Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = XLPE cables

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11993 KB  
Article
Comparisons of Thermo-Oxidative Ageing Performance and Lifespan Evaluation of Grafted Polypropylene and XLPE Cables: Combined Effect of Temperature and Thickness
by Wenjia Zhang, Shangshi Huang, Mingti Wang, Juan Li, Wei Wang, Shixun Hu and Jinliang He
Polymers 2026, 18(3), 386; https://doi.org/10.3390/polym18030386 (registering DOI) - 31 Jan 2026
Abstract
Grafted polypropylene (PPG) has demonstrated significant potential as a recyclable insulation material for high-voltage cables. While its fundamental electrical, mechanical and thermal properties have been widely studied, research on its long-term performance remains insufficient. This study comparatively investigates the thermo-oxidative ageing performance of [...] Read more.
Grafted polypropylene (PPG) has demonstrated significant potential as a recyclable insulation material for high-voltage cables. While its fundamental electrical, mechanical and thermal properties have been widely studied, research on its long-term performance remains insufficient. This study comparatively investigates the thermo-oxidative ageing performance of PPG and traditional cross-linked polyethylene (XLPE) to evaluate the expected lifespan of cable insulation. The evolution of mechanical and electrical properties of PPG and XLPE was monitored during accelerated thermo-oxidative ageing experiments conducted at their respective maximum allowable operating temperatures, and the most sensitive ageing parameter was identified. Furthermore, the influence of thickness on the insulation ageing process was examined through experiments on samples of different thicknesses. Results indicate that the estimated thermo-oxidative ageing lifespan of XLPE at its maximum operating temperatures of 90 °C is 37.75 years, while that of PPG at 110 °C is 45.65 years. This work offers a practical methodology for polymer ageing lifespan analysis and provides valuable insights for assessing the long-term performance of PPG cables in high-voltage applications. Full article
24 pages, 9453 KB  
Article
Study on Electromagnetic–Thermal Coupling Characteristics of Submarine Cable Using Finite Element Method
by Kui Zhu, Yicheng Zhang, Qingyang Duan, Peng Liang, Zhihong Wang, Zeqi Cheng and Enjin Zhao
J. Mar. Sci. Eng. 2026, 14(2), 132; https://doi.org/10.3390/jmse14020132 - 8 Jan 2026
Viewed by 212
Abstract
Low-frequency alternating-current (LFAC) transmission has attracted significant attention for medium- and long-distance offshore wind integration due to its ability to mitigate the substantial charging currents and reactive power burdens associated with long submarine cables. This paper investigates the frequency-dependent electrothermal behaviors of a [...] Read more.
Low-frequency alternating-current (LFAC) transmission has attracted significant attention for medium- and long-distance offshore wind integration due to its ability to mitigate the substantial charging currents and reactive power burdens associated with long submarine cables. This paper investigates the frequency-dependent electrothermal behaviors of a 500 kV three-core XLPE submarine cable using a coupled electromagnetic–thermal finite-element model. The simulation framework evaluates the current distribution, power losses in metallic components, temperature rise, and ampacity across various frequency regimes. To validate the numerical model, a thermal-circuit approach based on the IEC 60287 standard is developed, with comparisons confirming that deviations remain within acceptable engineering margins. The study reveals that operating at lower frequencies effectively mitigates skin and proximity effects, leading to reduced conductor and sheath losses. Quantitative results demonstrate that reducing the operating frequency from 50 Hz to 5 Hz results in a 30.6% reduction in total power losses and a 14.2% increase in current-carrying capability. These findings confirm that LFAC transmission offers a viable pathway to enhance the efficiency and capacity of submarine power transmission systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 4416 KB  
Article
A Gas Production Classification Method for Cable Insulation Materials Based on Deep Convolutional Neural Networks
by Zihao Wang, Yinan Chai, Jingwen Gong, Wenbin Xie, Yidong Chen and Wei Gong
Polymers 2026, 18(2), 155; https://doi.org/10.3390/polym18020155 - 7 Jan 2026
Viewed by 178
Abstract
As a non-invasive diagnostic technique, evolved gas analysis (EGA) holds significant value in assessing the insulation conditions of critical equipment such as power cables. Current analytical methods face two major challenges: insulation materials may undergo multiple aging mechanisms simultaneously, leading to interfering characteristic [...] Read more.
As a non-invasive diagnostic technique, evolved gas analysis (EGA) holds significant value in assessing the insulation conditions of critical equipment such as power cables. Current analytical methods face two major challenges: insulation materials may undergo multiple aging mechanisms simultaneously, leading to interfering characteristic gases; and traditional approaches lack the multi-label recognition capability to address concurrent fault patterns when processing mixed-gas data. These limitations hinder the accuracy and comprehensiveness of insulation condition assessment, underscoring the urgent need for intelligent analytical methods. This study proposes a deep convolutional neural network (DCNN)-based multi-label classification framework to accurately identify the gas generation characteristics of five typical power cable insulation materials—ethylene propylene diene monomer (EPDM), ethylene-vinyl acetate copolymer (EVA), silicone rubber (SR), polyamide (PA), and cross-linked polyethylene (XLPE)—under fault conditions. The method leverages concentration data of six characteristic gases (CO2, C2H4, C2H6, CH4, CO, and H2), integrating modern data analysis and deep learning techniques, including logarithmic transformation, Z-score normalization, multi-scale convolution, residual connections, channel attention mechanisms, and weighted binary cross-entropy loss functions, to enable simultaneous prediction of multiple degradation states or concurrent fault pattern combinations. By constructing a gas dataset covering diverse materials and operating conditions and conducting comparative experiments to validate the proposed DCNN model’s performance, the results demonstrate that the model can effectively learn material-specific gas generation patterns and accurately identify complex label co-occurrence scenarios. This approach provides technical support for improving the accuracy of insulation condition assessment in power cable equipment. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

