Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = YOLO V7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8282 KiB  
Article
Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard
by Tantan Jin, Xiongzhe Han, Pingan Wang, Yang Lyu, Eunha Chang, Haetnim Jeong and Lirong Xiang
Agriculture 2025, 15(15), 1593; https://doi.org/10.3390/agriculture15151593 - 24 Jul 2025
Abstract
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a [...] Read more.
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a lightweight perception module, a task-adaptive motion planner, and an adaptive soft gripper. A lightweight approach was introduced by integrating the Faster module within the C2f module of the You Only Look Once (YOLO) v8n architecture to optimize the real-time apple detection efficiency. For motion planning, a Dynamic Temperature Simplified Transition Adaptive Cost Bidirectional Transition-Based Rapidly Exploring Random Tree (DSA-BiTRRT) algorithm was developed, demonstrating significant improvements in the path planning performance. The adaptive soft gripper was evaluated for its detachment and load-bearing capacities. Field experiments revealed that the direct-pull method at 150 mN·m torque outperformed the rotation-pull method at both 100 mN·m and 150 mN·m. A custom control system integrating all components was validated in partially controlled orchards, where obstacle clearance and thinning were conducted to ensure operation safety. Tests conducted on 80 apples showed a 52.5% detachment success rate and a 47.5% overall harvesting success rate, with average detachment and full-cycle times of 7.7 s and 15.3 s per apple, respectively. These results highlight the system’s potential for advancing robotic fruit harvesting and contribute to the ongoing development of autonomous agricultural technologies. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
SRW-YOLO: A Detection Model for Environmental Risk Factors During the Grid Construction Phase
by Yu Zhao, Fei Liu, Qiang He, Fang Liu, Xiaohu Sun and Jiyong Zhang
Remote Sens. 2025, 17(15), 2576; https://doi.org/10.3390/rs17152576 - 24 Jul 2025
Abstract
With the rapid advancement of UAV-based remote sensing and image recognition techniques, identifying environmental risk factors from aerial imagery has emerged as a focal point in intelligent inspection during the power transmission and distribution projects construction phase. The uneven spatial distribution of risk [...] Read more.
With the rapid advancement of UAV-based remote sensing and image recognition techniques, identifying environmental risk factors from aerial imagery has emerged as a focal point in intelligent inspection during the power transmission and distribution projects construction phase. The uneven spatial distribution of risk factors on construction sites, their weak texture signatures, and the inherently multi-scale nature of UAV imagery pose significant detection challenges. To address these issues, we propose a one-stage SRW-YOLO algorithm built upon the YOLOv11 framework. First, a P2-scale shallow feature detection layer is added to capture high-resolution fine details of small targets. Second, we integrate a reparameterized convolution based on channel shuffle (RCS) of a one-shot aggregation (RCS-OSA) module into the backbone and neck’s shallow layers, enhancing feature extraction while significantly reducing inference latency. Finally, a dynamic non-monotonic focusing mechanism WIoU v3 loss function is employed to reweigh low-quality annotations, thereby improving small-object localization accuracy. Experimental results demonstrate that SRW-YOLO achieves an overall precision of 80.6% and mAP of 79.1% on the State Grid dataset, and exhibits similarly superior performance on the VisDrone2019 dataset. Compared with other one-stage detectors, SRW-YOLO delivers markedly higher detection accuracy, offering critical technical support for multi-scale, heterogeneous environmental risk monitoring during the power transmission and distribution projects construction phase, and establishes the theoretical foundation for rapid and accurate inspection using UAV-based intelligent imaging. Full article
Show Figures

