XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables
Abstract
1. Introduction
2. Crosslinked Polyethylene (XLPE)


3. Nanocomposite-Based XLPE Insulation
- Zero-dimensional—nanoparticles of SiO2, TiO2, nanoclusters, and fullerenes;
- One-dimensional—plates, laminas, and shells;
- Two-dimensional—nanotubes and nanofibers;
- Three-dimensional—spherical nanoparticles.
3.1. Metal Oxide-Based XLPE Insulation Materials
3.2. Boron Nitride-Based XLPE Insulation Materials
3.3. Silica-Based XLPE Insulation Materials
3.4. Carbon-Based XLPE Insulation Materials
4. Prospects in Research and Development of Next-Generation Polymer Nanocomposites for High-Voltage Cable Insulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arcia-Garibaldi, G.; Cruz-Romero, P.; Gómez-Expósito, A. Future power transmission: Visions, technologies and challenges. Renew. Sustain. Energy Rev. 2018, 94, 285–301. [Google Scholar] [CrossRef]
- Ergun, H.; Hertem, D.V. Comparison of HVAC and HVDC technologies. In HVDC Grids: For Offshore and Supergrid of the Future; Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2016; pp. 79–96. [Google Scholar] [CrossRef]
- Andersson, M.G.; Hynynen, J.; Andersson, M.R.; Englund, V.; Hagstrand, P.-O.; Gkourmpis, T.; Müller, C. Highly insulating polyethylene blends for high-voltage direct-current power cables. ACS Macro Lett. 2017, 6, 78–82. [Google Scholar] [CrossRef]
- Zhang, X.M.; Liu, J.G.; Yang, S.Y. A review on recent progress of R&D for high-temperature resistant polymer dielectrics and their applications in electrical and electronic insulation. Rev. Adv. Mater. Sci. 2016, 46, 22–38. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Xu, G.; Zhou, Y.; Jia, M.; Zhong, S.; Gao, Y.; Park, C.; Liu, Q.; Wang, Y.; et al. Insulating materials for realising carbon neutrality: Opportunities, remaining issues and challenges. High Volt. 2022, 7, 610–632. [Google Scholar] [CrossRef]
- Sekiguchi, Y. Polymer Composites for Power Cable Insulation. In Polymer Composites for Electrical Engineering; Wiley: Hoboken, NJ, USA, 2021; pp. 123–151. [Google Scholar] [CrossRef]
- Angalane, S.K.; Kasinathan, E. A review on polymeric insulation for high-voltage application under various stress conditions. Polym. Compos. 2022, 43, 4803–4834. [Google Scholar] [CrossRef]
- Phillips, A.J.; Childs, D.J.; Schneider, H.M. Water drop corona effects on full-scale 500 kV non-ceramic insulators. IEEE Trans. Power Deliv. 2002, 14, 258–265. [Google Scholar] [CrossRef]
- Nazrin, A.; Kuan, T.M.; Mansour, D.E.A.; Farade, R.A.; Ariffin, A.M.; Abd Rahman, M.S.; Wahab, N.I.B.A. Innovative approaches for augmenting dielectric properties in cross-linked polyethylene (XLPE): A review. Heliyon 2024, 10, e34737. [Google Scholar] [CrossRef]
- Haque, S.M.; Ardila-Rey, J.A.; Umar, Y.; Mas’ud, A.A.; Muhammad-Sukki, F.; Jume, B.H.; Rahman, H.; Bani, N.A. Application and suitability of polymeric materials as insulators in electrical equipment. Energies 2021, 14, 2758. [Google Scholar] [CrossRef]
- Ihueze, C.C.; Onwurah, U.O.; Okafor, C.E.; Obuka, N.S.; Okpala, C.C.; Okoli, N.C.; Nwankwo, C.O.; Kingsley-Omoyibo, Q.A. Robust design and setting process and material parameters for electrical cable insulation. Int. J. Adv. Manuf. Technol. 2023, 126, 3887–3904. [Google Scholar] [CrossRef]
- Nkt Cables Markets the World's Most Powerful Underground DC Cable System: 640 kV. Available online: https://www.nkt.com/news-press-releases/nkt-cables-markets-the-world-s-most-powerful-underground-dc-cable-system-640kv (accessed on 7 July 2025).
