling rubber-like materials under various applications. The model’s performance can be further extended in the future by coupling terms related to anisotropy, compressibility, damage, etc., according to requirements. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

Back to TopTop