Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = YOLOv7-AC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9667 KB  
Article
REU-YOLO: A Context-Aware UAV-Based Rice Ear Detection Model for Complex Field Scenes
by Dongquan Chen, Kang Xu, Wenbin Sun, Danyang Lv, Songmei Yang, Ranbing Yang and Jian Zhang
Agronomy 2025, 15(9), 2225; https://doi.org/10.3390/agronomy15092225 - 20 Sep 2025
Viewed by 467
Abstract
Accurate detection and counting of rice ears serve as a critical indicator for yield estimation, but the complex conditions of paddy fields limit the efficiency and precision of traditional sampling methods. We propose REU-YOLO, a model specifically designed for UAV low-altitude remote sensing [...] Read more.
Accurate detection and counting of rice ears serve as a critical indicator for yield estimation, but the complex conditions of paddy fields limit the efficiency and precision of traditional sampling methods. We propose REU-YOLO, a model specifically designed for UAV low-altitude remote sensing to collect images of rice ears, to address issues such as high-density and complex spatial distribution with occlusion in field scenes. Initially, we combine the Additive Block containing Convolutional Additive Self-attention (CAS) and Convolutional Gated Linear Unit (CGLU) to propose a novel module called Additive-CGLU-C2F (AC-C2f) as a replacement for the original C2f in YOLOv8. It can capture the contextual information between different regions of images and improve the feature extraction ability of the model, introduce the Dropblock strategy to reduce model overfitting, and replace the original SPPF module with the SPPFCSPC-G module to enhance feature representation and improve the capacity of the model to extract features across varying scales. We further propose a feature fusion network called Multi-branch Bidirectional Feature Pyramid Network (MBiFPN), which introduces a small object detection head and adjusts the head to focus more on small and medium-sized rice ear targets. By using adaptive average pooling and bidirectional weighted feature fusion, shallow and deep features are dynamically fused to enhance the robustness of the model. Finally, the Inner-PloU loss function is introduced to improve the adaptability of the model to rice ear morphology. In the self-developed dataset UAVR, REU-YOLO achieves a precision (P) of 90.76%, a recall (R) of 86.94%, an mAP0.5 of 93.51%, and an mAP0.5:0.95 of 78.45%, which are 4.22%, 3.76%, 4.85%, and 8.27% higher than the corresponding values obtained with YOLOv8 s, respectively. Furthermore, three public datasets, DRPD, MrMT, and GWHD, were used to perform a comprehensive evaluation of REU-YOLO. The results show that REU-YOLO indicates great generalization capabilities and more stable detection performance. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 20081 KB  
Article
YOLO-ACE: Enhancing YOLO with Augmented Contextual Efficiency for Precision Cotton Weed Detection
by Qi Zhou, Huicheng Li, Zhiling Cai, Yiwen Zhong, Fenglin Zhong, Xiaoyu Lin and Lijin Wang
Sensors 2025, 25(5), 1635; https://doi.org/10.3390/s25051635 - 6 Mar 2025
Cited by 5 | Viewed by 1505
Abstract
Effective weed management is essential for protecting crop yields in cotton production, yet conventional deep learning approaches often falter in detecting small or occluded weeds and can be restricted by large parameter counts. To tackle these challenges, we propose YOLO-ACE, an advanced extension [...] Read more.
Effective weed management is essential for protecting crop yields in cotton production, yet conventional deep learning approaches often falter in detecting small or occluded weeds and can be restricted by large parameter counts. To tackle these challenges, we propose YOLO-ACE, an advanced extension of YOLOv5s, which was selected for its optimal balance of accuracy and speed, making it well suited for agricultural applications. YOLO-ACE integrates a Context Augmentation Module (CAM) and Selective Kernel Attention (SKAttention) to capture multi-scale features and dynamically adjust the receptive field, while a decoupled detection head separates classification from bounding box regression, enhancing overall efficiency. Experiments on the CottonWeedDet12 (CWD12) dataset show that YOLO-ACE achieves notable mAP@0.5 and mAP@0.5:0.95 scores—95.3% and 89.5%, respectively—surpassing previous benchmarks. Additionally, we tested the model’s transferability and generalization across different crops and environments using the CropWeed dataset, where it achieved a competitive mAP@0.5 of 84.3%, further showcasing its robust ability to adapt to diverse conditions. These results confirm that YOLO-ACE combines precise detection with parameter efficiency, meeting the exacting demands of modern cotton weed management. Full article
Show Figures

