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Abstract: The aim of the presented research is to evaluate the potential performance of a new bending
magnet X-ray beamline—PolyX, designed for microimaging and microspectroscopy at the National
Synchrotron Radiation Centre SOLARIS in Krakow. Due to the short beamline length (<15 m),
PolyX uses compact polycapillary and single-bounce monocapillary optics for X-ray focusing in the
4–15 keV energy range. Polycapillary optics require a dedicated approach for an efficient simulation
of X-ray propagation in multiple capillary channels. Therefore, the PolyX beamline was ray traced by
combining XRT (XRayTracer) and polycap libraries. In addition, to estimate the X-ray fluorescence
spectra excited by focused beams, Monte Carlo simulations were conducted using XMI-MSIM. All
simulations were aimed to estimate the crucial X-ray beam properties, i.e., the flux, the spot size, and
the energy spectrum, for monochromatic and polychromatic X-ray beams.

Keywords: synchrotron beamline; ray-tracing simulations; Monte-Carlo simulations

1. Introduction

SOLARIS is a synchrotron radiation facility with a 1.5 GeV storage ring located in
Krakow, southern Poland. It was commissioned in 2015, and it is a third-generation
source of soft X-rays with a critical photon energy of 2 keV. Currently, there are five active
beamlines and three under construction/commissioned [1]. One of them is PolyX [2]—a
simple and compact beamline that aims to provide both unfocused and focused beams from
the bending magnet for X-ray microimaging and X-ray microspectroscopy experiments.
The main techniques available with PolyX are µ-XRF, µ-XAS, µ-CT with absorption and
phase contrast as well as plenoptic X-ray imaging [3]. The beam focusing is achieved using
polycapillary optics. Those very compact devices use the effect of total external reflection
of X-rays inside thousands of small bent hollow glass tubes. PolyX will take advantage of
the very high acceptance of polycapillary lenses, allowing for it to achieve highly intense
white, pink, or monochromatic 4–15 keV X-rays focused down to 10 µm. For better focusing
(down to 2 µm), an ellipsoidal single-bounce monocapillary lens will be used.

In the field of X-ray physics, ray tracing refers to the simulation of X-ray beams
propagating through different materials and optical components. Ray-tracing simulations
have become an essential tool in X-ray physics for designing and optimizing synchrotron
beamlines [4–7] and optical elements, including single-bounce capillary devices [8–10] as
well as polycapillary optics [11–13]. Ray-tracing simulations allow for the evaluation of
X-ray beam properties such as flux, spot size, and energy spectrum, which are crucial for
optimizing the performance of a beamline. Moreover, by simulating the entire beamline,
it is possible to identify and correct potential issues before the actual installation of the
beamline, as well as to predict the performance of the beamline.
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The goal of this research is to use ray tracing to predict the performance of the PolyX
beamline, specifically the photon flux on the sample (in both polychromatic and monochro-
matic modes) and the achievable beam size with different available polycapillary lenses,
as well as single-bounce ellipsoidal monocapillary. Furthermore, the ray-tracing model
will enable the simulation of the beam characteristics in all possible configurations of the
adjustable beamline components, such as filters and slits.

In this paper, for PolyX beamline ray tracing, we used the XRT toolkit [5]. XRT is a
Python-based software library for beamline simulation and analysis in X-ray regimes. It
provides the classes for many beamline elements, the propagation engine in ray and wave
approximations with full account for shapes and material properties, and high-quality
visualization capabilities. While XRT enables the user to simulate X-ray propagation
inside polycapillary optics, such calculations are very time-consuming. Therefore, we used
XRT (for simulation of standard beamline components) in conjunction with the polycap
library [7]. Polycap is a multithreaded Monte Carlo-based X-ray ray tracing code dedicated
to the simulation of polycapillary optics. Moreover, to evaluate the performance of the
beamline in fast, high-resolution µ-XRF mapping, additional simulations of X-ray spectra
with the XMI-MSIM [14] tool were performed.

