Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = X-ray capillary optics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10162 KiB  
Article
Influence of Different Mixing Methods for Cementitious Capillary Crystalline Waterproofing Materials on the Self-Healing Capacity of Concrete Under Various Damage Types
by Haoyu Wang, Wei You, Guojin Ji, Liang Wang and Guoyou Yao
Materials 2025, 18(1), 159; https://doi.org/10.3390/ma18010159 - 2 Jan 2025
Cited by 2 | Viewed by 1036
Abstract
Cementitious Capillary Crystallization Waterproofing Material (CCCW), as an efficient self-healing agent, can effectively repair damage in concrete structures, thereby extending their service life. To address the various types of damage encountered in practical engineering applications, this study investigates the impact of different mixing [...] Read more.
Cementitious Capillary Crystallization Waterproofing Material (CCCW), as an efficient self-healing agent, can effectively repair damage in concrete structures, thereby extending their service life. To address the various types of damage encountered in practical engineering applications, this study investigates the impact of different mixing methods for CCCW (including internal mixing, curing, and post-crack repair) on the multi-dimensional self-healing performance of concrete. The self-healing capacity of concrete was evaluated through water pressure damage self-healing tests, freeze–thaw damage self-healing tests, mechanical load damage self-healing tests, and crack damage self-healing tests. The results show that the curing-type CCCW mixing method exhibited the best self-healing effect in repairing water pressure, freeze–thaw, and load damages, with corresponding healing rates of 88.9%, 92.7%, and 90.5%, respectively. The internally mixed CCCW method was also effective for repairing load damage in concrete, while the repair-type CCCW mixing method demonstrated the weakest repair effect on these types of damage. For concrete with induced pre-existing cracks, the internally mixed CCCW method, after 28 days of water-immersion curing, exhibited a significantly higher crack self-healing ability, with a self-healing ratio of 333.8%. Optical microscopy observations revealed that the crack surfaces were almost fully sealed, with a substantial deposition of white crystalline material at the crack sites. Further analysis using scanning electron microscopy (SEM) and X-ray Diffraction (XRD) provided insights into the surface morphology and phase characteristics of the self-healed cracks, indicating that calcium carbonate (CaCO3) and calcium silicate hydrate (C-S-H) were the main products responsible for crack healing. Full article
Show Figures

Figure 1

13 pages, 9501 KiB  
Article
Microstructural X-Ray Computed Tomography Investigation of the Defect Evolution in Refractory Castings Based on Andalusite
by Anita Razavi, Vanessa Hopp, Dominik Hahn, Almuth Sax and Peter Quirmbach
Ceramics 2024, 7(4), 1867-1879; https://doi.org/10.3390/ceramics7040117 - 3 Dec 2024
Cited by 1 | Viewed by 1220
Abstract
X-ray computed tomography (XRT) has gradually established its position as a non-destructive and, therefore, reproducible three-dimensional (3D) investigation technique, allowing for material- and geometry-independent applications. In the context of this study, XRT provides an enhanced understanding of thermal-induced microstructural changes in an andalusite-based [...] Read more.
X-ray computed tomography (XRT) has gradually established its position as a non-destructive and, therefore, reproducible three-dimensional (3D) investigation technique, allowing for material- and geometry-independent applications. In the context of this study, XRT provides an enhanced understanding of thermal-induced microstructural changes in an andalusite-based refractory, which are not apparent from the limited two-dimensionality of conventional optical investigation techniques. By subjecting an andalusite-based sample to an XRT scan after temperature treatments of T = 110 °C, 800 °C, 1000 °C, 1200 °C and 1400 °C, the XRT technique in this study introduced a novel perspective on the sintering process of andalusite refractory materials. The XRT investigation focused on the thermal-induced defect and crack evolution of the castable as a function of temperature. In addition to general sintering phenomena, this includes the formation of a capillary network filled with silica-rich glass phases (SiO2) due to the mullitization of andalusite. The results of the XRT analysis indicate the existence of glass bridges within these structures. Full article
Show Figures