Figure 1

29 pages, 12323 KB  
Article
Quantitative Remote Sensing Supporting Deep Learning Target Identification: A Case Study of Wind Turbines
by Xingfeng Chen, Yunli Zhang, Wu Xue, Shumin Liu, Jiaguo Li, Lei Meng, Jian Yang, Xiaofei Mi, Wei Wan and Qingyan Meng
Remote Sens. 2025, 17(5), 733; https://doi.org/10.3390/rs17050733 - 20 Feb 2025
Cited by 1 | Viewed by 987
Abstract
Small Target Detection and Identification (TDI) methods for Remote Sensing (RS) images are mostly inherited from the deep learning models of the Computer Vision (CV) field. Compared with natural images, RS images not only have common features such as shape and texture but [...] Read more.
Small Target Detection and Identification (TDI) methods for Remote Sensing (RS) images are mostly inherited from the deep learning models of the Computer Vision (CV) field. Compared with natural images, RS images not only have common features such as shape and texture but also contain unique quantitative information such as spectral features. Therefore, RS TDI in the CV field, which does not use Quantitative Remote Sensing (QRS) information, has the potential to be explored. With the rapid development of high-resolution RS satellites, RS wind turbine detection has become a key research topic for power intelligent inspection. To test the effectiveness of integrating QRS information with deep learning models, the case of wind turbine TDI from high-resolution satellite images was studied. The YOLOv5 model was selected for research because of its stability and high real-time performance. The following methods for integrating QRS and CV for TDI were proposed: (1) Surface reflectance (SR) images obtained using quantitative Atmospheric Correction (AC) were used to make wind turbine samples, and SR data were input into the YOLOv5 model (YOLOv5_AC). (2) A Convolutional Block Attention Module (CBAM) was added to the YOLOv5 network to focus on wind turbine features (YOLOv5_AC_CBAM). (3) Based on the identification results of YOLOv5_AC_CBAM, the spectral, geometric, and textural features selected using expert knowledge were extracted to conduct threshold re-identification (YOLOv5_AC_CBAM_Exp). Accuracy increased from 90.5% to 92.7%, then to 93.2%, and finally to 97.4%. The integration of QRS and CV for TDI showed tremendous potential to achieve high accuracy, and QRS information should not be neglected in RS TDI. Full article
Show Figures