22 pages, 1625 KB  
Review
Recycled Electric and Electronic Waste in Concrete: A Review of Mechanical Performance and Sustainability Potential with a Case Study in Romania
by Cristian Georgeoi, Ioan Petran, Camelia Maria Negrutiu and Pavel Ioan Sosa
CivilEng 2026, 7(1), 2; https://doi.org/10.3390/civileng7010002 - 31 Dec 2025
Viewed by 317
Abstract
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste [...] Read more.
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste (ECW), Waste Electrical Cable Rubber (WECR), copper fiber (Cu Fib.), aluminum Fibers (Al fib.), steel fibers, basalt fibers, glass fibers, aramid−carbon fibers, Kevlar fibers, jute fibers, and optical fibers, were tested for influence on compressive, flexural, tensile strength, modulus of elasticity, and water absorption. Outcomes show that fine particle waste at low levels (0.2–1.5%) can improve mechanical performance, while higher levels of replacement or coarse particles generally reduce performance. Mechanical and physical properties are highly sensitive to material type, particle size, and dose. Life cycle assessment (LCA) and predictive modeling are recommended as validation for sustainability benefits. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

13 pages, 3207 KB  
Article
Considering Moisture Intrusion Evolution Law of Insulation Performance of High-Voltage AC XLPE Cables
by Shili Liu and Guanbo Zong
Energies 2026, 19(1), 138; https://doi.org/10.3390/en19010138 - 26 Dec 2025
Viewed by 193
Abstract
The outer sheaths of cables can be damaged by factors, such as mechanical stress, chemical corrosion, and aging, leading to moisture intrusion. This seriously threatens cable insulation performance and may even induce discharge accidents. Based on the corrugated aluminum sheath structure of the [...] Read more.
The outer sheaths of cables can be damaged by factors, such as mechanical stress, chemical corrosion, and aging, leading to moisture intrusion. This seriously threatens cable insulation performance and may even induce discharge accidents. Based on the corrugated aluminum sheath structure of the cables and moisture diffusion mechanism, the moisture intrusion (moisture absorption) process can be divided into three stages: water-blocking tape adsorption, air-gap wetting, and main insulation diffusion. First, through experimental tests, key electrical parameters such as capacitance, dielectric constant, and dielectric loss of 66 kV cables and XLPE main insulation samples in different moisture absorption stages were obtained. Furthermore, using finite element simulation, theoretical analysis and verification of the parameter variation characteristics of the cable were conducted by adjusting the moisture content and varying the moisture-affected positions. The results show that the electrical parameters of the cable body change most significantly in the third stage of moisture absorption: when the moisture absorption degree increases by 0.01%, the cable body capacitance increases by 1.2% and the insulation resistance decreases by 3.7%; for the XLPE insulation samples, when the moisture absorption degree increases by 0.25%, the relative dielectric constant increases by 0.7%, the conductivity increases by 1.4%, and the dielectric loss increases by a factor of 1.6 times at lower frequencies. In addition, the changes in the main insulation parameters were only related to the moisture content and were not affected by moisture distribution. Full article
Show Figures