Figure 1

13 pages, 6809 KiB  
Article
Ray Tracing of the New Multi-Modal X-ray Imaging Beamline PolyX at SOLARIS National Synchrotron Radiation Centre
by Filip Kosiorowski, Paweł Wróbel, Tomasz Kołodziej, Katarzyna M. Sowa, Magdalena Szczerbowska-Boruchowska and Paweł Korecki
Appl. Sci. 2024, 14(17), 7486; https://doi.org/10.3390/app14177486 - 24 Aug 2024
Cited by 2 | Viewed by 1377
Abstract
The aim of the presented research is to evaluate the potential performance of a new bending magnet X-ray beamline—PolyX, designed for microimaging and microspectroscopy at the National Synchrotron Radiation Centre SOLARIS in Krakow. Due to the short beamline length (<15 m), PolyX uses [...] Read more.
The aim of the presented research is to evaluate the potential performance of a new bending magnet X-ray beamline—PolyX, designed for microimaging and microspectroscopy at the National Synchrotron Radiation Centre SOLARIS in Krakow. Due to the short beamline length (<15 m), PolyX uses compact polycapillary and single-bounce monocapillary optics for X-ray focusing in the 4–15 keV energy range. Polycapillary optics require a dedicated approach for an efficient simulation of X-ray propagation in multiple capillary channels. Therefore, the PolyX beamline was ray traced by combining XRT (XRayTracer) and polycap libraries. In addition, to estimate the X-ray fluorescence spectra excited by focused beams, Monte Carlo simulations were conducted using XMI-MSIM. All simulations were aimed to estimate the crucial X-ray beam properties, i.e., the flux, the spot size, and the energy spectrum, for monochromatic and polychromatic X-ray beams. Full article
Show Figures

Figure 1

12 pages, 7054 KiB  
Article
In Situ Synchrotron Investigations of Beam Diameter Influence on Vapor Capillary Formation during Laser Beam Welding of Copper Alloy with a Blue Laser Beam Source
by Christoph Spurk, Frederik Dietrich, Marc Hummel, Arnold Gillner, Felix Beckmann, Julian Moosmann and Constantin Häfner
J. Manuf. Mater. Process. 2024, 8(2), 47; https://doi.org/10.3390/jmmp8020047 - 1 Mar 2024
Viewed by 2455
Abstract
Laser beam welding as a reliable tool for high-precision joining of batteries or microelectronics is more and more the choice for achieving reproducible results in production processes. In addition to a high automation capability, the precise control of the energy deposition into the [...] Read more.
Laser beam welding as a reliable tool for high-precision joining of batteries or microelectronics is more and more the choice for achieving reproducible results in production processes. In addition to a high automation capability, the precise control of the energy deposition into the material plays an important role, especially when highly reflective materials, such as copper or aluminum, must be welded together. Alongside the use of highly brilliant fiber lasers in the near-infrared range with a focal diameter of a few tens of micrometers, diode lasers in the wavelength range of 445 nm are increasingly being used. Here, beam diameters of a few hundred micrometers can be achieved. With a wavelength of 445 nm, the absorptivity in copper can be increased by more than a factor of 10 compared to a near-infrared laser beam sources in solid state at room temperature. This paper presents the in situ X-ray observation of laser welding processes on CuSn6 with a laser beam source with a wavelength of 445 nm using synchrotron radiation at DESY Petra III Beamline P07 EH4 in Hamburg, Germany. For the experiments, the laser radiation was focused via two separate optics to focal diameters of 362 µm and 609 µm. To characterize the dynamics of the vapor capillaries depending on the different focal diameters dF, the parameters were varied with respect to laser power PL and feed rate v. For the investigations, a synchrotron beam of 2 × 2 mm2 in size with a photon energy of 89 keV was used, and the material samples were analyzed by means of phase-contrast videography to show the boundaries between solid, liquid, and gaseous material phases. The results of this paper show the welding depths achieved and how the geometry of the vapor capillary behaves by changing the focal diameter, laser power and feed rate. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