Graphical abstract

19 pages, 5406 KB  
Article
An Automatic Movement Monitoring Method for Group-Housed Pigs
by Ziyuan Liang, Aijun Xu, Junhua Ye, Suyin Zhou, Xiaoxing Weng and Sian Bao
Animals 2024, 14(20), 2985; https://doi.org/10.3390/ani14202985 - 16 Oct 2024
Cited by 4 | Viewed by 1646
Abstract
Continuous movement monitoring helps quickly identify pig abnormalities, enabling immediate action to enhance pig welfare. However, continuous and precise monitoring of daily pig movement on farms remains challenging. We present an approach to automatically and precisely monitor the movement of group-housed pigs. The [...] Read more.
Continuous movement monitoring helps quickly identify pig abnormalities, enabling immediate action to enhance pig welfare. However, continuous and precise monitoring of daily pig movement on farms remains challenging. We present an approach to automatically and precisely monitor the movement of group-housed pigs. The instance segmentation model YOLOv8m-seg was applied to detect the presence of pigs. We then applied a spatial moment algorithm to quantitatively summarize each detected pig’s contour as a corresponding center point. The agglomerative clustering (AC) algorithm was subsequently used to gather the pig center points of a single frame into one point representing the group-housed pigs’ position, and the movement volume was obtained by calculating the displacements of the clustered group-housed pigs’ center points of consecutive frames. We employed the method to monitor the movement of group-housed pigs from April to July 2023; more than 1500 h of top-down pig videos were recorded by a surveillance camera. The F1 scores of the trained YOLOv8m-seg model during training were greater than 90% across most confidence levels, and the model achieved an mAP50-95 of 0.96. The AC algorithm performs with an average extraction time of less than 1 millisecond; this method can run efficiently on commodity hardware. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 3550 KB  
Article
Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8
by Alberto Gayá-Vilar, Alberto Abad-Uribarren, Augusto Rodríguez-Basalo, Pilar Ríos, Javier Cristobo and Elena Prado
J. Mar. Sci. Eng. 2024, 12(9), 1617; https://doi.org/10.3390/jmse12091617 - 11 Sep 2024
Cited by 2 | Viewed by 1857
Abstract
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a [...] Read more.
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a novel application of the YOLOv8l-seg deep learning model for the automated detection and segmentation of these key CWC species in underwater imagery. The model was trained and validated on images collected at two Natura 2000 sites in the Cantabrian Sea: the Avilés Canyon System (ACS) and El Cachucho Seamount (CSM). Results demonstrate the model’s high accuracy in identifying and delineating individual coral colonies, enabling the assessment of coral cover and spatial distribution. The study revealed significant variability in coral cover between and within the study areas, highlighting the patchy nature of CWC habitats. Three distinct coral community groups were identified based on percentage coverage composition and abundance, with the highest coral cover group being located exclusively in the La Gaviera canyon head within the ACS. This research underscores the potential of deep learning models for efficient and accurate monitoring of VMEs, facilitating the acquisition of high-resolution data essential for understanding CWC distribution, abundance, and community structure, and ultimately contributing to the development of effective conservation strategies. Full article
(This article belongs to the Special Issue Application of Deep Learning in Underwater Image Processing)
Show Figures

Figure 1

18 pages, 19100 KB  
Article
Coarse–Fine Combined Bridge Crack Detection Based on Deep Learning
by Kaifeng Ma, Mengshu Hao, Xiang Meng, Jinping Liu, Junzhen Meng and Yabing Xuan
Appl. Sci. 2024, 14(12), 5004; https://doi.org/10.3390/app14125004 - 8 Jun 2024
Cited by 8 | Viewed by 2649
Abstract
The crack detection of concrete bridges is an important link in the safety evaluation of bridge structures, and the rapid and accurate identification and detection of bridge cracks is a prerequisite for ensuring the safety and long-term stable use of bridges. To solve [...] Read more.
The crack detection of concrete bridges is an important link in the safety evaluation of bridge structures, and the rapid and accurate identification and detection of bridge cracks is a prerequisite for ensuring the safety and long-term stable use of bridges. To solve the incomplete crack detection and segmentation caused by the complex background and small proportion in the actual bridge crack images, this paper proposes a coarse–fine combined bridge crack detection method of “double detection + single segmentation” based on deep learning. To validate the effect and practicality of fine crack detection, images of old civil bridges and viaduct bridges against a complex background and images of a bridge crack against a simple background are used as datasets. You Only Look Once V5(x) (YOLOV5(x)) was preferred as the object detection network model (ODNM) to perform initial and fine detection of bridge cracks, respectively. Using U-Net as the optimal semantic segmentation network model (SSNM), the crack detection results are accurately segmented for fine crack detection. The test results showed that the initial crack detection using YOLOV5(x) was more comprehensive and preserved the original shape of bridge cracks. Second, based on the initial detection, YOLOV5(x) was adopted for fine crack detection, which can determine the location and shape of cracks more carefully and accurately. Finally, the U-Net model was used to segment the accurately detected cracks and achieved a maximum accuracy (AC) value of 98.37%. The experiment verifies the effectiveness and accuracy of this method, which not only provides a faster and more accurate method for fine detection of bridge cracks but also provides technical support for future automated detection and preventive maintenance of bridge structures and has practical value for bridge crack detection engineering. Full article
(This article belongs to the Special Issue Advances in Intelligent Bridge: Maintenance and Monitoring)
Show Figures