Figure 1

15 pages, 2119 KB  
Article
Lightweight Modification of Polypropylene Cable Insulation Materials Doped with Hollow Glass Microspheres
by Xindong Zhao, Dongxu Luo, Kai Wang, Jiaming Yang, Ling Weng, Xiongjun Liu, Xiao Han and Xin Yao
Polymers 2025, 17(24), 3321; https://doi.org/10.3390/polym17243321 - 16 Dec 2025
Viewed by 483
Abstract
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its [...] Read more.
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its high density leads to increased cable weight and sag, reducing the service life of the cables. Therefore, there is an urgent need to develop recyclable and lightweight insulation materials. In this study, recyclable polypropylene (PP) was used as a substitute for XLPE. Hollow glass microspheres (HGM) were incorporated to reduce weight, and hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS) was added for toughening, thereby constructing a PP/HGM/SEBS ternary composite system. The results show that the introduction of HGM into the PP matrix effectively reduces the material density, decreasing from 0.890 g/cm3 (pure PP) to 0.757 g/cm3—a reduction of 15%. With the addition of SEBS, the mechanical properties of the composite are significantly improved: the tensile strength increases from 14.94 MPa (PP/HGM) to 32.40 MPa, and the elongation at break jumps sharply from 72.02% to 671.22%, achieving the synergistic optimization of “weight reduction” and “strengthening-toughening”. Electrical performance tests indicate that the PP/HGM/SEBS composite exhibits a volume resistivity of 1.66 × 1012 Ω·m, a characteristic breakdown strength of 108.6 kV/mm, a low dielectric loss tangent of 2.76 × 10−4, and a dielectric constant of 2.24. It achieves density reduction while maintaining low dielectric loss and high insulation strength, verifying its feasibility for application in lightweight insulation scenarios of overhead transmission lines. Full article
Show Figures

Figure 1

20 pages, 2110 KB  
Review
XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables
by Alexander A. Yurov, Ivan N. Zubkov, Alexey V. Lukonin, Oleg Y. Kaun, Alexander E. Bogachev and Victor A. Klushin
Materials 2025, 18(24), 5553; https://doi.org/10.3390/ma18245553 - 10 Dec 2025
Cited by 1 | Viewed by 986
Abstract
Crosslinked polyethylene (XLPE) has been the cornerstone material in the power industry for insulating high-voltage cables due to its exceptional properties, including reduced dielectric loss, high dielectric constant and thermal conductivity, and excellent resistance to electrical stress. In the current study, in order [...] Read more.
Crosslinked polyethylene (XLPE) has been the cornerstone material in the power industry for insulating high-voltage cables due to its exceptional properties, including reduced dielectric loss, high dielectric constant and thermal conductivity, and excellent resistance to electrical stress. In the current study, in order to further enhance the electrical and mechanical properties of XLPE’s various types of nanofillers such as metal oxides, boron nitride nanosheets of nanosilica and graphene oxide are incorporated into the XLPE matrix. These nanoparticles promote the occurrence of numerous trap sites, even at modest concentrations, due to their extensive interfacial regions, which affect crucial characteristics including breakdown voltage strength, electrical tree growth, structural defects, space charge accumulation, and thermal aging. The present review summarizes the effects of nanoparticles on the dielectric performance of XLPE. At the same time, the current advancements in the development of a new generation of recyclable insulation materials are briefly discussed. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