Figure 1

14 pages, 2935 KiB  
Article
Deep Learning-Based Differentiation of Vertebral Body Lesions on Magnetic Resonance Imaging
by Hüseyin Er, Murat Tören, Berkutay Asan, Esat Kaba and Mehmet Beyazal
Diagnostics 2025, 15(15), 1862; https://doi.org/10.3390/diagnostics15151862 - 24 Jul 2025
Abstract
Objectives: Spinal diseases are commonly encountered health problems with a wide spectrum. In addition to degenerative changes, other common spinal pathologies include metastases and compression fractures. Benign tumors like hemangiomas and infections such as spondylodiscitis are also frequently observed. Although magnetic resonance imaging [...] Read more.
Objectives: Spinal diseases are commonly encountered health problems with a wide spectrum. In addition to degenerative changes, other common spinal pathologies include metastases and compression fractures. Benign tumors like hemangiomas and infections such as spondylodiscitis are also frequently observed. Although magnetic resonance imaging (MRI) is considered the gold standard in diagnostic imaging, the morphological similarities of lesions can pose significant challenges in differential diagnoses. In recent years, the use of artificial intelligence applications in medical imaging has become increasingly widespread. In this study, we aim to detect and classify vertebral body lesions using the YOLO-v8 (You Only Look Once, version 8) deep learning architecture. Materials and Methods: This study included MRI data from 235 patients with vertebral body lesions. The dataset comprised sagittal T1- and T2-weighted sequences. The diagnostic categories consisted of acute compression fractures, metastases, hemangiomas, atypical hemangiomas, and spondylodiscitis. For automated detection and classification of vertebral lesions, the YOLOv8 deep learning model was employed. Following image standardization and data augmentation, a total of 4179 images were generated. The dataset was randomly split into training (80%) and validation (20%) subsets. Additionally, an independent test set was constructed using MRI images from 54 patients who were not included in the training or validation phases to evaluate the model’s performance. Results: In the test, the YOLOv8 model achieved classification accuracies of 0.84 and 0.85 for T1- and T2-weighted MRI sequences, respectively. Among the diagnostic categories, spondylodiscitis had the highest accuracy in the T1 dataset (0.94), while acute compression fractures were most accurately detected in the T2 dataset (0.93). Hemangiomas exhibited the lowest classification accuracy in both modalities (0.73). The F1 scores were calculated as 0.83 for T1-weighted and 0.82 for T2-weighted sequences at optimal confidence thresholds. The model’s mean average precision (mAP) 0.5 values were 0.82 for T1 and 0.86 for T2 datasets, indicating high precision in lesion detection. Conclusions: The YOLO-v8 deep learning model we used demonstrates effective performance in distinguishing vertebral body metastases from different groups of benign pathologies. Full article
Show Figures

Figure 1

17 pages, 3823 KiB  
Article
Lightweight UAV-Based System for Early Fire-Risk Identification in Wild Forests
by Akmalbek Abdusalomov, Sabina Umirzakova, Alpamis Kutlimuratov, Dilshod Mirzaev, Adilbek Dauletov, Tulkin Botirov, Madina Zakirova, Mukhriddin Mukhiddinov and Young Im Cho
Fire 2025, 8(8), 288; https://doi.org/10.3390/fire8080288 - 23 Jul 2025
Viewed by 54
Abstract
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous [...] Read more.
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous vegetation needs to be removed, and the vegetation should be identified early on. This work proposes a real-time fire risk tree detection framework using UAV images, which is based on lightweight object detection. The model uses the MobileNetV3-Small spine, which is optimized for edge deployment, combined with an SSD head. This configuration results in a highly optimized and fast UAV-based inference pipeline. The dataset used in this study comprises over 3000 annotated RGB UAV images of trees in healthy, partially dead, and fully dead conditions, collected from mixed real-world forest scenes and public drone imagery repositories. Thorough evaluation shows that the proposed model outperforms conventional SSD and recent YOLOs on Precision (94.1%), Recall (93.7%), mAP (90.7%), F1 (91.0%) while being light-weight (8.7 MB) and fast (62.5 FPS on Jetson Xavier NX). These findings strongly support the model’s effectiveness for large-scale continuous forest monitoring to detect health degradations and mitigate wildfire risks proactively. The framework UAV-based environmental monitoring systems differentiates itself by incorporating a balance between detection accuracy, speed, and resource efficiency as fundamental principles. Full article
Show Figures

Figure 1

19 pages, 7168 KiB  
Article
MTD-YOLO: An Improved YOLOv8-Based Rice Pest Detection Model
by Feng Zhang, Chuanzhao Tian, Xuewen Li, Na Yang, Yanting Zhang and Qikai Gao
Electronics 2025, 14(14), 2912; https://doi.org/10.3390/electronics14142912 - 21 Jul 2025
Viewed by 193
Abstract
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches [...] Read more.
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches still suffer from limited generalization and suboptimal accuracy. To address these challenges, this study proposes an improved rice pest detection model, MTD-YOLO, based on the YOLOv8 framework. First, the original backbone is replaced with MobileNetV3, which leverages optimized depthwise separable convolutions and the Hard-Swish activation function through neural architecture search, effectively reducing parameters while maintaining multiscale feature extraction capabilities. Second, a Cross Stage Partial module with Triplet Attention (C2f-T) module incorporating Triplet Attention is introduced to enhance the model’s focus on infested regions via a channel-patial dual-attention mechanism. In addition, a Dynamic Head (DyHead) is introduced to adaptively focus on pest morphological features using the scale–space–task triple-attention mechanism. The experiments were conducted using two datasets, Rice Pest1 and Rice Pest2. On Rice Pest1, the model achieved a precision of 92.5%, recall of 90.1%, mAP@0.5 of 90.0%, and mAP@[0.5:0.95] of 67.8%. On Rice Pest2, these metrics improved to 95.6%, 92.8%, 96.6%, and 82.5%, respectively. The experimental results demonstrate the high accuracy and efficiency of the model in the rice pest detection task, providing strong support for practical applications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