Figure 1

16 pages, 3364 KB  
Article
Defect Identification of XLPE Power Cable Using Harmonic Visualized Characteristics of Grounding Current
by Minxin Wang, Yong Liu, Youcong Huang, Yuepeng Xin, Tao Han and Boxue Du
Electronics 2024, 13(6), 1159; https://doi.org/10.3390/electronics13061159 - 21 Mar 2024
Cited by 11 | Viewed by 2091
Abstract
This paper proposes an online monitoring and defect identification method for XLPE power cables using harmonic visualization of grounding currents. Four typical defects, including thermal aging, water ingress and dampness, insulation scratch, and excessive bending, were experimentally conducted. The AC grounding currents of [...] Read more.
This paper proposes an online monitoring and defect identification method for XLPE power cables using harmonic visualization of grounding currents. Four typical defects, including thermal aging, water ingress and dampness, insulation scratch, and excessive bending, were experimentally conducted. The AC grounding currents of the cable specimens with different defects were measured during operation. By using the chaotic synchronization system, the harmonic distortion was transformed into a 2D scatter diagram with distinctive characteristics. The relationship between the defect type and the diagram features was obtained. A YOLOv5 (you only look once v5) target recognition model was then established based on the dynamic harmonics scatter diagrams for cable defect classification and identification. The results indicated that the overall shape, distribution range, density degree, and typical lines formed by scatter aggregation can reflect the defect type effectively. The proposed method greatly reduces the difficulty of data analysis and enables rapid defect identification of XLPE power cables, which is useful for improving the reliability of the power system. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

31 pages, 15223 KB  
Article
Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement
by Changhong Liu, Jiawen Wen, Jinshan Huang, Weiren Lin, Bochun Wu, Ning Xie and Tao Zou
J. Mar. Sci. Eng. 2024, 12(3), 506; https://doi.org/10.3390/jmse12030506 - 19 Mar 2024
Cited by 15 | Viewed by 5041
Abstract
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a [...] Read more.
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential. Full article
(This article belongs to the Special Issue Underwater Engineering and Image Processing)
Show Figures

Figure 1

19 pages, 21855 KB  
Article
YOLOv5-ACS: Improved Model for Apple Detection and Positioning in Apple Forests in Complex Scenes
by Jianping Liu, Chenyang Wang and Jialu Xing
Forests 2023, 14(12), 2304; https://doi.org/10.3390/f14122304 - 24 Nov 2023
Cited by 9 | Viewed by 2372
Abstract
Apple orchards, as an important center of economic activity in forestry special crops, can achieve yield prediction and automated harvesting by detecting and locating apples. Small apples, occlusion, dim lighting at night, blurriness, cluttered backgrounds, and other complex scenes significantly affect the automatic [...] Read more.
Apple orchards, as an important center of economic activity in forestry special crops, can achieve yield prediction and automated harvesting by detecting and locating apples. Small apples, occlusion, dim lighting at night, blurriness, cluttered backgrounds, and other complex scenes significantly affect the automatic harvesting and yield estimation of apples. To address these issues, this study proposes an apple detection algorithm, “YOLOv5-ACS (Apple in Complex Scenes)”, based on YOLOv5s. Firstly, the space-to-depth-conv module is introduced to avoid information loss, and a squeeze-and-excitation block is added in C3 to learn more important information. Secondly, the context augmentation module is incorporated to enrich the context information of the feature pyramid network. By combining the shallow features of the backbone P2, the low-level features of the object are retained. Finally, the addition of the context aggregation block and CoordConv aggregates the spatial context pixel by pixel, perceives the spatial information of the feature map, and enhances the semantic information and global perceptual ability of the object. We conducted comparative tests in various complex scenarios and validated the robustness of YOLOv5-ACS. The method achieved 98.3% and 74.3% for mAP@0.5 and mAP@0.5:0.95, respectively, demonstrating excellent detection capabilities. This paper creates a complex scene dataset of apples on trees and designs an improved model, which can provide accurate recognition and positioning for automatic harvesting robots to improve production efficiency. Full article
(This article belongs to the Special Issue Prognosis of Forest Production Using Machine Learning Techniques)
Show Figures