- Gao, Y.; Huang, X.; Min, D.; Li, S.; Jiang, P. Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: Toward new generation of high voltage direct current cable insulation. ACS Sustain. Chem. Eng. 2018, 7, 513–525. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Chen, S.; Sha, J.; Yang, J. Thermophysical properties of cross-linked polyethylene during thermal aging. Thermochim. Acta 2022, 713, 179231. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S. The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv. Mater. 2018, 30, 1703624. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of polymer composites used in high-voltage applications. Polymers 2016, 8, 173. [Google Scholar] [CrossRef]
- Tanaka, T.; Imai, T. (Eds.) Advanced Nanodielectrics: Fundamentals and Applications, 1st ed.; CRC Press: Pan Stanford, CA, USA, 2017; pp. 351–355. ISBN 978-1-315-23074-0. [Google Scholar]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int. J. Eng. Sci. 2020, 157, 103392. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Jiang, P.; Tanaka, T. Material progress toward recyclable insulation of power cables. Part 1: Polyethylene-based thermoplastic materials: Dedicated to the 80th birthday of professor Toshikatsu Tanaka. IEEE Electr. Insul. Mag. 2019, 35, 7–19. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Jiang, P.; Tanaka, T. Material progress toward recyclable insulation of power cables. Part 2: Polypropylene-based thermoplastic materials. IEEE Electr. Insul. Mag. 2019, 36, 8–18. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Mauri, M.; D’Auria, S.; Pinalli, R.; Müller, C. Alternative concepts for extruded power cable insulation: From thermosets to thermoplastics. Adv. Mater. 2024, 36, 2313508. [Google Scholar] [CrossRef]
- Chen, G.; Hao, M.; Xu, Z.; Vaughan, A.; Cao, J.; Wang, H. Review of high voltage direct current cables. CSEE J. Power Energy Syst. 2015, 1, 9–21. [Google Scholar] [CrossRef]
- Li, Z.; Du, B. Polymeric insulation for high-voltage dc extruded cables: Challenges and development directions. IEEE Electr. Insul. Mag. 2018, 34, 30–43. [Google Scholar] [CrossRef]
- Baferani, M.A.; Li, C.; Shahsavarian, T.; Ronzello, J.; Cao, Y. High temperature insulation materials for DC cable insulation—Part I: Space charge and conduction. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 223–230. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Li, Z.; Du, B. Polymer composites with high thermal conductivity for HVDC cable insulation: A review. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 2444–2459. [Google Scholar] [CrossRef]
- Soroudi, A.; Ouyang, Y.; Nilsson, F.; Östergren, I.; Xu, X.; Li, Z.; Pourrahimi, A.M.; Hedenqvist, M.; Gkourmpis, T.; Hagstrand, P.-O.; et al. Highly insulating thermoplastic nanocomposites based on a polyolefin ternary blend for high-voltage direct current power cables. Nanoscale 2022, 14, 7927–7933. [Google Scholar] [CrossRef] [PubMed]
- Montanari, G.C.; Seri, P.; Lei, X.; Ye, H.; Zhuang, Q.; Morshuis, P.; Stevens, G.; Vaughan, A. Next generation polymeric high voltage direct current cables—A quantum leap needed? IEEE Electr. Insul. Mag. 2018, 34, 24–31. [Google Scholar] [CrossRef]
- Lee, J.I.; Jeong, W.H.; Dinh, M.C.; Yu, I.K.; Park, M. Comparative analysis of XLPE and thermoplastic insulation-based HVDC power cables. Energies 2022, 16, 167. [Google Scholar] [CrossRef]
- Stevens, G.C.; Thomas, J.L.; Pye, A.; Vaughan, A.S.; Hosier, I.L.; Denizet, I. Thermoplastic blend balanced property developments for sustainable high performance power cables. In Proceedings of the 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kemari, Y.; Belijar, G.; Valdez-Nava, Z.; Forget, F.; Diaham, S. Review on High-Temperature Polymers for Cable Insulation: State-of-the-Art and Future Developments. In High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment; Wiley-VCH GmbH: Weinheim, Germany, 2024; pp. 103–148. [Google Scholar] [CrossRef]