14 pages, 3865 KiB  
Article
Water Vapor Condensation in Nanoparticle Films: Physicochemical Analysis and Application to Rapid Vapor Sensing
by Shinya Kano, Jin Kawakita, Shohei Yamashita and Harutaka Mekaru
Chemosensors 2023, 11(11), 564; https://doi.org/10.3390/chemosensors11110564 - 14 Nov 2023
Cited by 2 | Viewed by 2997
Abstract
Nanomaterial-based humidity sensors hold great promise for water vapor detection because of their high sensitivity and fast response/recovery. However, the condensation of water in nanomaterial films remains unclear from a physicochemical perspective. Herein, the condensation of water vapor in silica nanoparticle films was [...] Read more.
Nanomaterial-based humidity sensors hold great promise for water vapor detection because of their high sensitivity and fast response/recovery. However, the condensation of water in nanomaterial films remains unclear from a physicochemical perspective. Herein, the condensation of water vapor in silica nanoparticle films was physicochemically analyzed to bridge the abovementioned gap. The morphology of surface-adsorbed water molecules was characterized using infrared absorption spectroscopy and soft X-ray absorption spectroscopy, and the effect of RH on the amount of adsorbed water was observed using a quartz crystal microbalance. The adsorbed water was found to exist in liquid- and ice-like states, which contributed to high and low conductivity, respectively. The large change in film impedance above 80% RH was ascribed to the condensation of water between the nanoparticles. Moreover, RH alteration resulted in a colorimetric change in the film’s interference fringe. The obtained insights were used to construct a portable device with response and recovery times suitable for the real-time monitoring of water vapor. Thus, this study clarifies the structure of water adsorbed on nanomaterial surfaces and, hence, the action mechanism of the corresponding nanoparticle-based sensors, inspiring further research on the application of various nanomaterials to vapor sensing. Full article
(This article belongs to the Special Issue Low-Cost Chemo/Bio-Sensors Based on Nanomaterials)
Show Figures

Figure 1

14 pages, 1887 KiB  
Article
Experimental Study on the Manufacturing of Functional Paper with Modified by N-Methylmorpholine-N-oxide Surfaces
by Nikolay V. Khomutinnikov, Igor O. Govyazin, Gennady E. Ivanov, Elena M. Fedorova, Igor S. Makarov, Markel I. Vinogradov and Valery G. Kulichikhin
Polymers 2023, 15(3), 692; https://doi.org/10.3390/polym15030692 - 30 Jan 2023
Cited by 4 | Viewed by 2734
Abstract
The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the [...] Read more.
The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the regeneration of which provides an environmentally friendly process. It was shown that among the possible hydrate forms of the solvent, the monohydrate and higher-melting forms are optimal for modifying the paper surface. The temperature–time modes of processing were revealed and the weight gain and density increase in the course of modification were estimated. The structural and morphological features of the original and modified paper were studied by X-ray imaging and scanning microscopy. The NMMO surface treatment makes it possible to vary the air permeability of the paper, making it practically non-permeable. The capillary and pore system were radically transformed after the partial dissolution of cellulose and its coagulation, as the formed cellulose film isolates them, which leads to a decrease in surface absorbency. The processing conditions allowing for the optimization of the optical and strength properties of the modified paper samples are revealed. The resulting paper with a modified N-methylmorpholine-N-oxide surface layer can be used for printing valuable documents. Full article
(This article belongs to the Special Issue Improvement in Physical Properties of Paper and Natural Fibers)
Show Figures