Figure 1

19 pages, 7429 KB  
Article
YOLOv5-AC: A Method of Uncrewed Rice Transplanter Working Quality Detection
by Yue Wang, Qiang Fu, Zheng Ma, Xin Tian, Zeguang Ji, Wangshu Yuan, Qingming Kong, Rui Gao and Zhongbin Su
Agronomy 2023, 13(9), 2279; https://doi.org/10.3390/agronomy13092279 - 29 Aug 2023
Cited by 5 | Viewed by 2052
Abstract
With the development and progress of uncrewed farming technology, uncrewed rice transplanters have gradually become an indispensable part of modern agricultural production; however, in the actual production, the working quality of uncrewed rice transplanters have not been effectively detected. In order to solve [...] Read more.
With the development and progress of uncrewed farming technology, uncrewed rice transplanters have gradually become an indispensable part of modern agricultural production; however, in the actual production, the working quality of uncrewed rice transplanters have not been effectively detected. In order to solve this problem, a detection method of uncrewed transplanter omission is proposed in this paper. In this study, the RGB images collected in the field were inputted into a convolutional neural network, and the bounding box center of the network output was used as the approximate coordinates of the rice seedlings, and the horizontal and vertical crop rows were fitted by the least square method, so as to detect the phenomenon of rice omission. By adding atrous spatial pyramid pooling and a convolutional block attention module to YOLOv5, the problem of image distortion caused by scaling and cropping is effectively solved, and the recognition accuracy is improved. The accuracy of this method is 95.8%, which is 5.6% higher than that of other methods, and the F1-score is 93.39%, which is 4.66% higher than that of the original YOLOv5. Moreover, the network structure is simple and easy to train, with the average training time being 0.284 h, which can meet the requirements of detection accuracy and speed in actual production. This study provides an effective theoretical basis for the construction of an uncrewed agricultural machinery system. Full article
(This article belongs to the Special Issue Computer Vision and Deep Learning Technology in Agriculture)
Show Figures

Figure 1

17 pages, 44970 KB  
Article
Research on the Efficiency of Bridge Crack Detection by Coupling Deep Learning Frameworks with Convolutional Neural Networks
by Kaifeng Ma, Xiang Meng, Mengshu Hao, Guiping Huang, Qingfeng Hu and Peipei He
Sensors 2023, 23(16), 7272; https://doi.org/10.3390/s23167272 - 19 Aug 2023
Cited by 7 | Viewed by 3212
Abstract
Bridge crack detection based on deep learning is a research area of great interest and difficulty in the field of bridge health detection. This study aimed to investigate the effectiveness of coupling a deep learning framework (DLF) with a convolutional neural network (CNN) [...] Read more.
Bridge crack detection based on deep learning is a research area of great interest and difficulty in the field of bridge health detection. This study aimed to investigate the effectiveness of coupling a deep learning framework (DLF) with a convolutional neural network (CNN) for bridge crack detection. A dataset consisting of 2068 bridge crack images was randomly split into training, verification, and testing sets with a ratio of 8:1:1, respectively. Several CNN models, including Faster R-CNN, Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO)-v5(x), U-Net, and Pyramid Scene Parsing Network (PSPNet), were used to conduct experiments using the PyTorch, TensorFlow2, and Keras frameworks. The experimental results show that the Harmonic Mean (F1) values of the detection results of the Faster R-CNN and SSD models under the Keras framework are relatively large (0.76 and 0.67, respectively, in the object detection model). The YOLO-v5(x) model of the TensorFlow2 framework achieved the highest F1 value of 0.67. In semantic segmentation models, the U-Net model achieved the highest detection result accuracy (AC) value of 98.37% under the PyTorch framework. The PSPNet model achieved the highest AC value of 97.86% under the TensorFlow2 framework. These experimental results provide optimal coupling efficiency parameters of a DLF and CNN for bridge crack detection. A more accurate and efficient DLF and CNN model for bridge crack detection has been obtained, which has significant practical application value. Full article
(This article belongs to the Special Issue Smart Image Recognition and Detection Sensors)
Show Figures