- Mazzanti, G. Special Issue on Worshop on HVDC cables and accessories. IEEE Electr. Insul. Mag. 2017, 33, 4–5. [Google Scholar] [CrossRef]
- Mazzanti, G. Issues and challenges for HVDC extruded cable systems. Energies 2021, 14, 4504. [Google Scholar] [CrossRef]
- Vahedy, V. Polymer insulated high voltage cables. IEEE Electr. Insul. Mag. 2006, 22, 13–18. [Google Scholar] [CrossRef]
- Chandran, N.; Sivadas, A.; Anuja, E.V.; Baby, D.K.; Ramdas, R. XLPE: Crosslinking techniques and recycling process. In Crosslinkable Polyethylene: Manufacture, Properties, Recycling, and Applications; Springer Singapore: Singapore, 2021; pp. 167–188. [Google Scholar] [CrossRef]
- Patterson, R.; Kandelbauer, A.; Müller, U.; Lammer, H. Crosslinked thermoplastics. In Handbook of Thermoset Plastics, 3rd ed.; Dodiuk, H., Goodman, S.H., Eds.; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 697–737. [Google Scholar] [CrossRef]
- Melo, R.P.D.; Aguiar, V.D.O.; Marques, M.D.F.V. Silane crosslinked polyethylene from different commercial PE’s: Influence of comonomer, catalyst type and evaluation of HLPB as crosslinking coagent. Mater. Res. 2015, 18, 313–319. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, J.; Fan, H. The preparation of cross-linkable polyethylene via coordination copolymerization of ethylene with alkene-derived chlorosilane. Eur. Polym. J. 2022, 163, 110941. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Das, N.C. Application of Radiation Curing on Properties and Performance of Polymers and Polymer Composites. In Applications of High Energy Radiations: Synthesis and Processing of Polymeric Materials; Springer Nature: Singapore, 2023; pp. 1–39. [Google Scholar] [CrossRef]
- Mhaske, S.T.; Mestry, S.U.; Patil, D.A. Cross-linking of polymers by various radiations: Mechanisms and parameters. In Radiation Technologies and Applications in Materials Science; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–28. [Google Scholar] [CrossRef]
- Przybytniak, G. Crosslinking of polymers in radiation processing. In Applications of Ionizing Radiation in Materials Processing; Institute of Nuclear Chemistry and Technology: Warszawa, Poland, 2017; pp. 249–267. [Google Scholar]
- Pleşa, I.; Noţingher, P.V.; Stancu, C.; Wiesbrock, F.; Schlögl, S. Polyethylene nanocomposites for power cable insulations. Polymers 2018, 11, 24. [Google Scholar] [CrossRef]
- Azevedo, A.M.D.; da Silveira, P.H.P.M.; Lopes, T.J.; da Costa, O.L.B.; Monteiro, S.N.; Veiga-Júnior, V.F.; Silveira, P.C.R.; Cardoso, D.D.; Figueiredo, A.B.H.D.S. Ionizing Radiation and Its Effects on Thermoplastic Polymers: An Overview. Polymers 2025, 17, 1110. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Desuqi, R.K. A study of expected lifetime of XLPE insulation cables working at elevated temperatures by applying accelerated thermal ageing. Heliyon 2020, 6, e03120. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.A.; Hu, H. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106064. [Google Scholar] [CrossRef]
- Jose, A.J.; John, F.A.; Nair, M.S.; Nandana, V. Electrical Properties of Nanofillers. In Handbook of Nanofillers, 1st ed.; Mallakpour, S., Hussain, C.M., Eds.; Springer: Singapore, 2024; pp. 1–17. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, H.; Fu, Q. Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 2018, 8, 74–82. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Mariatti, M.; Ismail, H. Melt flow index and flammability of alumina, zinc oxide and organoclay nanoparticles filled cross-linked polyethyelene nanocomposites. Mater. Today Proc. 2019, 17, 798–802. [Google Scholar] [CrossRef]
- Mohamed, T.J.; Faraj, S.R.; Judran, H.K. Electrical treeing behavior in XLPE insulation due to content Al2O3 nanoparticles. J. Phys. Conf. Ser. 2021, 1973, 012010. [Google Scholar] [CrossRef]
- Abdul Razak, N.I.; Yusoff, N.I.S.M.; Ahmad, M.H.; Zulkifli, M.; Wahit, M.U. Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers. Polymers 2023, 15, 1702. [Google Scholar] [CrossRef]
- Chen, D.; Yan, Y.; Xu, Z.; Long, Y.; Luo, W.; Li, J. Effect of Thermo-oxidative Aging on Space Charge Characteristics and Physicochemical Properties of XLPE/Al2O3 Nanocomposites for HVDC Cables. In Proceedings of the 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Vancouver, BC, Canada, 12–15 December 2021; pp. 395–398. [Google Scholar] [CrossRef]
- Guo, X.; Xing, Z.; Zhao, S.; Cui, Y.; Li, G.; Wei, Y.; Lei, Q.; Hao, C. Investigation of the space charge and dc breakdown behavior of XLPE/α-Al2O3 nanocomposites. Materials 2020, 13, 1333. [Google Scholar] [CrossRef]
- Hegde, V.N. Study on structural, morphological, elastic and electrical properties of ZnO nanoparticles for electronic device applications. J. Sci. Adv. Mater. Devices 2024, 9, 100733. [Google Scholar] [CrossRef]
- Eldesoky, E.; Said, A.; Nawar, A.; Abdallah, M.; Kamel, S. High voltage cross-linked polyethylene insulator characteristics improvement using functionalized ZnO nanoparticles. Egypt. J. Chem. 2020, 63, 4929–4939. [Google Scholar] [CrossRef]
- Mansor, N.S.; Nazar, N.S.M.; Fairus, M.; Ishak, D.; Mariatti, M.; Halim, H.S.A.; Basri, A.B.A.; Kamarol, M. Electrical treeing characteristics of XLPE material containing treated ZnO nano-filler. In Proceedings of the 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, Singapore, 2–5 April 2019; pp. 305–311. [Google Scholar] [CrossRef]
- Mansor, N.S.; Nazar, N.S.M.; Azmi, M.A.; Hashim, N.Z.I.; Ishak, D.; Jaafar, M.; Halim, H.S.A.; Ghani, A.B.A.; Jamil, M.K.M. Effect of ZnO nanofiller in the XLPE matrix on electrical tree characteristics. IEEE Access 2020, 8, 117574–117581. [Google Scholar] [CrossRef]
- Essawi, S.; Nasrat, L.; Ismail, H.; Asaad, J. Effect of nanoparticles on dielectric, mechanical and thermal characteristics of XLPE/TiO2 nanocomposites. Int. J. Adv. Technol. Eng. Explor. 2021, 8, 1243. [Google Scholar] [CrossRef]
- Abd Rahman, A.B.; Abd Rahman, M.S.; Ariffin, A.M.; Ali, N.H.N.; Ghani, A.B.A.; Lau, K.Y.; Mohamad, M.S.; Osman, M. Investigation of BaTiO3 and TiO2 based nano-fillers on the space charge and electrical strength of cross-linked polyethylene (XLPE). IEEE Int. Conf. Prop. Appl. Dielectr. Mater. (ICPADM) 2021, 35, 374–377. [Google Scholar] [CrossRef]
- Said, A.; Nawar, A.G.; Eldesoky, E.A.; Kamel, S.; Abd-Allah, M.A. Enhancing the high voltage XLPE cable insulation characteristics using functionalized TiO2 nanoparticles. Am. J. Polym. Sci. Technol. 2020, 6, 21–31. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Yu, S.; Zhang, P.; Li, J.; Li, S. Nanoparticle dispersion and distribution in XLPE and the related DC insulation performance. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2349–2357. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, L.; Chen, Y. Enhancement of thermal conductivity and electrical insulation performance of BN/Silicone Gel composite through surface modification with silane coupling agents. J. Alloys Compd. 2025, 1037, 182630. [Google Scholar] [CrossRef]
- Xu, Y.; Soori, T.; Zhang, Q.; Zhu, J.Y.; Nelson, J.K.; Hu, L.; Bahadur, V.; Hebner, R. Boron nitride enhanced electric insulation paper for extending transformer thermal life. Mater. Des. 2025, 254, 114112. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Li, S. XLPE/h-BN nanocomposites with enhanced DC insulation properties. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 62–68. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Gu, Z.; Wei, Y.; Li, G.; Hao, C.; Lei, Q. Effect of boron nitride concentration and morphology on dielectric and breakdown properties of cross-linked polyethylene/boron nitride nanocomposites. Adv. Eng. Mater. 2021, 23, 2100008. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Li, X.; Wei, Y.; Hao, C.; Li, S.; Lei, Q. DC breakdown characteristics of XLPE/BNNS nanocomposites considering BN nanosheet concentration, space charge and temperature. High Volt. 2020, 5, 280–286. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Hao, C.; Lei, Q.; Wei, Y. Temperature and electric field dependence of charge conduction and accumulation in XLPE based on polarization and depolarization current. AIP Adv. 2019, 9, 015109. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Wei, Y.; Hao, C.; Lei, Q. Effect of BN nanosheet concentration on space charge characteristics in XLPE/BNNS nanocomposites. Mater. Res. Express 2019, 6, 115080. [Google Scholar] [CrossRef]
- Wang, W.; Min, D.; Li, S. Understanding the conduction and breakdown properties of polyethylene nanodielectrics: Effect of deep traps. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 564–572. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Zhang, C.; Ai, Y.; Zhao, H.; Han, B. The effects of nano-SiO2 on the electrical treeing resistance of XLPE. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 313–316. [Google Scholar] [CrossRef]
- Abd Rahman, A.B.; Abd Rahman, M.S.; Ariffin, A.M.; Ali, N.H.N.; Ghani, A.B.A.; Lau, K.Y.; Mohamad, M.S.; Osman, M. Influence of SiO2 and ZrO2 Nanocomposite on the AC Breakdown Strength of Cross-linked Polyethylene (XLPE). In Proceedings of the 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia, 12–14 July 2021; pp. 378–381. [Google Scholar] [CrossRef]
- Said, A.R.; Nawar, A.G.; Elsayed, A.E.; Abd-Allah, M.A.; Kamel, S. Enhancing electrical, thermal, and mechanical properties of HV cross-linked polyethylene insulation using silica nanofillers. J. Mater. Eng. Perform. 2021, 30, 1796–1807. [Google Scholar] [CrossRef]
- Ashish Sharad, P.; Kumar, K.S. Application of surface-modified XLPE nanocomposites for electrical insulation-partial discharge and morphological study. Nanocomposites 2017, 3, 30–41. [Google Scholar] [CrossRef]
- Kalaivanan, C.; Chandrasekar, S. A study on the influence of SiO2 nano particles on the failure of XLPE underground cables due to electrical treeing. J. Electr. Eng. Technol. 2019, 14, 2447–2454. [Google Scholar] [CrossRef]
- Kavitha, D.; Balachandran, M. XLPE–layered silicate nanocomposites for high voltage insulation applications: Dielectric characteristics, treeing behaviour and mechanical properties. IET Sci. Meas. Technol. 2019, 13, 1019–1025. [Google Scholar] [CrossRef]
- Kaihao, J.; Donghe, D.; Richang, X.; Xiaoqiang, W.; Peijie, Y.; Xiufeng, L. Study on dielectric structure and space charge behavior of XLPE/SiO2 nanocomposites. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 921–924. [Google Scholar] [CrossRef]
- Donghe, D.; Xiufeng, L.; Jin, S.; Peijie, Y.; Youfu, C. The influence of surface modifier on structural morphology and dielectric property of XLPE/SiO2 nanocomposites. In Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), Xi’an, China, 14–17 May 2017; pp. 432–435. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Wang, Y. Electrical tree inhibition by SiO2/XLPE nanocomposites: Insights from first-principles calculations. J. Mol. Model. 2018, 24, 200. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, X.; Yu, P.L.; Sun, W.F. Water-tree resistant characteristics of crosslinker-modified-SiO2/XLPE nanocomposites. Materials 2021, 14, 1398. [Google Scholar] [CrossRef]
- Said, A.; Abd-Allah, M.A.; Nawar, A.G.; Elsayed, A.E.; Kamel, S. Enhancing the electrical and physical nature of high-voltage XLPE cable dielectric using different nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 7435–7443. [Google Scholar] [CrossRef]
- Hui, L.; Schadler, L.S.; Nelson, J.K. The Influence of Moisture on the Electrical Properties of Crosslinked Polyethylene/Silica Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 641–653. [Google Scholar] [CrossRef]
- Hui, L.; Nelson, J.K.; Schadler, L.S. The influence of moisture on the electrical performance of XLPE/silica nanocomposites. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4. [Google Scholar]
- Milosavljevic, V.; Mitrevska, K.; Adam, V. Benefits of oxidation and size reduction of graphene/graphene oxide nanoparticles in biosensing application: Classification of graphene/graphene oxide nanoparticles. Sens. Actuators B Chem. 2022, 353, 131122. [Google Scholar] [CrossRef]
- Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem. 2019, 15, 103–123. [Google Scholar] [CrossRef]
- Han, C.; Du, B.X.; Li, J.; Li, Z.; Tanaka, T. Investigation of charge transport and breakdown properties in XLPE/GO nanocomposites part 1: The role of functionalized GO quantum wells. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1204–1212. [Google Scholar] [CrossRef]
- Tanaka, T. A quantum dot model for nanoparticles in polymer nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 276–283. [Google Scholar] [CrossRef]
- Han, C.; Du, B.X.; Li, J.; Li, Z.; Tanaka, T. Investigation of charge transport and breakdown properties in XLPE/GO nanocomposites part 2: Effect of polarity reversal. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1213–1221. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G.; Zhou, K.; Meng, P.; Wang, G. Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications. Sci. Rep. 2021, 11, 18139. [Google Scholar] [CrossRef]
- Negri, F.; Cavallini, A.; Fabiani, D.; Saccani, A.; Toselli, M. Effect of graphene oxide-based nanostructured coatings on the electrical performance of cross-linked polyethylene. Polym. Test. 2017, 59, 142–151. [Google Scholar] [CrossRef]
- Han, C.; Du, B.; Li, Z.; Li, J.; Hou, Z.; Liu, C.; Wang, M. Improved Temperature Dependence of Electrical Properties of XLPE/GO Nanocomposites for HVDC Cable Insulation. In Proceedings of the 2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 5–31 July2020; pp. 181–184. [Google Scholar] [CrossRef]
- Du, B.X.; Han, C.; Li, J.; Li, Z. Temperature-dependent DC conductivity and space charge distribution of XLPE/GO nanocomposites for HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 418–426. [Google Scholar] [CrossRef]
- Torbaghan, S.S.; Müller, H.K.; Gibescu, M.; van der Meijden, M.; Roggenkamp, M. The legal and economic impacts of implementing a joint feed-in premium support scheme on the development of an offshore grid. Renew. Sustain. Energy Rev. 2015, 45, 263–277. [Google Scholar] [CrossRef]
- Fu, M.; Chen, G.; Dissado, L.A.; Fothergill, J.C. Influence of thermal treatment and residues on space charge accumulation in XLPE for DC power cable application. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 53–64. [Google Scholar] [CrossRef]
- Andrews, T.; Hampton, R.N.; Smedberg, A.; Wald, D.; Waschk, V.; Weissenberg, W. The role of degassing in XLPE power cable manufacture. IEEE Electr. Insul. Mag. 2006, 22, 5–16. [Google Scholar] [CrossRef]
- Yoshino, K.; Demura, T.; Kawahigashi, M.; Miyashita, Y.; Kurahashi, K.; Matsuda, Y. Application of a novel polypropylene to the insulation of an electric power cable. Electr. Eng. Jpn. 2004, 146, 18–26. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.; Hu, J.; Huang, X.; Jiang, P. Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 673–681. [Google Scholar] [CrossRef]
- Xie, D.; Min, D.; Huang, Y.; Li, S.; Nazir, M.T.; Phung, B.T. Classified effects of nanofillers on DC breakdown and partial discharge resistance of polypropylene/alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 698–705. [Google Scholar] [CrossRef]
- Zha, J.W.; Wang, J.F.; Wang, S.J.; Qin, Q.; Dang, Z.M. Effect of modified ZnO on electrical properties of PP/SEBS nanocomposites for HVDC cables. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2358–2365. [Google Scholar] [CrossRef]
- Li, J.; Yang, K.; Wu, K.; Jing, Z.; Dong, J.Y. Eco-friendly polypropylene power cable insulation: Present status and perspective. IET Nanodielectrics 2023, 6, 130–146. [Google Scholar] [CrossRef]
- Eesaee, M.; David, E.; Demarquette, N.R. Effect of blending and nanoclay on dielectric properties of polypropylene. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1487–1494. [Google Scholar] [CrossRef]
- Hamzah, M.S.; Jaafar, M.; Mohd Jamil, M.K. Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites. J. Appl. Polym. Sci. 2014, 131, 41184. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Y.; Li, J.; Song, Z.; Peng, J.; Du, B. Charge Transport and DC Breakdown in Polymer Based Micro/Nano-Composite with Different Filler Orientations. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, O.; Kim, D.K.; Kim, H.; Lee, S.H.; Kwon, T.; Kwon, I.S.; Shinozaki, K.; Hikita, M.; Lee, J.H.; Lee, D.H.; et al. Improving the high-voltage insulation properties of polypropylene by introducing trace addition of polyvinylidene fluoride: An experimental and simulation study. Compos. Sci. Technol. 2025, 259, 110939. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, S.; Huang, S.; Zhou, Y.; Zhang, W.; Yang, C.; Yao, C.; Dong, X.; Zhang, Q.; Wang, M.; et al. Structure-performance relationship of polypropylene/elastomer/carbon black composites as high voltage cable shielding layer. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108334. [Google Scholar] [CrossRef]
- Liu, B.X.; Gao, Y.; Li, J.; Guo, C.Y.; Si, B.S.; Gao, J.G.; Chen, Y.; Du, B.X. Polypropylene-based blend with enhanced breakdown strength under gamma-ray irradiation for cable insulation. Nucl. Sci. Tech. 2025, 36, 12. [Google Scholar] [CrossRef]
- Dong, X.; Shao, Q.; Cai, Y.; Zhang, Q.; Zhang, W.; Hu, S.; Huang, S.; Wang, W.; Li, Q.; He, J. Improved high-temperature electrical properties of polypropylene insulation material by grafting styrene. High Volt. 2025, 10, 603–614. [Google Scholar] [CrossRef]




| Modifier Loading (wt.%) | Breakdown Strength (kV/mm) | Change in Breakdown Strength (%) | Relative Permittivity (εr) | Loss Factor, (tanδ) | |
|---|---|---|---|---|---|
| Pure XLPE | 0 | 31.23 | - | 2.91 | 0.0113 |
| XLPE/non-functionalized ZnO | 0.5 | 25.00 | −19.95 | 3.32 | 0.0617 |
| XLPE/functionalized ZnO | 0.5 | 32.96 | +5.54 | 3.17 | 0.0403 |
| 2.0 | 34.01 | +8.19 | 2.79 | 0.0339 | |
| 3.5 | 34.16 | +9.38 | 2.84 | 0.0285 | |
| 5.0 | 31.62 | +1.24 | 2.93 | 0.0226 |
| No | Nanofiller | Loading (% wt.) | Change in Dielectric Breakdown Strength with Respect to Virgin XLPE (%) | Reference |
|---|---|---|---|---|
| 1 | Al2O3 | 1.0 | – | [49] |
| 2 | Al2O3 functionalized with hybridized layered double hydroxide | 0.8 | +15.6 AC | [50] |
| 3 | ZnO | 0.5 | −19.9 AC | [54] |
| 4 | ZnO functionalized with γ-Aminopropyltriethoxy silane | 3.5 | +9.4 AC | [54] |
| 5 | TiO2 functionalized with KH560 | 0.5 | +13.5 DC | [60] |
| 6 | h-BN | 0.1 | +39.0 DC | [63] |
| 7 | BN nanosheets functionalized with KH550 | 0.5 | +33.0 DC | [65] |
| 8 | SiO2 | 2.0 | +2.5 AC | [71] |
| 9 | SiO2 functionalized with γ-Aminopropyltriethoxy silane | 2.0 | +29.6 AC | [71] |
| 10 | Functionalized graphene oxide quantum wells | 0.01 | +33.3 DC | [84] |
| 11 | Graphene oxide | 0.01 | +17.1 DC | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurov, A.A.; Zubkov, I.N.; Lukonin, A.V.; Kaun, O.Y.; Bogachev, A.E.; Klushin, V.A. XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables. Materials 2025, 18, 5553. https://doi.org/10.3390/ma18245553
Yurov AA, Zubkov IN, Lukonin AV, Kaun OY, Bogachev AE, Klushin VA. XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables. Materials. 2025; 18(24):5553. https://doi.org/10.3390/ma18245553
Chicago/Turabian StyleYurov, Alexander A., Ivan N. Zubkov, Alexey V. Lukonin, Oleg Y. Kaun, Alexander E. Bogachev, and Victor A. Klushin. 2025. "XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables" Materials 18, no. 24: 5553. https://doi.org/10.3390/ma18245553
APA StyleYurov, A. A., Zubkov, I. N., Lukonin, A. V., Kaun, O. Y., Bogachev, A. E., & Klushin, V. A. (2025). XLPE and Beyond: A Review of Recent Progress in Polymer Nanocomposites for Dielectric Insulation in High-Voltage Cables. Materials, 18(24), 5553. https://doi.org/10.3390/ma18245553