Figure 1

16 pages, 3921 KiB  
Article
Deterioration Effects on Bricks Masonry in the Venice Lagoon Cultural Heritage: Study of the Main Façade of the Santa Maria dei Servi Church (14th Century)
by Chiara Coletti, Ludovica Pia Cesareo, Jacopo Nava, Luigi Germinario, Lara Maritan, Matteo Massironi and Claudio Mazzoli
Heritage 2023, 6(2), 1277-1292; https://doi.org/10.3390/heritage6020070 - 29 Jan 2023
Cited by 6 | Viewed by 3893
Abstract
Tidal exchange, capillary rise, water condensation-evaporation cycles, and crystallization of salts are the main causes of damage in historic brick buildings in Venice. The present study addressed these issues by proposing a study of twenty-three brick samples collected on the main façade of [...] Read more.
Tidal exchange, capillary rise, water condensation-evaporation cycles, and crystallization of salts are the main causes of damage in historic brick buildings in Venice. The present study addressed these issues by proposing a study of twenty-three brick samples collected on the main façade of the Santa Maria dei Servi Church (14th century). The color, mineralogical composition, and texture of these samples were studied using standard methods such as spectrophotometry, X-ray powder diffraction (XRPD), optical microscopy (OM), and field emission scanning electron microscopy (FESEM). The presence of carbonates (calcite and dolomite) and newly formed silicate phases, such as gehlenite and diopside, provided indications of the temperatures reached during firing and suggested the absence of a good standardization in the production process. Meanwhile, XRPD and hyperspectral analysis (HA) detected sulfates (e.g., gypsum and mirabilite) as the main weathering products due to the salt decay process that affects monuments in the Venice lagoon environment. Moreover, secondary phases, such as Mg- and Ca-zeolites, occurred in bricks where the groundmass observed by OM was more vitrificated, and the XRPD patterns displayed the highest amorphous content. On-site mapping of sulfates and chlorophyll by HA was also performed on the main façade of the Church, highlighting the large presence of salts and biodeterioration. Full article
(This article belongs to the Special Issue Advances in Italian Research Applied to Cultural Heritage)
Show Figures

Figure 1

21 pages, 11814 KiB  
Article
A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride–Camphor Mixtures
by Konstantin V. Pochivalov, Andrey V. Basko, Tatyana N. Lebedeva, Anna N. Ilyasova, Georgiy A. Shandryuk, Vyacheslav V. Snegirev, Vladimir V. Artemov, Alexander A. Ezhov and Yaroslav V. Kudryavtsev
Polymers 2022, 14(23), 5214; https://doi.org/10.3390/polym14235214 - 30 Nov 2022
Cited by 7 | Viewed by 2322
Abstract
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)–camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It [...] Read more.
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)–camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602–5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature. Full article
(This article belongs to the Special Issue Polymer and Polymer Composites, Thermal and Acoustic Applications)
Show Figures