45 pages, 4110 KB  
Review
Overview of Monitoring, Diagnostics, Aging Analysis, and Maintenance Strategies in High-Voltage AC/DC XLPE Cable Systems
by Kazem Emdadi, Majid Gandomkar, Ali Aranizadeh, Behrooz Vahidi and Mirpouya Mirmozaffari
Sensors 2025, 25(22), 7096; https://doi.org/10.3390/s25227096 - 20 Nov 2025
Cited by 2 | Viewed by 1345
Abstract
High-voltage (HV) cable systems—particularly those insulated with cross-linked polyethylene (XLPE)—are increasingly deployed in both AC and DC applications due to their excellent electrical and mechanical performance. However, their long-term reliability is challenged by partial discharges (PD), insulation aging, space charge accumulation, and thermal [...] Read more.
High-voltage (HV) cable systems—particularly those insulated with cross-linked polyethylene (XLPE)—are increasingly deployed in both AC and DC applications due to their excellent electrical and mechanical performance. However, their long-term reliability is challenged by partial discharges (PD), insulation aging, space charge accumulation, and thermal and electrical stresses. This review provides a comprehensive survey of the state-of-the-art technologies and methodologies across several domains critical to the assessment and enhancement of cable reliability. It covers advanced condition monitoring (CM) techniques, including sensor-based PD detection, signal acquisition, and denoising methods. Aging mechanisms under various stressors and lifetime estimation approaches are analyzed, along with fault detection and localization strategies using time-domain, frequency-domain, and hybrid methods. Physics-based and data-driven models for PD behavior and space charge dynamics are discussed, particularly under DC conditions. The article also reviews the application of numerical tools such as FEM for thermal and field stress analysis. A dedicated focus is given to machine learning (ML) and deep learning (DL) models for fault classification and predictive maintenance. Furthermore, standards, testing protocols, and practical issues in sensor deployment and calibration are summarized. The review concludes by evaluating intelligent maintenance approaches—including condition-based and predictive strategies—framed within real-world asset management contexts. The paper aims to bridge theoretical developments with field-level implementation challenges, offering a roadmap for future research and practical deployment in resilient and smart power grids. This review highlights a clear gap in fully integrated AC/DC diagnostic and aging analyses for XLPE cables. We emphasize the need for unified physics-based and ML-driven frameworks to address HVDC space-charge effects and multi-stress degradation. These insights provide concise guidance for advancing reliable and scalable cable assessment. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 2347 KB  
Essay
Study on Combustion Characteristics and Damage of Single-Phase Ground Fault Arc in 10 kV Distribution Network Cable
by Ziheng Pu, Yiyu Du, Shuai Wang, Zhigang Ren, Kuan Ye and Wei Guo
Fire 2025, 8(11), 414; https://doi.org/10.3390/fire8110414 - 26 Oct 2025
Viewed by 938
Abstract
The neutral point of a 10 kV distribution network often adopts an arc suppression coil or high resistance grounding mode to ensure the reliability of the power supply. The single-phase grounding fault current is below 10 A, and the distribution network can continue [...] Read more.
The neutral point of a 10 kV distribution network often adopts an arc suppression coil or high resistance grounding mode to ensure the reliability of the power supply. The single-phase grounding fault current is below 10 A, and the distribution network can continue to operate with the fault for up to 2 h. However, long-time arc faults may ignite cables and cause electrical fires, causing further damage to adjacent cables and seriously affecting the safety of the power grid. To study the combustion characteristics of a single-phase grounding fault of a distribution network cable under the action of a long-term small current arc, the cable fault ignition test was carried out by using the arc ignition method of welding tin wire fuses. Then, the temperature distribution of the cable channel in an electrical fire was simulated, based on an FDS simulation, and the damage of adjacent cables under typical layout was further analyzed. The results show that the 10 kV cable was quickly ignited by the high temperature arc within 0.04 s after the breakdown and damage of the cable. Flammable XLPE insulation melted or even dripped off at a high temperature in fire. Thus, the fire spread to both ends when burning. Under the condition of 4–10 A, the maximum flame temperatures above the arc fault point reached 725 °C, 792 °C, 812 °C and 907 °C, respectively. According to the network structure, some protection, such as fireproof tape, needs to be applied directly above the faulty cable when the fault current exceeds 6 A. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

23 pages, 9577 KB  
Article
Polarity-Dependent DC Dielectric Behavior of Virgin XLPO, XLPE, and PVC Cable Insulations
by Khomsan Ruangwong, Norasage Pattanadech and Pittaya Pannil
Energies 2025, 18(20), 5404; https://doi.org/10.3390/en18205404 - 14 Oct 2025
Viewed by 835
Abstract
Reliable DC cable insulation is crucial for photovoltaic (PV) systems and high-voltage DC (HVDC) networks. However, conventional materials such as cross-linked polyethylene (XLPE) and polyvinyl chloride (PVC) face challenges under prolonged DC stress—notably space charge buildup, dielectric losses, and thermal aging. Cross-linked polyolefin [...] Read more.
Reliable DC cable insulation is crucial for photovoltaic (PV) systems and high-voltage DC (HVDC) networks. However, conventional materials such as cross-linked polyethylene (XLPE) and polyvinyl chloride (PVC) face challenges under prolonged DC stress—notably space charge buildup, dielectric losses, and thermal aging. Cross-linked polyolefin (XLPO) has emerged as a halogen-free, thermally stable alternative, but its comparative DC performance remains underreported. Methods: We evaluated the insulations of virgin XLPO, XLPE, and PVC PV cables under ±1 kV DC using time-domain indices (IR, DAR, PI, Loss Index), supported by MATLAB and FTIR. Multi-layer cable geometries were modeled in MATLAB to simulate radial electric field distribution, and Fourier-transform infrared (FTIR) spectroscopy was employed to reveal polymer chemistry and functional groups. Results: XLPO exhibited an IR on the order of 108–109 Ω, and XLPE (IR ~ 108 Ω) and PVC (IR ~ 107 Ω, LI ≥ 1) at 60 s, with favorable polarization indices under both polarities. Notably, they showed high insulation resistance and low-to-moderate loss indices (≈1.3–1.5) under both polarities, indicating controlled relaxation with limited conduction contribution. XLPE showed good initial insulation resistance but revealed polarity-dependent relaxation and higher loss (especially under positive bias) due to trap-forming cross-linking byproducts. PVC had the lowest resistance (GΩ-range) and near-unit DAR/PI, dominated by leakage conduction and dielectric losses. Simulations confirmed a uniform electric field in XLPO insulation with no polarity asymmetry, while FTIR spectra linked XLPO’s low polarity and PVC’s chlorine content to their electrical behavior. Conclusions: XLPO outperforms XLPE and PVC in resisting DC leakage, charge trapping, and thermal stress, underscoring its suitability for long-term PV and HVDC applications. This study provides a comprehensive structure–property understanding to guide the selection of advanced, polarity-resilient cable insulation materials. Full article
Show Figures

Figure 1

19 pages, 3322 KB  
Article
The Use of Metal/ZSM-5 Nanosheet for Efficient Catalytic Cracking of Cross-Linked Polyethylene for High-Voltage Cable Insulation
by Zhenfei Fu, Yuqi Pan, Rui Wang, Shilong Suo, Zheng Wang, Xiangyang Peng and Pengfei Fang
Materials 2025, 18(20), 4675; https://doi.org/10.3390/ma18204675 - 11 Oct 2025
Viewed by 741
Abstract
Cross-linked polyethylene (XLPE) has been widely used in high-voltage cables due to its superior properties, but its thermoset cross-linked structure makes it difficult to recycle. Catalytic pyrolysis offers a feasible pathway for converting XLPE into high-value chemicals. In this study, a systematic study [...] Read more.
Cross-linked polyethylene (XLPE) has been widely used in high-voltage cables due to its superior properties, but its thermoset cross-linked structure makes it difficult to recycle. Catalytic pyrolysis offers a feasible pathway for converting XLPE into high-value chemicals. In this study, a systematic study on the catalytic cracking of XLPE using metal ion-loaded ZSM-5 nanosheets was conducted, and ZSM-5 nanosheets loaded with Ag, Mo, Ni, and Ce were prepared via ion exchange. After metal loading, ZSM-5 retained the MFI framework structure, but the specific surface area and mesopore volume varied depending on the type of metal. Temperature-Programmed Desorption of Ammonia results indicated that metal–support interactions enhanced the acidity of ZSM-5. Among the catalysts, Ag-loaded ZSM-5 exhibited the highest efficiency: with 10 wt% Ag, at 380 °C, the conversion reached 94.1%, with 52.5% light olefins in the gas phase and 59.4% benzene, toluene, and xylene (BTX) in the liquid products. Further studies on different Ag loadings revealed that moderate Ag loading (5 wt%) provided the best overall balance, maintaining 92.3% conversion, 56.1% selectivity to light olefins, and 58.2% BTX in the liquid fraction. These findings demonstrate that tuning the metal loading effectively optimizes the acidity and pore structure of ZSM-5, thereby enabling controlled regulation of XLPE pyrolysis product distribution. Full article
(This article belongs to the Special Issue Recycling Conductive and Electrical Insulating Polymer Composites)
Show Figures

Figure 1

12 pages, 3568 KB  
Article
Theoretical Study on the Grafting Reaction of Benzophenone Compounds to Polyethylene in the UV Radiation Cross-Linking Process
by Yang Du, Chi Deng, Hui Zhang, Xia Du, Yan Shang and Xuan Wang
Polymers 2025, 17(19), 2595; https://doi.org/10.3390/polym17192595 - 25 Sep 2025
Viewed by 1231
Abstract
In this study, benzophenone compounds substituted with electron-withdrawing groups (-NO2, -F, and -Cl) and electron-donating groups (-OH, -CH3, -NH2, and -OCH3) were employed as voltage stabilizers for crosslinked polyethylene (XLPE) insulation materials. At B3LYP/6-311+G(d [...] Read more.
In this study, benzophenone compounds substituted with electron-withdrawing groups (-NO2, -F, and -Cl) and electron-donating groups (-OH, -CH3, -NH2, and -OCH3) were employed as voltage stabilizers for crosslinked polyethylene (XLPE) insulation materials. At B3LYP/6-311+G(d,p) level, reaction Gibbs free potential energy data for eleven reaction channels and molecular characteristics, including electron affinity EA(s), ionization potential IP(s), and HOMO-LUMO gap (Eg) of benzophenone derivatives, were obtained. The effects of electron-donating and electron-withdrawing functional groups were systematically evaluated. The calculated results indicate that benzophenones exhibit the lowest Gibbs free energy barrier for grafting onto polyethylene among the investigated molecules. With the introduction of electron-donating groups, the reaction Gibbs free energy barrier increases. It is worth noting that 2-Nitrobenzophenone is considered to possess superior electrical resistivity, attributed to its highest electron affinity among the studied compounds. This investigation is expected to provide reliable insights for the development of modified polyethylene-based insulating materials for high-voltage cables. Full article
Show Figures

Graphical abstract

18 pages, 3029 KB  
Article
Polarization and Depolarization Current Characteristics of Cables at Different Water Immersion Stages
by Yuyang Jiao, Jingjiang Qu, Yingqiang Shang, Jingyue Ma, Jiren Chen, Jun Xiong and Zepeng Lv
Energies 2025, 18(19), 5094; https://doi.org/10.3390/en18195094 - 25 Sep 2025
Viewed by 853
Abstract
To address the insulation degradation caused by moisture intrusion due to damage to the outer sheath of power cables, this study systematically analyzed the charge transport characteristics of XLPE cables at different water immersion stages using polarization/depolarization current (PDC) measurements. An evaluation method [...] Read more.
To address the insulation degradation caused by moisture intrusion due to damage to the outer sheath of power cables, this study systematically analyzed the charge transport characteristics of XLPE cables at different water immersion stages using polarization/depolarization current (PDC) measurements. An evaluation method for assessing water immersion levels was proposed based on conductivity, charge density, and charge mobility. Experiments were conducted on commercial 10 kV XLPE cable samples subjected to accelerated water immersion for durations ranging from 0 to 30 days. PDC data were collected via a custom-built three-electrode measurement platform. The results indicated that with increasing immersion time, the decay rate of polarization/depolarization currents slowed, the steady-state current amplitude rose significantly, and the DC conductivity increased from 1.86 × 10−17 S/m to 2.70 × 10−15 S/m—a nearly two-order-of-magnitude increase. The Pearson correlation coefficient between charge mobility and immersion time reached 0.96, indicating a strong positive correlation. Additional tests on XLPE insulation slices showed a rapid rise in conductivity during early immersion, a decrease in breakdown voltage from 93.64 kV to 66.70 kV, and enhanced space charge accumulation under prolonged immersion and higher electric fields. The proposed dual-parameter criterion (conductivity and charge mobility) effectively distinguishes between early and advanced stages of cable water immersion, offering a practical approach for non-destructive assessment of insulation conditions and early detection of moisture intrusion, with significant potential for application in predictive maintenance and insulation diagnostics. Full article
Show Figures

Figure 1

16 pages, 3268 KB  
Article
The Effect of Voltage Stabilizers on the Electrical Resistance Properties of EPDM Bulk for Cable Accessories
by Zhongyuan Li, Zhen Zhang, Chang Liu, Chenyang Ma and Xueting Wang
Polymers 2025, 17(18), 2523; https://doi.org/10.3390/polym17182523 - 18 Sep 2025
Cited by 1 | Viewed by 661
Abstract
As a critical component in high-voltage cable accessories, ethylene-propylene-diene monomer (EPDM) reinforced insulation faces severe issues of surface discharge and bulk breakdown at the insulation interface. To enhance the electrical resistance of EPDM bulk and insulation interfaces, the 4-allyloxy-2-hydroxybenzophenone was employed as a [...] Read more.
As a critical component in high-voltage cable accessories, ethylene-propylene-diene monomer (EPDM) reinforced insulation faces severe issues of surface discharge and bulk breakdown at the insulation interface. To enhance the electrical resistance of EPDM bulk and insulation interfaces, the 4-allyloxy-2-hydroxybenzophenone was employed as a voltage stabilizer to modify EPDM. A systematic study was conducted on the influence of the voltage stabilizer on the DC breakdown strength of EPDM, the anti-migration properties of the voltage stabilizer, and its effect on the surface breakdown voltage of EPDM. Additionally, pressure and surface breakdown test setups were designed. The results indicate that the DC breakdown strength of EPDM decreases with increasing external pressure, and this decline is more pronounced in EPDM modified with the voltage stabilizer. Surface breakdown experiments demonstrate that the voltage stabilizer has a positive effect on improving the surface breakdown voltage of EPDM, with a more significant enhancement observed at the EPDM/XLPE bilayer dielectric interface. Surface potential tests reveal that the grafted voltage stabilizer introduces numerous shallow traps, inhibiting surface charge accumulation and thereby increasing the surface breakdown voltage. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 5272 KB  
Article
Enhanced Clustering of DC Partial Discharge Pulses Using Multi-Level Wavelet Decomposition and Principal Component Analysis
by Sung-Ho Yoon, Ik-Su Kwon, Jin-Seok Lim, Byung-Bae Park, Seung-Won Lee and Hae-Jong Kim
Energies 2025, 18(18), 4835; https://doi.org/10.3390/en18184835 - 11 Sep 2025
Viewed by 626
Abstract
Partial discharge (PD) is a critical indicator of insulation degradation in high-voltage DC systems, necessitating accurate diagnosis to ensure long-term reliability. Conventional AC-based diagnostic methods, such as phase-resolved partial discharge analysis (PRPDA), are ineffective under DC conditions, emphasizing the need for waveform-based analysis. [...] Read more.
Partial discharge (PD) is a critical indicator of insulation degradation in high-voltage DC systems, necessitating accurate diagnosis to ensure long-term reliability. Conventional AC-based diagnostic methods, such as phase-resolved partial discharge analysis (PRPDA), are ineffective under DC conditions, emphasizing the need for waveform-based analysis. This study presents a novel clustering framework for DC PD pulses, leveraging multi-level wavelet decomposition and statistical feature extraction. Each signal is decomposed into multiple frequency bands, and 70 distinctive waveform features are extracted from each pulse. To mitigate feature redundancy and enhance clustering performance, principal component analysis (PCA) is employed for dimensionality reduction. Experimental data were obtained from multiple defect types and measurement distances using a 22.9 kV cross-linked polyethylene (XLPE) cable system. The proposed method significantly outperformed conventional time-frequency (T-F) mapping techniques, particularly in scenarios involving signal attenuation and mixed noise. Propagation-induced distortion was effectively addressed through multi-resolution analysis. In addition, field noise sources such as HVDC converter switching transients and fluorescent lamp emissions were included to assess robustness. The results confirmed the framework’s capability to distinguish between multiple PD types and noise sources, even in challenging environments. Furthermore, optimal mother wavelet selection and correlation-based feature analysis contributed to improved clustering resolution. This framework supports robust PD classification in practical HVDC diagnostics. The framework can contribute to the development of real-time autonomous monitoring systems for HVDC infrastructure. Future research will explore incorporating temporal deep learning architectures for automated PD-type recognition based on clustered data. Full article
Show Figures

Figure 1

Back to TopTop