Figure 1

30 pages, 57915 KB  
Article
ECLPOD: An Extremely Compressed Lightweight Model for Pear Object Detection in Smart Agriculture
by Yuhang Xie, Xiyu Zhong, Jialei Zhan, Chang Wang, Nating Liu, Lin Li, Peirui Zhao, Liujun Li and Guoxiong Zhou
Agronomy 2023, 13(7), 1891; https://doi.org/10.3390/agronomy13071891 - 17 Jul 2023
Cited by 13 | Viewed by 2953
Abstract
Accurate pear sorting plays a crucial role in ensuring the quality of pears and increasing the sales of them. In the domain of intelligent pear sorting, precise target detection of pears is imperative. However, practical implementation faces challenges in achieving adequate accuracy in [...] Read more.
Accurate pear sorting plays a crucial role in ensuring the quality of pears and increasing the sales of them. In the domain of intelligent pear sorting, precise target detection of pears is imperative. However, practical implementation faces challenges in achieving adequate accuracy in pear target detection due to the limitations of computational resources in embedded devices and the occurrence of occlusion among pears. To solve this problem, we built an image acquisition system based on pear sorting equipment and created a pear dataset containing 34,598 pear images under laboratory conditions. The dataset was meticulously annotated using the LabelImg software, resulting in a total of 154,688 precise annotations for pears, pear stems, pear calyxes, and pear defects. Furthermore, we propose an Extremely Compressed Lightweight Model for Pear Object Detection (ECLPOD) based on YOLOv7’s pipeline to assist in the pear sorting task. Firstly, the Hierarchical Interactive Shrinking Network (HISNet) was proposed, which contributed to efficient feature extraction with a limited amount of computation and parameters. The Bulk Feature Pyramid (BFP) module was then proposed to enhance pear contour information extraction during feature fusion. Finally, the Accuracy Compensation Strategy (ACS) was proposed to improve the detection capability of the model, especially for identification of the calyces and stalks of pears. The experimental results indicate that the ECLPOD achieves 90.1% precision (P) and 85.52% mAP50 with only 0.58 million parameters and 1.3 GFLOPs of computation in the homemade pear dataset in this paper. Compared with YOLOv7, the number of parameters and the amount of computation for the ECLPOD are compressed to 1.5% and 1.3%, respectively. Compared with other mainstream methods, the ECLPOD achieves an optimal trade-off between accuracy and complexity. This suggests that the ECLPOD is superior to these existing approaches in the field of object detection for assisting pear sorting tasks with good potential for embedded device deployment. Full article
Show Figures

Figure 1

15 pages, 2518 KB  
Article
Automatic Fabric Defect Detection Method Using AC-YOLOv5
by Yongbin Guo, Xinjian Kang, Junfeng Li and Yuanxun Yang
Electronics 2023, 12(13), 2950; https://doi.org/10.3390/electronics12132950 - 5 Jul 2023
Cited by 27 | Viewed by 6871
Abstract
In the face of detection problems posed by complex textile texture backgrounds, different sizes, and different types of defects, commonly used object detection networks have limitations in handling target sizes. Furthermore, their stability and anti-jamming capabilities are relatively weak. Therefore, when the target [...] Read more.
In the face of detection problems posed by complex textile texture backgrounds, different sizes, and different types of defects, commonly used object detection networks have limitations in handling target sizes. Furthermore, their stability and anti-jamming capabilities are relatively weak. Therefore, when the target types are more diverse, false detections or missed detections are likely to occur. In order to meet the stringent requirements of textile defect detection, we propose a novel AC-YOLOv5-based textile defect detection method. This method fully considers the optical properties, texture distribution, imaging properties, and detection requirements specific to textiles. First, the Atrous Spatial Pyramid Pooling (ASPP) module is introduced into the YOLOv5 backbone network, and the feature map is pooled using convolution cores with different expansion rates. Multiscale feature information is obtained from feature maps of different receptive fields, which improves the detection of defects of different sizes without changing the resolution of the input image. Secondly, a convolution squeeze-and-excitation (CSE) channel attention module is proposed, and the CSE module is introduced into the YOLOv5 backbone network. The weights of each feature channel are obtained through self-learning to further improve the defect detection and anti-jamming capability. Finally, a large number of fabric images were collected using an inspection system built on a circular knitting machine at an industrial site, and a large number of experiments were conducted using a self-built fabric defect dataset. The experimental results showed that AC-YOLOv5 can achieve an overall detection accuracy of 99.1% for fabric defect datasets, satisfying the requirements for applications in industrial areas. Full article
(This article belongs to the Special Issue Advances in Computer Vision and Deep Learning and Its Applications)
Show Figures