2. Beamline Description

The source of the PolyX beamline is a 1.31 T bending magnet from the SOLARIS
storage ring. The detailed information about the source is given in Table 1 and the scheme
of the beamline is provided in Figure 1. The beamline optics are designed to deliver either
a polychromatic white beam or a monochromatized beam to the end station. Two types of
interchangeable monochromators are planned: a double crystal monochromator (DCM)
and a double multilayer monochromator (DMM). The list of all main components of the
beamline with corresponding distances from the bending magnet is shown in Table 2.

Table 1. Bending magnet (X-ray source) parameters used in simulations.

Parameter Value

Electron beam energy 1.5 GeV
Maximum current 500 mA

Electron beam sizes (σx, σz) 44 µm, 30 µm
Electron beam emittance (εx, εz) 8.05 nm·rad, 0.065 nm·rad

BM magnetic field 1.31 T
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Table 2. Positions of simulated beamline components.

Component Distance from the Source [mm]

1 Fixed mask 1 2314
2 White beam slits 5122.5
3 Fixed mask 2 6704
4 White beam filters 8790
5 Be window 1 (250 µm) 9110
6 Monochromator 11,570
7 Be window 2 (500 µm) 12,625
8 Capillary optics ~14,450 (depending on the optic in use)
9 Sample 14,500

A DCM uses two crystals made of Si(111) that are precisely aligned to diffract X-
rays of a specific wavelength with a bandwidth of ~ 1.4 × 10−4 and a constant vertical
offset of 10 mm. The dimensions (width × length) of the first and the second crystal are
35 mm × 55.5 mm and 35 mm × 140 mm, respectively. A DMM uses a pair of multilayer
mirrors to diffract and reflect X-rays to achieve monochromatization with a bandwidth
of several percent. Each mirror has two different stripes of multilayer structures next
to each other. The first stripe was prepared to work with the energy range of 4–8 keV.
It has a Ni/B4C multilayer coating with 75 periods, a period of 4 nm and a metal layer
thickness-to-period ratio of 0.4. The second stripe is dedicated to work in the 7.5–15 keV
energy range. It has a Mo/B4C multilayer coating with 115 periods, a period of 2.6 nm and
a metal layer thickness-to-period ratio of 0.4. The dimensions of both stripes were set to
20 mm × 280 for the stripes on the first optics, and to 20 × 172 mm for the stripes on the
second optics. The vertical offset between the second and the first crystal is again set to the
fixed value of 10 mm.

In order to achieve the focused beam on the sample, two types of capillary optics will
be used at PolyX. Seven different polycapillary lenses (from Helmut–Fisher formerly IfG,
Germany and XOS, USA) will be interchangeably used to achieve a focal spot in range
from 10 to 100 µm. A narrower beam will be achieved with an achromatic ellipsoidal
single-bounce monocapillary lens (AEXML) with a 30 nm Pt coating from Sigray, USA. The
details of the selected optical elements are given in Table 3 (the remaining polycapillaries
are described in the supplementary materials).

Table 3. Parameters of simulated optics.

Alias
Working
Distance

[mm]

Optics
Length
[mm]

Optics
Upstream
Diameter

[mm]

Optics
Downstream

Diameter
[mm]

Upstream
Capillary
Channel
Diameter

[um]