Graphical abstract

18 pages, 1497 KiB  
Article
SiO2 Nanoparticles as New Repairing Treatments toward the Pietraforte Sandstone in Florence Renaissance Buildings
by Federica Valentini, Pasquino Pallecchi, Michela Relucenti, Orlando Donfrancesco, Gianluca Sottili, Ida Pettiti, Valentina Mussi, Sara De Angelis, Claudia Scatigno and Giulia Festa
Crystals 2022, 12(9), 1182; https://doi.org/10.3390/cryst12091182 - 23 Aug 2022
Cited by 9 | Viewed by 2447
Abstract
In this work, the consolidation efficiency of SiO2 nanoparticles (synthesized in the Chemistry laboratories at the Tor Vergata University of Roma) was tested on Pietraforte sandstone surfaces belonging to the bell tower of San Lorenzo (Florence, Italy) and was fully investigated. Nanoparticles [...] Read more.
In this work, the consolidation efficiency of SiO2 nanoparticles (synthesized in the Chemistry laboratories at the Tor Vergata University of Roma) was tested on Pietraforte sandstone surfaces belonging to the bell tower of San Lorenzo (Florence, Italy) and was fully investigated. Nanoparticles (synthesized in large-scale mass production) have been characterized by XRD—X-Ray Diffraction; Raman and FTIR—Fourier Transform Infrared spectroscopy; SEM—Scanning Electron Microscopy; while the Pietraforte sandstone morphology was examined by Porosimetry, capillary absorption test, surface hardness test, drilling resistance and tensile strength. The colorimetric measurements were also performed to characterize the optical modification exhibited by Pietraforte sandstones, especially after the SiO2 treatments. Our results show that applying to the Pietraforte, the new consolidating agent based on SiO2 nanoparticles, has several advantages, as they are more resistant to perforation, wear, and abrasion even long range (for long times of exposure and consolidating exercise against Florentine sandstone), compared to the CaCO3 nanoparticles (tested in our previous paper), which instead show excellent performance but only close to their first application. This means that over time, their resistance to drilling decreases, they wear much more easily (compared to SiO2-treated sandstone), and tend to exhibit quite a significant surface abrasion phenomena. The experimental results highlight that the SiO2 consolidation efficiency on this kind of Florentine Pietraforte sandstone (having low porosity and a specific calcitic texture) seems to be higher in terms of water penetration protection, superficial cohesion forces, and an increase in surface resistance. Comparing the performance of SiO2 nanoparticles with commercial consolidants in solvents such as Estel 1000 (tested here), we demonstrate that: (A) the restorative effects are obtained with a consolidation time over one week, significantly shorter when compared to the times of Estel 1000, exceeding 21 days; (B) SiO2 nanoparticles perform better than Estel 1000 in terms of cohesion forces, also ensuring excellent preservation of the optical and color properties of the parent rock (without altering it after application). Full article
(This article belongs to the Special Issue Archaeological Crystalline Materials)
Show Figures

Figure 1

21 pages, 7537 KiB  
Article
Combining Optical Microscopy and X-ray Computed Tomography Reveals Novel Morphologies and Growth Processes of Methane Hydrate in Sand Pores
by Thi Xiu Le, Michel Bornert, Ross Brown, Patrick Aimedieu, Daniel Broseta, Baptiste Chabot, Andrew King and Anh Minh Tang
Energies 2021, 14(18), 5672; https://doi.org/10.3390/en14185672 - 9 Sep 2021
Cited by 11 | Viewed by 2353
Abstract
Understanding the mechanisms involved in the formation and growth of methane hydrate in marine sandy sediments is crucial for investigating the thermo-hydro-mechanical behavior of gas hydrate marine sediments. In this study, high-resolution optical microscopy and synchrotron X-ray computed tomography were used together to [...] Read more.
Understanding the mechanisms involved in the formation and growth of methane hydrate in marine sandy sediments is crucial for investigating the thermo-hydro-mechanical behavior of gas hydrate marine sediments. In this study, high-resolution optical microscopy and synchrotron X-ray computed tomography were used together to observe methane hydrate growing under excess gas conditions in a coarse sandy sediment. The high spatial and complementary temporal resolutions of these techniques allow growth processes and accompanying redistribution of water or brine to be observed over spatial scales down to the micrometre—i.e., well below pore size—and temporal scales below 1 s. Gas hydrate morphological and growth features that cannot be identified by X-ray computed tomography alone, such as hollow filaments, were revealed. These filaments sprouted from hydrate crusts at water–gas interfaces as water was being transported from their interior to their tips in the gas (methane), which extend in the µm/s range. Haines jumps are visualized when the growing hydrate crust hits a water pool, such as capillary bridges between grains or liquid droplets sitting on the substrate—a capillary-driven mechanism that has some analogy with cryogenic suction in water-bearing freezing soils. These features cannot be accounted for by the hydrate pore habit models proposed about two decades ago, which, in the absence of any observation at pore scale, were indeed useful for constructing mechanical and petrophysical models of gas hydrate-bearing sediments. Full article
Show Figures