22 pages, 14158 KiB  
Article
Enhanced YOLOv8 for Robust Pig Detection and Counting in Complex Agricultural Environments
by Jian Li, Wenkai Ma, Yanan Wei and Tan Wang
Animals 2025, 15(14), 2149; https://doi.org/10.3390/ani15142149 - 21 Jul 2025
Viewed by 165
Abstract
Accurate pig counting is crucial for precision livestock farming, enabling optimized feeding management and health monitoring. Detection-based counting methods face significant challenges due to mutual occlusion, varying illumination conditions, diverse pen configurations, and substantial variations in pig densities. Previous approaches often struggle with [...] Read more.
Accurate pig counting is crucial for precision livestock farming, enabling optimized feeding management and health monitoring. Detection-based counting methods face significant challenges due to mutual occlusion, varying illumination conditions, diverse pen configurations, and substantial variations in pig densities. Previous approaches often struggle with complex agricultural environments where lighting conditions, pig postures, and crowding levels create challenging detection scenarios. To address these limitations, we propose EAPC-YOLO (enhanced adaptive pig counting YOLO), a robust architecture integrating density-aware processing with advanced detection optimizations. The method consists of (1) an enhanced YOLOv8 network incorporating multiple architectural improvements for better feature extraction and object localization. These improvements include DCNv4 deformable convolutions for irregular pig postures, BiFPN bidirectional feature fusion for multi-scale information integration, EfficientViT linear attention for computational efficiency, and PIoU v2 loss for improved overlap handling. (2) A density-aware post-processing module with intelligent NMS strategies that adapt to different crowding scenarios. Experimental results on a comprehensive dataset spanning diverse agricultural scenarios (nighttime, controlled indoor, and natural daylight environments with density variations from 4 to 30 pigs) demonstrate our method achieves 94.2% mAP@0.5 for detection performance and 96.8% counting accuracy, representing 12.3% and 15.7% improvements compared to the strongest baseline, YOLOv11n. This work enables robust, accurate pig counting across challenging agricultural environments, supporting precision livestock management. Full article
Show Figures

Figure 1

22 pages, 5804 KiB  
Article
Can YOLO Detect Retinal Pathologies? A Step Towards Automated OCT Analysis
by Adriana-Ioana Ardelean, Eugen-Richard Ardelean and Anca Marginean
Diagnostics 2025, 15(14), 1823; https://doi.org/10.3390/diagnostics15141823 - 19 Jul 2025
Viewed by 285
Abstract
Background: Optical Coherence Tomography has become a common imaging technique that enables a non-invasive and detailed visualization of the retina and allows for the identification of various diseases. Through the advancement of technology, the volume and complexity of OCT data have rendered manual [...] Read more.
Background: Optical Coherence Tomography has become a common imaging technique that enables a non-invasive and detailed visualization of the retina and allows for the identification of various diseases. Through the advancement of technology, the volume and complexity of OCT data have rendered manual analysis infeasible, creating the need for automated means of detection. Methods: This study investigates the ability of state-of-the-art object detection models, including the latest YOLO versions (from v8 to v12), YOLO-World, YOLOE, and RT-DETR, to accurately detect pathological biomarkers in two retinal OCT datasets. The AROI dataset focuses on fluid detection in Age-related Macular Degeneration, while the OCT5k dataset contains a wide range of retinal pathologies. Results: The experiments performed show that YOLOv12 offers the best balance between detection accuracy and computational efficiency, while YOLOE manages to consistently outperform all other models across both datasets and most classes, particularly in detecting pathologies that cover a smaller area. Conclusions: This work provides a comprehensive benchmark of the capabilities of state-of-the-art object detection for medical applications, specifically for identifying retinal pathologies from OCT scans, offering insights and a starting point for the development of future automated solutions for analysis in a clinical setting. Full article
(This article belongs to the Special Issue Artificial Intelligence in Eye Disease, 3rd Edition)
Show Figures