Figure 1

21 pages, 5074 KB  
Article
Underwater Target Detection Based on Improved YOLOv7
by Kaiyue Liu, Qi Sun, Daming Sun, Lin Peng, Mengduo Yang and Nizhuan Wang
J. Mar. Sci. Eng. 2023, 11(3), 677; https://doi.org/10.3390/jmse11030677 - 22 Mar 2023
Cited by 98 | Viewed by 11110
Abstract
Underwater target detection is a crucial aspect of ocean exploration. However, conventional underwater target detection methods face several challenges such as inaccurate feature extraction, slow detection speed, and lack of robustness in complex underwater environments. To address these limitations, this study proposes an [...] Read more.
Underwater target detection is a crucial aspect of ocean exploration. However, conventional underwater target detection methods face several challenges such as inaccurate feature extraction, slow detection speed, and lack of robustness in complex underwater environments. To address these limitations, this study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection. The proposed network utilizes an ACmixBlock module to replace the 3 × 3 convolution block in the E-ELAN structure, and incorporates jump connections and 1 × 1 convolution architecture between ACmixBlock modules to improve feature extraction and network reasoning speed. Additionally, a ResNet-ACmix module is designed to avoid feature information loss and reduce computation, while a Global Attention Mechanism (GAM) is inserted in the backbone and head parts of the model to improve feature extraction. Furthermore, the K-means++ algorithm is used instead of K-means to obtain anchor boxes and enhance model accuracy. Experimental results show that the improved YOLOv7 network outperforms the original YOLOv7 model and other popular underwater target detection methods. The proposed network achieved a mean average precision (mAP) value of 89.6% and 97.4% on the URPC dataset and Brackish dataset, respectively, and demonstrated a higher frame per second (FPS) compared to the original YOLOv7 model. In conclusion, the improved YOLOv7 network proposed in this study represents a promising solution for underwater target detection and holds great potential for practical applications in various underwater tasks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 3741 KB  
Article
An Algorithm for Real-Time Aluminum Profile Surface Defects Detection Based on Lightweight Network Structure
by Junlong Tang, Shenbo Liu, Dongxue Zhao, Lijun Tang, Wanghui Zou and Bin Zheng
Metals 2023, 13(3), 507; https://doi.org/10.3390/met13030507 - 2 Mar 2023
Cited by 4 | Viewed by 2785
Abstract
Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection [...] Read more.
Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection with ensured detection accuracy. Based on the YOLOv5s framework, a lightweight network model is designed by adding the attention mechanism and depth-separable convolution for the detection of aluminum. The lightweight network model improves the limitations of the YOLOv5s framework regarding to its detection accuracy and detection speed. The backbone network GCANet is built based on the Ghost module, in which the Attention mechanism module is embedded in the AC3Ghost module. A compression of the backbone network is achieved, and more channel information is focused on. The model size is further reduced by compressing the Neck network using a deep separable convolution. The experimental results show that, compared to YOLOv5s, the proposed method improves the mAP by 1.76%, reduces the model size by 52.08%, and increases the detection speed by a factor of two. Furthermore, the detection speed can reach 17.4 FPS on Nvidia Jeston Nano’s edge test, which achieves real-time detection. It also provides the possibility of embedding devices for real-time industrial inspection. Full article
(This article belongs to the Special Issue Aluminum Alloys and Aluminum-Based Matrix Composites)
Show Figures

Figure 1

Back to TopTop