No. of
Capillaries

poly f = 2.5 2.5 37 4.2 0.83 0.75 313,136

poly f = 14.5 14.5 63.75 6.4 2 3.3 97,801

poly f = 40 40 41 6.5 4.5 7.5 101,144

AEXML 20.5 50 1 0.54 - 1

The main measurement modes that will be routinely used at PolyX are elemental
microimaging by µ-XRF, elemental speciation by µ-XAS and absorption/phase-contrast
imaging by µ-CT. Other techniques that are planned to be available at the beamline are
confocal-XRF for 3D elemental imaging, high-resolution plenoptic X-ray imaging and
µ-XRD for crystalline phase speciation. Several different X-ray detectors will be installed
at the end station. The first group—spectrometry detectors—is composed of two silicon
drift detectors (SDD) with 80 mm2 active area (one with 25 µm Be window and one with
ML3.3 Extreme window) by Hitachi High-Tech. As a digital pulse processor, a DANTE
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system from XGLab will be used. The detectors will work in the back-scatter geometry (at
45◦ with the sample perpendicular to the beam); however, the standard 45◦/45◦ geometry
will be also achievable. The ultra-thin ML3.3 window was chosen to allow the detection of
low-energy X-rays in a helium atmosphere. The second class of detectors are those devoted
to imaging: hybrid pixel EIGER 2S 1 M with 77.1 × 79.7 mm2 active area (75 × 75 µm2 pixel
size) by Dectris and white beam microscope by OptiquePeter with variable scintillators
and Edge 5.5 sCMOS camera (2560 × 2160 pixel) by PCO. The third class of detectors will
be beam monitors: ionisation chambers by FMB Oxford and PIN Diodes by Hamamatsu.
The key design aspect of the experimental station is to allow multi modal experiments as
well as easy switching between different modes.

3. Methods

In this work, we used a Python-based library XRT [5] to perform ray-tracing simula-
tions of the standard beamline components. The simulations covered all crucial components
of the beamline, including the bending magnet source characterised by parameters from
Table 1. Other elements simulated by XRT are slits and masks, beryllium windows, filters,
a double crystal monochromator (DCM) or a double multilayer monochromator (DMM), as
well as anellipsoidal single-bounce monocapillary lens (AEXML). Additionally, the polycap
library [7] combined with XRT library was used to perform efficient ray tracing of the
beamline with the polycapillary lenses.

The simulation took into account the expected distances from the source for every
element, as listed in Table 2. For all simulations of DCM, the beam was slit down vertically
to keep the bandwidth dE/E = 0.02%.

The combination of XRT and polycap libraries enabled an efficient modeling of the
whole beamline. The XRT was used to obtain the rays at the entrance surface of polycapil-
lary, and polycap ray-traced X-ray propagation inside polycapillary device. Importantly,
the parameters (position, direction, polarization) of each ray were directly transferred from
xrt to polycap by in-house developed write/read Python functions.

The simulations of polycapillary optics were performed with the assumption that
all of them had ellipsoidal shapes. The parameters of simulated lenses are presented in
Table 2. The naming of polycapillary lenses (aliases) was based on their working distances.
For AEXML optics, the distortion from perfect shape was implemented as a slope error
of 10 µrad (RMS), in order to estimate a realistic spot size. In Figures 2–4, the examples
of ray visualizations are presented, just upstream of the entrance to polycapillary and
monocapillary lenses as well as in their focal planes. The left panels of Figures 2 and 3
(created with the XRT library visualisation tool) show spatial distributions of the simulated
rays together with their projections on vertical and horizontal axes. The right panels show
energy distributions. The position and energy mean values with FWHM values are also
given. Nall and Ngood are values of all simulated rays and rays reflected within the working
optical surfaces, respectively. The total photon flux (Φ) is also given.

The simulations of X-ray spectra were carried out with the XMI-MSIM tool. The num-
ber of photons per interval and discrete line were set to 10,000 and 100,000, respectively. The
single interaction per photon trajectory was simulated, and Poisson noise was generated.
The default detector response was used.
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4. Results and Discussion

Our simulations were performed using a range of configurations for the beamline
components and X-ray focusing optics. The results of the simulations were used to evaluate
the X-ray beam properties, including the flux, the spot size, and energy resolution for
different configurations.

First, we performed simulations of the beamline for the white beam mode, i.e., without
any monochromator. To shape the X-ray spectrum, Al filters of variable thickness (0.01 mm,
0.05 mm, 0.1 mm, 0.25 mm, 0.5 mm, 1 mm) were simulated. White beam energy spectra
and the total flux (denoted as N in the legend) were simulated for full vertical beam size
and for 1 mrad horizontal slit opening (Figure 5).
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Next, we calculated the flux for both monochromator types, DCM and DMM. For
DMM, both stripes were simulated for the relevant energy ranges. The results are shown in
Figure 6.
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Subsequently, we focused on the prediction of achievable beam parameters, while
using different capillary optics. For the sake of clarity, the next figures show results for
only three types of polycapillary lenses and for one monocapillary lens. However, the
supplementary materials present selected results for the other four available polycapillary
lenses.

The transmission efficiencies of the focusing elements (Figure 7) were calculated by
performing the following steps: (i) slits were set to be fully opened in the vertical and
horizontal directions, (ii) a simulation for the white beam was conducted (without any Al
filters) for different energies, in the range of 4–15 keV, the step between the points was
0.5 keV, and bandwidth for every step was 0.1%, (iii) the flux N0 was calculated for rays
that were accepted into the optics entrance, (iv) the flux N was calculated in the focal spots,
and (v) the transmission was calculated as T = N/N0.

The transmission efficiency for AEXML is significantly higher than for polycapillary
optics since, in contrast to polycapillary optics, it relies on single-bounce transmission.
AEXML optic has two distinguishable drops, which are caused by the L absorption edges
of the platinum inner coating.

The spot sizes in the focal planes (Figures 8 and 9) were estimated using the same
white beam simulations as described above for transmission efficiencies. First, vertical
and horizontal histograms of the rays were calculated, then histograms of FWHMs were
determined for both axes and the average value was taken as the final spot size.

For polycapillary lenses and for an ellipsoidal single-bounce monocapillary lens, the
full energy spectra for the beams that passed through the optics were estimated during the
simulations. These results were used to calculate the achievable fluxes in the focal spot.
For the white beam mode, the different thicknesses of Al filters were used in simulations
(Figure 10). The flux was also estimated for the beam that passed through one of the
monochromators (DCM or DMM described in the previous section) and later focused
by the lenses (Figure 11). The results for a subset of simulated lenses are presented in
supplementary materials.
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Figure 11. Simulated flux for X-ray beam focused with polycapillary lenses and an ellipsoidal
monocapillary lens. Triangles—DCM, Dots—DMM. For DCM, beam was slit down vertically to keep
the bandwidth dE/E = 0.02%.

To predict the results of µ-XRF experiments, simulations of the X-ray fluorescence
spectra from two different samples were performed with XMI-MSIM. Simulations were
performed for the beam focused with AEXML, as a worst-case scenario in terms of expected
beam intensity and the best scenario in terms of spatial resolution. All the simulations
were carried out for a silicon drift detector equipped with ML3.3 Extreme window, helium
atmosphere and backscatter geometry (90◦ angle between the beam and the sample plane
and 45◦ angle between the sample plane and the detector axis) with a sample-detector
distance of 3 cm and an acquisition time of 1 s. Two excitation modes were chosen:
monochromatic (5 keV, 10 keV and 15 keV) with DMM and polychromatic with the white
beam filtered with various aluminium filters. The sample of biological thin tissue section
(4 µm), one of the most demanding materials, was chosen. The elemental composition of



Appl. Sci. 2024, 14, 7486 10 of 13

the tissue was selected based on the literature data [15] and is given in Table 4, together
with the simulated elemental intensities. The simulated spectra for both excitation modes
are shown in Figures 12 and 13. As can be seen for 5 keV, 10 keV, and white beam filtered
with 1 mm Al, the expected count rates of the elements up to zinc are high enough to
make fast XRF imaging feasible even with the acquisition times being much lower than
1 s. Heavier and low-abundant elements like Se, Br, Rb and Sr can be efficiently excited
with only the polychromatic beam; however, the detection of those elements will be very
difficult due to the poor signal-to-noise ratio.

Table 4. Elemental composition and intensities of Kα lines (in counts per second) for simulated thin
tissue sample.

Weight Fraction DMM White Beam Filtered with Al

Z Elem. Value Unit 5 keV 10 keV 15 keV 0.5 mm 1 mm 2 mm

1 H 8.1 %

6 C 64.8 %

7 N 9.8 %

8 O 13.7 %

11 Na 0.2 % 1600 23 <1 380 47 4

12 Mg 620 µg/g 530 17 <1 290 35 3

15 P 1.2 % 110k 1800 45 30k 3800 310

16 S 0.8 % 110k 1800 46 30k 3800 320

17 Cl 0.3 % 58k 1000 26 16k 2100 180

19 K 1.0 % 380k 6900 180 120k 15k 1300

20 Ca 130 µg/g 6800 120 3 2100 270 22

25 Mn 10 µg/g - 29 <1 510 66 6

26 Fe 210 µg/g - 770 21 13k 1700 150

29 Cu 120 µg/g - 710 21 11k 1600 150

30 Zn 180 µg/g - 1200 36 18k 2800 250

34 Se 2 µg/g - - <1ss 110 32 4

35 Br 3 µg/g - - <1 120 65 6

37 Rb 35 µg/g - - - 700 310 67

38 Sr 95 µg/g - - - 1200 600 160

In order to acquire information about the capabilities of analysis of higher Z elements
with the high-energy tail of the polychromatic excitation spectrum, a 1mm-thick soda-lime
glass (72% SiO2, 14% Na2O, 12% CaO, 2% Al2O3) sample doped with some elements (Se,
Sr, Zr, Mo, W, Pb, Th, U) at 100 µg/g level was used. The results of the simulations for
1 mm, 2 mm and 4 mm aluminium filters are shown in Table 5 and Figure 14. Since the
high energy limit of the DMM monochromator is at 15 keV, high Z elements cannot be
excited with the monochromatic beam (Sr, Zr on K shell and Th, U on L shell). However,
Figure 14 indicates that they can still be efficiently excited by the hardened white beam
allowing analysis of such elements in samples of, i.e., geological origin.
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Table 5. Elemental XRF intensities (in counts per second) for simulated glass sample.

Elem. Line Weight Fraction
[µg/g] 1 mm Al 2 mm Al 4 mm Al

34 Se Kα

100

120k 17k 990

38 Sr Kα 92k 24k 2300

40 Zr Kα 50k 17k 2500

42 Mo Kα 19k 8400 1700

74 W Lα 24k 2400 130

82 Pb Lα 44k 6800 440

90 Th Lα 30k 8000 840

92 U Lα 23k 7300 890
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5. Conclusions

In this work, we demonstrated the physical model of the PolyX beamline created by
combining two ray-tracing tools: XRT [5] and polycap libraries [7], which allowed us to
simulate all crucial components of the beamline, including the polycapillary optics. The
estimated flux was presented for different beamline configurations: (i) unfocused and
focused white beam with various Al filters, (ii) DCM monochromator for unfocused and fo-
cused beam, and (iii) two types of DMM monochromators for unfocused and focused beam.
Additionally, properties like transmission efficiencies and spot sizes were calculated for
capillary lenses and AEXML. The results give better insight into the expected performance
of the PolyX beamline and will be confronted with experimental data in the near future.
The applied ray-tracing model can be also used for the preparation of different experiments
in multiple measurement modes accessible at the end station. For example, an extension
of the presented approach to simulate multi-beam X-ray imaging [16] or von Hamos spec-
trometers [17] seems to be feasible. The simulations of the X-ray spectra recorded for thin
tissue slice samples with AEXML are very promising in terms of high-resolution, fast µ-XRF
imaging of elements up to zinc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14177486/s1. Data for four additional polycapillary lenses are
presented in Supplementary Materials. It includes parameters of the lenses (Table S1), transmission
efficiency (Figure S1), spot sizes (Figure S2), flux distribution in white beam mode (Figure S3), and
flux with DMM and DCM (Figure S4).

Author Contributions: Conceptualisation: P.K.; Methodology: F.K., P.W. and T.K.; Software: F.K.;
Validation; F.K. and T.K.; Investigation: F.K. and P.W.; Writing—original draft: F.K.; Writing–review
and editing: P.W., T.K., K.M.S. and P.K.; Visualisation: F.K. and P.W.; Supervision: P.W., M.S.-B. and
P.K.; Project administration: K.M.S. and P.K.; Funding acquisition: P.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This publication was partially developed under the provision of the Polish Ministry
of Science and Higher Education project “Support for research and development with the use of
research infrastructure of the National Synchrotron Radiation Centre SOLARIS” under contract no
1/SOL/2021/2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are available on request from the corre-
sponding author.

https://www.mdpi.com/article/10.3390/app14177486/s1
https://www.mdpi.com/article/10.3390/app14177486/s1


Appl. Sci. 2024, 14, 7486 13 of 13
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