Figure 1

20 pages, 33417 KiB  
Article
Enhancing UAV Object Detection in Low-Light Conditions with ELS-YOLO: A Lightweight Model Based on Improved YOLOv11
by Tianhang Weng and Xiaopeng Niu
Sensors 2025, 25(14), 4463; https://doi.org/10.3390/s25144463 - 17 Jul 2025
Viewed by 349
Abstract
Drone-view object detection models operating under low-light conditions face several challenges, such as object scale variations, high image noise, and limited computational resources. Existing models often struggle to balance accuracy and lightweight architecture. This paper introduces ELS-YOLO, a lightweight object detection model tailored [...] Read more.
Drone-view object detection models operating under low-light conditions face several challenges, such as object scale variations, high image noise, and limited computational resources. Existing models often struggle to balance accuracy and lightweight architecture. This paper introduces ELS-YOLO, a lightweight object detection model tailored for low-light environments, built upon the YOLOv11s framework. ELS-YOLO features a re-parameterized backbone (ER-HGNetV2) with integrated Re-parameterized Convolution and Efficient Channel Attention mechanisms, a Lightweight Feature Selection Pyramid Network (LFSPN) for multi-scale object detection, and a Shared Convolution Separate Batch Normalization Head (SCSHead) to reduce computational complexity. Layer-Adaptive Magnitude-Based Pruning (LAMP) is employed to compress the model size. Experiments on the ExDark and DroneVehicle datasets demonstrate that ELS-YOLO achieves high detection accuracy with a compact model. Here, we show that ELS-YOLO attains a mAP@0.5 of 74.3% and 68.7% on the ExDark and DroneVehicle datasets, respectively, while maintaining real-time inference capability. Full article
(This article belongs to the Special Issue Vision Sensors for Object Detection and Tracking)
Show Figures

Figure 1

26 pages, 7857 KiB  
Article
Investigation of an Efficient Multi-Class Cotton Leaf Disease Detection Algorithm That Leverages YOLOv11
by Fangyu Hu, Mairheba Abula, Di Wang, Xuan Li, Ning Yan, Qu Xie and Xuedong Zhang
Sensors 2025, 25(14), 4432; https://doi.org/10.3390/s25144432 - 16 Jul 2025
Viewed by 208
Abstract
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. [...] Read more.
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. By integrating a medical image segmentation model, it effectively tackles challenges including complex background interference, the missed detection of small targets, and restricted generalization ability. Specifically, the U-Net v2 module is embedded in the backbone network to boost the multi-scale feature extraction performance in YOLOv11. Meanwhile, the CBAM attention mechanism is integrated to emphasize critical disease-related features. To lower the computational complexity, the SPPF module is substituted with SimSPPF. The C3k2_RCM module is appended for long–range context modeling, and the ARelu activation function is employed to alleviate the vanishing gradient problem. A database comprising 3000 images covering six types of cotton leaf diseases was constructed, and data augmentation techniques were applied. The experimental results show that ACURS-YOLO attains impressive performance indicators, encompassing a mAP_0.5 value of 94.6%, a mAP_0.5:0.95 value of 83.4%, 95.5% accuracy, 89.3% recall, an F1 score of 92.3%, and a frame rate of 148 frames per second. It outperforms YOLOv11 and other conventional models with regard to both detection precision and overall functionality. Ablation tests additionally validate the efficacy of each component, affirming the framework’s advantage in addressing complex detection environments. This framework provides an efficient solution for the automated monitoring of cotton leaf diseases, advancing the development of smart sensors through improved detection accuracy and practical applicability. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

28 pages, 4068 KiB  
Article
GDFC-YOLO: An Efficient Perception Detection Model for Precise Wheat Disease Recognition
by Jiawei Qian, Chenxu Dai, Zhanlin Ji and Jinyun Liu
Agriculture 2025, 15(14), 1526; https://doi.org/10.3390/agriculture15141526 - 15 Jul 2025
Viewed by 252
Abstract
Wheat disease detection is a crucial component of intelligent agricultural systems in modern agriculture. However, at present, its detection accuracy still has certain limitations. The existing models hardly capture the irregular and fine-grained texture features of the lesions, and the results of spatial [...] Read more.
Wheat disease detection is a crucial component of intelligent agricultural systems in modern agriculture. However, at present, its detection accuracy still has certain limitations. The existing models hardly capture the irregular and fine-grained texture features of the lesions, and the results of spatial information reconstruction caused by standard upsampling operations are inaccuracy. In this work, the GDFC-YOLO method is proposed to address these limitations and enhance the accuracy of detection. This method is based on YOLOv11 and encompasses three key aspects of improvement: (1) a newly designed Ghost Dynamic Feature Core (GDFC) in the backbone, which improves the efficiency of disease feature extraction and enhances the model’s ability to capture informative representations; (2) a redesigned neck structure, Disease-Focused Neck (DF-Neck), which further strengthens feature expressiveness, to improve multi-scale fusion and refine feature processing pipelines; and (3) the integration of the Powerful Intersection over Union v2 (PIoUv2) loss function to optimize the regression accuracy and convergence speed. The results showed that GDFC-YOLO improved the average accuracy from 0.86 to 0.90 when the cross-overmerge threshold was 0.5 (mAP@0.5), its accuracy reached 0.899, its recall rate reached 0.821, and it still maintained a structure with only 9.27 M parameters. From these results, it can be known that GDFC-YOLO has a good detection performance and stronger practicability relatively. It is a solution that can accurately and efficiently detect crop diseases in real agricultural scenarios. Full article
Show Figures

Figure 1

72 pages, 22031 KiB  
Article
AI-Enabled Sustainable Manufacturing: Intelligent Package Integrity Monitoring for Waste Reduction in Supply Chains
by Mohammad Shahin, Ali Hosseinzadeh and F. Frank Chen
Electronics 2025, 14(14), 2824; https://doi.org/10.3390/electronics14142824 - 14 Jul 2025
Viewed by 258
Abstract
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic [...] Read more.
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic decision-making, real-time quality control (QC) on conveyor lines remains predominantly analog. This study proposes an intelligent package integrity monitoring system that integrates waste reduction strategies with both narrow and Generative AI approaches. Narrow AI models were deployed to detect package damage at full line speed, aiming to minimize manual intervention and reduce waste. Using a synthetically generated dataset of 200 paired top-and-side package images, we developed and evaluated 10 distinct detection pipelines combining various algorithms, image enhancements, model architectures, and data processing strategies. Several pipeline variants demonstrated high accuracy, precision, and recall, particularly those utilizing a YOLO v8 segmentation model. Notably, targeted preprocessing increased top-view MobileNetV2 accuracy from chance to 67.5%, advanced feature extractors with full enhancements achieved 77.5%, and a segmentation-based ensemble with feature extraction and binary classification reached 92.5% accuracy. These results underscore the feasibility of deploying AI-driven, real-time QC systems for sustainable and efficient manufacturing operations. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Intelligent Manufacturing)
Show Figures

Figure 1

20 pages, 3688 KiB  
Article
Intelligent Fruit Localization and Grasping Method Based on YOLO VX Model and 3D Vision
by Zhimin Mei, Yifan Li, Rongbo Zhu and Shucai Wang
Agriculture 2025, 15(14), 1508; https://doi.org/10.3390/agriculture15141508 - 13 Jul 2025
Viewed by 276
Abstract
Recent years have seen significant interest among agricultural researchers in using robotics and machine vision to enhance intelligent orchard harvesting efficiency. This study proposes an improved hybrid framework integrating YOLO VX deep learning, 3D object recognition, and SLAM-based navigation for harvesting ripe fruits [...] Read more.
Recent years have seen significant interest among agricultural researchers in using robotics and machine vision to enhance intelligent orchard harvesting efficiency. This study proposes an improved hybrid framework integrating YOLO VX deep learning, 3D object recognition, and SLAM-based navigation for harvesting ripe fruits in greenhouse environments, achieving servo control of robotic arms with flexible end-effectors. The method comprises three key components: First, a fruit sample database containing varying maturity levels and morphological features is established, interfaced with an optimized YOLO VX model for target fruit identification. Second, a 3D camera acquires the target fruit’s spatial position and orientation data in real time, and these data are stored in the collaborative robot’s microcontroller. Finally, employing binocular calibration and triangulation, the SLAM navigation module guides the robotic arm to the designated picking location via unobstructed target positioning. Comprehensive comparative experiments between the improved YOLO v12n model and earlier versions were conducted to validate its performance. The results demonstrate that the optimized model surpasses traditional recognition and harvesting methods, offering superior target fruit identification response (minimum 30.9ms) and significantly higher accuracy (91.14%). Full article
Show Figures

Figure 1

19 pages, 1442 KiB  
Article
Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning
by Teng-Li Lin, Arvind Mukundan, Riya Karmakar, Praveen Avala, Wen-Yen Chang and Hsiang-Chen Wang
Bioengineering 2025, 12(7), 755; https://doi.org/10.3390/bioengineering12070755 - 11 Jul 2025
Viewed by 374
Abstract
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents [...] Read more.
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes. Full article
Show Figures

Figure 1

31 pages, 20469 KiB  
Article
YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles
by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu and Ende Zhang
Remote Sens. 2025, 17(13), 2313; https://doi.org/10.3390/rs17132313 - 5 Jul 2025
Cited by 1 | Viewed by 587
Abstract
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a [...] Read more.
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a lightweight real-time object detection framework specifically designed for infrared imagery captured by UAVs. Firstly, the model utilizes ShuffleNetV2 as an efficient lightweight backbone and integrates the novel Multi-Scale Dilated Attention (MSDA) module. This strategy not only facilitates a substantial 46.4% reduction in parameter volume but also, through the flexible adaptation of receptive fields, boosts the model’s robustness and precision in multi-scale object recognition tasks. Secondly, within the neck network, multi-scale feature extraction is facilitated through the design of novel composite convolutions, ConvX and MConv, based on a “split–differentiate–concatenate” paradigm. Furthermore, the lightweight GhostConv is incorporated to reduce model complexity. By synthesizing these principles, a novel composite receptive field lightweight convolution, DRFAConvP, is proposed to further optimize multi-scale feature fusion efficiency and promote model lightweighting. Finally, the Wise-IoU loss function is adopted to replace the traditional bounding box loss. This is coupled with a dynamic non-monotonic focusing mechanism formulated using the concept of outlier degrees. This mechanism intelligently assigns elevated gradient weights to anchor boxes of moderate quality by assessing their relative outlier degree, while concurrently diminishing the gradient contributions from both high-quality and low-quality anchor boxes. Consequently, this approach enhances the model’s localization accuracy for small targets in complex scenes. Experimental evaluations on the HIT-UAV dataset corroborate that YOLO-SRMX achieves an mAP50 of 82.8%, representing a 7.81% improvement over the baseline YOLOv8s model; an F1 score of 80%, marking a 3.9% increase; and a substantial 65.3% reduction in computational cost (GFLOPs). YOLO-SRMX demonstrates an exceptional trade-off between detection accuracy and operational efficiency, thereby underscoring its considerable potential for efficient and precise object detection on resource-constrained UAV platforms. Full article
Show Figures

Figure 1

24 pages, 5858 KiB  
Article
A YOLO11-Based Method for Segmenting Secondary Phases in Cu-Fe Alloy Microstructures
by Qingxiu Jing, Ruiyang Wu, Zhicong Zhang, Yong Li, Qiqi Chang, Weihui Liu and Xiaodong Huang
Information 2025, 16(7), 570; https://doi.org/10.3390/info16070570 - 3 Jul 2025
Cited by 1 | Viewed by 192
Abstract
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability [...] Read more.
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability in traditional metallographic analysis methods, this paper proposes a deep learning-based approach for segmenting the second phase in Cu-Fe alloys. The method is built upon the YOLO11 framework and incorporates a series of structural enhancements tailored to the characteristics of the secondary-phase microstructure, aiming to improve the model’s detection accuracy and segmentation performance. Specifically, the EIEM module enhances the C3K2 structure to improve edge perception; the CSPSA module is optimized into C2CGA to strengthen multi-scale feature representation; and the RepGFPN and DySample techniques are integrated to construct the GDFPN neck network. Experimental results on the Cu-Fe alloy metallographic image dataset demonstrate that YOLO11 outperforms mainstream semantic segmentation models such as U-Net and DeepLabV3+ in terms of mAP (85.5%), inference speed (208 FPS), and model complexity (10.2 GFLOPs). The improved YOLO11 model achieves an mAP of 89.0%, a precision of 84.6%, and a recall of 81.0% on this dataset, showing significant performance improvements while effectively balancing inference speed and model complexity. Additionally, a quantitative analysis software system for secondary phase uniformity based on this model provides strong technical support for automated metallographic image analysis and demonstrates broad application prospects in materials science research and industrial quality control. Full article
(This article belongs to the Topic Intelligent Image Processing Technology)
Show Figures

Graphical abstract

Back to TopTop