Graphical abstract

7 pages, 1146 KiB  
Article
Absolute Configuration of In Situ Crystallized (+)-γ-Decalactone
by Michael Patzer, Nils Nöthling, Richard Goddard and Christian W. Lehmann
Chemistry 2021, 3(2), 578-584; https://doi.org/10.3390/chemistry3020040 - 21 Apr 2021
Cited by 4 | Viewed by 3813
Abstract
Knowledge about the absolute configuration of small bioactive organic molecules is essential in pharmaceutical research because enantiomers can exhibit considerably different effects on living organisms. X-ray crystallography enables chemists to determine the absolute configuration of an enantiopure compound due to anomalous dispersion. Here, [...] Read more.
Knowledge about the absolute configuration of small bioactive organic molecules is essential in pharmaceutical research because enantiomers can exhibit considerably different effects on living organisms. X-ray crystallography enables chemists to determine the absolute configuration of an enantiopure compound due to anomalous dispersion. Here, we present the determination of the absolute configuration of the flavoring agent (+)-γ-decalactone, which is liquid under ambient conditions. Single crystals were grown from the liquid in a glass capillary by in situ cryo-crystallization. Diffraction data collection was performed using Cu-Kα radiation. The absolute configuration was confirmed. The molecule consists of a linear aliphatic non-polar backbone and a polar lactone head. In the solid state, layers of polar and non-polar sections of the molecule alternating along the c-axis of the unit cell are observed. In favorable cases, this method of absolute configuration determination of pure liquid (bioactive) agents or liquid products from asymmetric catalysis is a convenient alternative to conventional methods of absolute structure determination, such as optical rotatory dispersion, vibrational circular dichroism, ultraviolet-visible spectroscopy, use of chiral shift reagents in proton NMR and Coulomb explosion imaging. Full article
Show Figures

Graphical abstract

9 pages, 1213 KiB  
Letter
Metrology of a Focusing Capillary Using Optical Ptychography
by Xiaojing Huang, Evgeny Nazaretski, Weihe Xu, Dean Hidas, Mark Cordier, Benjamin Stripe, Wenbing Yun and Yong S. Chu
Sensors 2020, 20(22), 6462; https://doi.org/10.3390/s20226462 - 12 Nov 2020
Cited by 3 | Viewed by 2469
Abstract
The focusing property of an ellipsoidal monocapillary has been characterized using the ptychography method with a 405 nm laser beam. The recovered wavefront gives a 12.5×10.4μm2 focus. The reconstructed phase profile of the focused beam can be used [...] Read more.
The focusing property of an ellipsoidal monocapillary has been characterized using the ptychography method with a 405 nm laser beam. The recovered wavefront gives a 12.5×10.4μm2 focus. The reconstructed phase profile of the focused beam can be used to estimate the height error of the capillary surface. The obtained height error shows a Gaussian distribution with a standard deviation of 1.3 μm. This approach can be used as a quantitative tool for evaluating the inner functional surfaces of reflective optics, complementary to conventional metrology methods. Full article
(This article belongs to the Special Issue EUV and X-ray Wavefront Sensing)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
URSA-PQ: A Mobile and Flexible Pump-Probe Instrument for Gas Phase Samples at the FLASH Free Electron Laser
by Jan Metje, Fabiano Lever, Dennis Mayer, Richard James Squibb, Matthew S. Robinson, Mario Niebuhr, Raimund Feifel, Stefan Düsterer and Markus Gühr
Appl. Sci. 2020, 10(21), 7882; https://doi.org/10.3390/app10217882 - 6 Nov 2020
Cited by 10 | Viewed by 3470
Abstract
We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for ‘Ultraschnelle Röntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen’, Engl. ‘ultrafast X-ray spectroscopy for probing photoenergy [...] Read more.
We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for ‘Ultraschnelle Röntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen’, Engl. ‘ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems’) instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments’ capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup. Full article
(This article belongs to the Special Issue Ultrafast X-ray Spectroscopies)
Show Figures

Figure 1

11 pages, 4132 KiB  
Article
Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry
by Jessica Bahout, Youcef Ouerdane, Hicham El Hamzaoui, Géraud Bouwmans, Mohamed Bouazaoui, Andy Cassez, Karen Baudelle, Rémi Habert, Adriana Morana, Aziz Boukenter, Sylvain Girard and Bruno Capoen
Materials 2020, 13(11), 2611; https://doi.org/10.3390/ma13112611 - 8 Jun 2020
Cited by 11 | Viewed by 3148
Abstract
Optically activated glasses are essential to the development of new radiation detection systems. In this study, a bulk glassy rod co-doped with Cu and Ce ions, was prepared via the sol-gel technique and was drawn at about 2000 °C into a cylindrical capillary [...] Read more.
Optically activated glasses are essential to the development of new radiation detection systems. In this study, a bulk glassy rod co-doped with Cu and Ce ions, was prepared via the sol-gel technique and was drawn at about 2000 °C into a cylindrical capillary rod to evaluate its optical and radioluminescence properties. The sample showed optical absorption and photoluminescence (PL) bands attributed to Cu+ and Ce3+ ions. The presence of these two ions inside the host silica glass matrix was also confirmed using PL kinetics measurements. The X-ray dose rate was remotely monitored via the radioluminescence (RL) signal emitted by the Cu/Ce scintillating sensor. In order to transport the optical signal from the irradiation zone to the detection located in the instrumentation zone, an optical transport fiber was spliced to the sample under test. This RL signal exhibited a linear behavior regarding the dose rate in the range at least between 1.1 mGy(SiO2)/s and 34 Gy(SiO2)/s. In addition, a spectroscopic analysis of this RL signal at different dose rates revealed that the same energy levels attributed to Cu+ and Ce3+ ions are involved in both the RL mechanism and the PL phenomenon. Moreover, integrated intensities of the RL sub-bands related to both Cu+ and Ce3+ ions depend linearly on the dose rate at least in the investigated range from 102 mGy(SiO2)/s up to 4725 mGy(SiO2)/s. The presence of Ce3+ ions also reduces the formation of HC1 color centers after X-ray irradiation. Full article
(This article belongs to the Special Issue Sol-Gel-Derived Materials)
Show Figures

Figure 1

9 pages, 5169 KiB  
Article
Fabrication of Tapered Micropillars with High Aspect-Ratio Based on Deep X-ray Lithography
by Jae Man Park, Jong Hyun Kim, Jun Sae Han, Da Seul Shin, Sung Cheol Park, Seong Ho Son and Seong Jin Park
Materials 2019, 12(13), 2056; https://doi.org/10.3390/ma12132056 - 26 Jun 2019
Cited by 17 | Viewed by 3741
Abstract
In this study, a fabrication method of tapered microstructures with high aspect ratio was proposed by deep X-ray lithography. Tapered microstructures with several hundred micrometers and high aspect ratio are demanded owing to the high applicability in the fields of various microelectromechanical systems [...] Read more.
In this study, a fabrication method of tapered microstructures with high aspect ratio was proposed by deep X-ray lithography. Tapered microstructures with several hundred micrometers and high aspect ratio are demanded owing to the high applicability in the fields of various microelectromechanical systems (MEMS) such as optical components and microfluidic channels. However, as the pattern and gap size were downsized to smaller micro-scale with higher aspect ratio over 5, microstructures were easily deformed or clustered together due to capillary force during the drying process. Here, we describe a novel manufacturing process of tapered microstructures with high aspect ratio. To selectively block the deep X-ray irradiation, an X-ray mask was prepared via conventional ultraviolet (UV) lithography. A double X-ray exposure process with and without X-ray mask was applied to impose a two-step dose distribution on a photoresist. For the clear removal of the exposed region, the product was developed in the downward direction, which encourages a gravity-induced pulling force as well as a convective transport of the developer. After a drying process with the surface additive, tapered microstructures were successfully fabricated with a pattern size of 130 μm, gap size of 40 μm, and aspect ratio over 7. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop