Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = X-box binding protein1 splicing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4051 KiB  
Article
Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells
by Mengxuan Liu, Megumi Honjo, Reiko Yamagishi and Makoto Aihara
Biomolecules 2025, 15(3), 389; https://doi.org/10.3390/biom15030389 - 8 Mar 2025
Viewed by 765
Abstract
This study evaluated the effects of α2-adrenergic agonist, prostaglandin F2α analog, and EP2 receptor agonist on tunicamycin-induced endoplasmic reticulum (ER) stress and fibrosis in human trabecular meshwork (TM) cells. Human TM cells were treated with tunicamycin for 24 h, followed by cotreatment with [...] Read more.
This study evaluated the effects of α2-adrenergic agonist, prostaglandin F2α analog, and EP2 receptor agonist on tunicamycin-induced endoplasmic reticulum (ER) stress and fibrosis in human trabecular meshwork (TM) cells. Human TM cells were treated with tunicamycin for 24 h, followed by cotreatment with brimonidine (BRI), latanoprost (LAT), or omidenepag (OMD). Immunocytochemistry was used to assess expressions of collagen type I alpha 1 chain (COL1A1), fibronectin, F-actin, and alpha-smooth muscle actin (α-SMA). Western blotting was performed to evaluate levels of C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and splicing X-box binding protein-1 (sXBP-1). Real-time qPCR was used to examine the mRNA expressions of COL1A1, connective tissue growth factor (CTGF), fibronectin, α-SMA, CHOP, GRP78, and sXBP-1. Expressions of COL1A1, CTGF, F-actin, fibronectin, α-SMA, CHOP, GRP78, and sXBP-1 significantly increased after tunicamycin treatment. BRI cotreatment significantly downregulated the mRNA and protein expressions of GRP78, and LAT or OMD cotreatment significantly reduced the CHOP and sXBP-1 expressions compared to the tunicamycin-treated group. BRI, LAT, or OMD cotreatment significantly attenuated cellular cytoskeletal changes and the increase of fibrosis markers such as COL1A1, CTGF, fibronectin, and α-SMA. In addition, COL1A1 mRNA expression was significantly lowered with LAT or OMD cotreatment compared to the BRI-cotreated group. Cotreatment with α2-adrenergic agonist, prostaglandin F2α analog, or EP2 receptor agonist alleviates tunicamycin-induced ER stress in human TM cells. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
miRNA-378 Is Downregulated by XBP1 and Inhibits Growth and Migration of Luminal Breast Cancer Cells
by Vahid Arabkari, David Barua, Muhammad Mosaraf Hossain, Mark Webber, Terry Smith, Ananya Gupta and Sanjeev Gupta
Int. J. Mol. Sci. 2024, 25(1), 186; https://doi.org/10.3390/ijms25010186 - 22 Dec 2023
Cited by 5 | Viewed by 2187
Abstract
X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is [...] Read more.
X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is well-characterised, emerging evidence suggests its involvement in endocrine resistance in breast cancer. The transcriptional activity of spliced XBP1 (XBP1s) is a major component of its biological effects, but the targets of XBP1s in estrogen receptor (ER)-positive breast cancer are not well understood. Here, we show that the expression of miR-378 and PPARGC1B (host gene of miR-378) is downregulated during UPR. Using chemical and genetic methods, we show that XBP1s is necessary and sufficient for the downregulation of miR-378 and PPARGC1B. Our results show that overexpression of miR-378 significantly suppressed cell growth, colony formation, and migration of ER-positive breast cancer cells. Further, we found that expression of miR-378 sensitised the cells to UPR-induced cell death and anti-estrogens. The expression of miR-378 and PPARGC1B was downregulated in breast cancer, and higher expression of miR-378 is associated with better outcomes in ER-positive breast cancer. We found that miR-378 upregulates the expression of several genes that regulate type I interferon signalling. Analysis of separate cohorts of breast cancer patients showed that a gene signature derived from miR-378 upregulated genes showed a strong association with improved overall and recurrence-free survival in breast cancer. Our results suggest a growth-suppressive role for miR-378 in ER-positive breast cancer where downregulation of miR-378 by XBP1 contributes to endocrine resistance in ER-positive breast cancer. Full article
(This article belongs to the Special Issue Molecular Research in Breast Cancer: Pathophysiology and Treatment)
Show Figures

Figure 1

11 pages, 2266 KiB  
Article
Chemical Chaperone 4-PBA Mitigates Tumor Necrosis Factor Alpha-Induced Endoplasmic Reticulum Stress in Human Airway Smooth Muscle
by Philippe Delmotte, Jane Q. Yap, Debanjali Dasgupta and Gary C. Sieck
Int. J. Mol. Sci. 2023, 24(21), 15816; https://doi.org/10.3390/ijms242115816 - 31 Oct 2023
Cited by 9 | Viewed by 2482
Abstract
Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human [...] Read more.
Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle (hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER. Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activation. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients with no history of smoking or respiratory diseases. The hASM cells’ phenotype was confirmed via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL), (2) TNFα + 4-PBA (1 μM, 30 min pretreatment), and (3) untreated control. The expressions of total IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells. Full article
(This article belongs to the Special Issue Study of Endoplasmic Reticulum Stress and Unfolded Protein Response)
Show Figures

Figure 1

15 pages, 3228 KiB  
Article
Emodin, an Emerging Mycotoxin, Induces Endoplasmic Reticulum Stress-Related Hepatotoxicity through IRE1α–XBP1 Axis in HepG2 Cells
by Su Been Park, Gun Hee Cho, Young Eun Park and Hyang Sook Chun
Toxins 2023, 15(7), 455; https://doi.org/10.3390/toxins15070455 - 12 Jul 2023
Cited by 9 | Viewed by 2429
Abstract
Emodin, an emerging mycotoxin, is known to be hepatotoxic, but its mechanism remains unclear. We hypothesized that emodin could induce endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 alpha (IRE1α)–X-box-binding protein 1 (XBP1) pathway and apoptosis, which are closely correlated and contribute [...] Read more.
Emodin, an emerging mycotoxin, is known to be hepatotoxic, but its mechanism remains unclear. We hypothesized that emodin could induce endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 alpha (IRE1α)–X-box-binding protein 1 (XBP1) pathway and apoptosis, which are closely correlated and contribute to hepatotoxicity. To test this hypothesis, a novel IRE1α inhibitor, STF-083010, was used. An MTT assay was used to evaluate metabolic activity, and quantitative PCR and western blotting were used to investigate the gene and protein expression of ER stress or apoptosis-related markers. Apoptosis was evaluated with flow cytometry. Results showed that emodin induced cytotoxicity in a dose-dependent manner in HepG2 cells and upregulated the expression of binding immunoglobulin protein (BiP), C/EBP homologous protein (CHOP), IRE1α, spliced XBP1, the B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio, and cleaved caspase-3. Cotreatment with emodin and STF-083010 led to the downregulation of BiP and upregulation of CHOP, the Bax/Bcl-2 ratio, and cleaved caspase-3 compared with single treatment with emodin. Furthermore, the apoptosis rate was increased in a dose-dependent manner with emodin treatment. Thus, emodin induced ER stress in HepG2 cells by activating the IRE1α–XBP1 axis and induced apoptosis, indicating that emodin can cause hepatotoxicity. Full article
(This article belongs to the Special Issue The Metabolism and Cytotoxicity of Mycotoxins: A Threat or a Treat?)
Show Figures

Figure 1

16 pages, 3541 KiB  
Article
Deubiquitylase OTUD3 Mediates Endoplasmic Reticulum Stress through Regulating Fortilin Stability to Restrain Dopaminergic Neurons Apoptosis
by Ling Chen, Xuejie Huan, Fengju Jia, Zhen Zhang, Mingxia Bi, Lin Fu, Xixun Du, Xi Chen, Chunling Yan, Qian Jiao and Hong Jiang
Antioxidants 2023, 12(4), 809; https://doi.org/10.3390/antiox12040809 - 26 Mar 2023
Cited by 5 | Viewed by 2547
Abstract
OTU domain-containing protein 3 (OTUD3) knockout mice exhibited loss of nigral dopaminergic neurons and Parkinsonian symptoms. However, the underlying mechanisms are largely unknown. In this study, we observed that the inositol-requiring enzyme 1α (IRE1α)-induced endoplasmic reticulum (ER) stress was involved in this process. [...] Read more.
OTU domain-containing protein 3 (OTUD3) knockout mice exhibited loss of nigral dopaminergic neurons and Parkinsonian symptoms. However, the underlying mechanisms are largely unknown. In this study, we observed that the inositol-requiring enzyme 1α (IRE1α)-induced endoplasmic reticulum (ER) stress was involved in this process. We found that the ER thickness and the expression of protein disulphide isomerase (PDI) were increased, and the apoptosis level was elevated in the dopaminergic neurons of OTUD3 knockout mice. These phenomena were ameliorated by ER stress inhibitor tauroursodeoxycholic acid (TUDCA) treatment. The ratio of p-IRE1α/IRE1α, and the expression of X-box binding protein 1-spliced (XBP1s) were remarkably increased after OTUD3 knockdown, which was inhibited by IRE1α inhibitor STF-083010 treatment. Moreover, OTUD3 regulated the ubiquitination level of Fortilin through binding with the OTU domain. OTUD3 knockdown resulted in a decrease in the interaction ability of IRE1α with Fortilin and finally enhanced the activity of IRE1α. Taken together, we revealed that OTUD3 knockout-induced injury of dopaminergic neurons might be caused by activating IRE1α signaling in ER stress. These findings demonstrated that OTUD3 played a critical role in dopaminergic neuron neurodegeneration, which provided new evidence for the multiple and tissue-dependent functions of OTUD3. Full article
(This article belongs to the Special Issue Iron Metabolism, Redox Balance and Neurological Diseases)
Show Figures

Graphical abstract

22 pages, 3497 KiB  
Article
Linum corymbulosum Protects Rats against CCl4-Induced Hepatic Injuries through Modulation of an Unfolded Protein Response Pathway and Pro-Inflammatory Intermediates
by Riffat Batool, Muhammad Rashid Khan, Muhammad Umar Ijaz, Irum Naz, Afsheen Batool, Saima Ali, Zartash Zahra, Safia Gul, Mohammad N. Uddin, Mohsin Kazi and Raees Khan
Molecules 2023, 28(5), 2257; https://doi.org/10.3390/molecules28052257 - 28 Feb 2023
Cited by 3 | Viewed by 2888
Abstract
Liver fibrosis is a major pathological feature of chronic liver disease and effective therapies are limited at present. The present study focuses on the hepatoprotective potential of L. corymbulosum against carbon tetrachloride (CCl4)-induced liver damage in rats. Analysis of Linum [...] Read more.
Liver fibrosis is a major pathological feature of chronic liver disease and effective therapies are limited at present. The present study focuses on the hepatoprotective potential of L. corymbulosum against carbon tetrachloride (CCl4)-induced liver damage in rats. Analysis of Linum corymbulosum methanol extract (LCM) using high-performance liquid chromatography (HPLC) revealed the presence of rutin, apigenin, catechin, caffeic acid and myricetin. CCl4 administration lowered (p < 0.01) the activities of antioxidant enzymes and reduced glutathione (GSH) content as well as soluble proteins, whereas the concentration of H2O2, nitrite and thiobarbituric acid reactive substances was higher in hepatic samples. In serum, the level of hepatic markers and total bilirubin was elevated followed by CCl4 administration. The expression of glucose-regulated protein (GRP78), x-box binding protein-1 total (XBP-1 t), x-box binding protein-1 spliced (XBP-1 s), x-box binding protein-1 unspliced (XBP-1 u) and glutamate–cysteine ligase catalytic subunit (GCLC) was enhanced in CCl4-administered rats. Similarly, the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemo attractant protein-1 (MCP-1) was strongly increased with CCl4 administration to rats. Co-administration of LCM along with CCl4 to rats lowered (p < 0.05) the expression of the above genes. Histopathology of the liver showed hepatocyte injury, leukocyte infiltration and damaged central lobules in CCl4-treated rats. However, LCM administration to CCl4-intoxicated rats restored the altered parameters towards the levels of control rats. These outcomes indicate the existence of antioxidant and anti-inflammatory constituents in the methanol extract of L. corymbulosum. Full article
Show Figures

Figure 1

21 pages, 2832 KiB  
Article
Enhanced IRE1α Phosphorylation/Oligomerization-Triggered XBP1 Splicing Contributes to Parkin-Mediated Prevention of SH-SY5Y Cell Death under Nitrosative Stress
by Tsung-Lang Chiu, Hsin-Yi Huang, Hui-Fen Chang, Hsin-Rong Wu and Mei-Jen Wang
Int. J. Mol. Sci. 2023, 24(3), 2017; https://doi.org/10.3390/ijms24032017 - 19 Jan 2023
Cited by 4 | Viewed by 2412
Abstract
Mutations in parkin, a neuroprotective protein, are the predominant cause of autosomal recessive juvenile Parkinson’s disease. Neuroinflammation-derived nitrosative stress has been implicated in the etiology of the chronic neurodegeneration. However, the interactions between genetic predisposition and nitrosative stress contributing to the degeneration of [...] Read more.
Mutations in parkin, a neuroprotective protein, are the predominant cause of autosomal recessive juvenile Parkinson’s disease. Neuroinflammation-derived nitrosative stress has been implicated in the etiology of the chronic neurodegeneration. However, the interactions between genetic predisposition and nitrosative stress contributing to the degeneration of dopaminergic (DA) neurons remain incompletely understood. Here, we used the SH-SY5Y neuroblastoma cells to investigate the function of parkin and its pathogenic mutants in relation to cell survival under nitric oxide (NO) exposure. The results showed that overexpression of wild-type parkin protected SH-SY5Y cells from NO-induced apoptosis in a reactive oxygen species-dependent manner. Under nitrosative stress conditions, parkin selectively upregulated the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) signaling axis, an unfolded protein response signal through the sensor IRE1α, which controls the splicing of XBP1 mRNA. Inhibition of XBP1 mRNA splicing either by pharmacologically inhibiting IRE1α endoribonuclease activity or by genetically knocking down XBP1 interfered with the protective activity of parkin. Furthermore, pathogenic parkin mutants with a defective protective capacity showed a lower ability to activate the IRE1α/XBP1 signaling. Finally, we demonstrated that IRE1α activity augmented by parkin was possibly mediated through interacting with IRE1α to regulate its phosphorylation/oligomerization processes, whereas mutant parkin diminished its binding to and activation of IRE1α. Thus, these results support a direct link between the protective activity of parkin and the IRE1α/XBP1 pathway in response to nitrosative stress, and mutant parkin disrupts this function. Full article
(This article belongs to the Special Issue Molecular Research on Parkinson's Disease)
Show Figures

Figure 1

16 pages, 1961 KiB  
Review
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases
by Shu Liu, Hong Ding, Yongnan Li and Xiaowei Zhang
J. Cardiovasc. Dev. Dis. 2022, 9(12), 459; https://doi.org/10.3390/jcdd9120459 - 14 Dec 2022
Cited by 8 | Viewed by 3508
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different [...] Read more.
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs. Full article
(This article belongs to the Special Issue Gene Regulation in Cardiac Development and Disease)
Show Figures

Figure 1

13 pages, 2672 KiB  
Article
Benzalkonium Chloride, Even at Low Concentrations, Deteriorates Intracellular Metabolic Capacity in Human Conjunctival Fibroblasts
by Yuri Tsugeno, Tatsuya Sato, Megumi Watanabe, Masato Furuhashi, Araya Umetsu, Yosuke Ida, Fumihito Hikage and Hiroshi Ohguro
Biomedicines 2022, 10(9), 2315; https://doi.org/10.3390/biomedicines10092315 - 18 Sep 2022
Cited by 7 | Viewed by 3398
Abstract
The objective of this study was to clarify the effects of benzalkonium chloride (BAC) on two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells, which are in vitro models replicating the epithelial barrier and the stromal supportive functions of the [...] Read more.
The objective of this study was to clarify the effects of benzalkonium chloride (BAC) on two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells, which are in vitro models replicating the epithelial barrier and the stromal supportive functions of the human conjunctiva. The cultured HconF cells were subjected to the following analyses in the absence and presence of 10−5% or 10−4% concentrations of BAC; (1) the barrier function of the 2D HconF monolayers, as determined by trans-endothelial electrical resistance (TEER) and FITC dextran permeability, (2) real-time metabolic analysis using an extracellular Seahorse flux analyzer, (3) the size and stiffness of 3D HconF spheroids, and (4) the mRNA expression of genes that encode for extracellular matrix (ECM) molecules including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), ER stress related genes including the X-box binding protein-1 (XBP1), the spliced XBP1 (sXBP1) glucose regulator protein (GRP)78, GRP94, and the CCAAT/enhancer-binding protein homologous protein (CHOP), hypoxia inducible factor 1α (HIF1α), and Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α). In the presence of BAC, even at low concentrations at 10−5% or 10−4%, the maximal respiratory capacity, mitochondrial respiratory reserve, and glycolytic reserve of HconF cells were significantly decreased, although the barrier functions of 2D HconF monolayers, the physical properties of the 3D HconF spheroids, and the mRNA expression of the corresponding genes were not affected. The findings reported herein highlight the fact that BAC, even such low concentrations, may induce unfavorable adverse effects on the cellular metabolic capacity of the human conjunctiva. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Responses to Low-Intensity Exposures)
Show Figures

Figure 1

15 pages, 6180 KiB  
Article
Reduction in Insulin Mediated ERK Phosphorylation by Palmitate in Liver Cells Is Independent of Fatty Acid Induced ER Stress
by Sindiyan Alshaikh Mubarak, Abeer Al Otaibi, Ali Al Qarni, Ahmed Bakillah and Jahangir Iqbal
Nutrients 2022, 14(17), 3641; https://doi.org/10.3390/nu14173641 - 2 Sep 2022
Cited by 6 | Viewed by 3073
Abstract
Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development [...] Read more.
Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance. In this study, we investigated the effects of ER stress on insulin resistance and ERK phosphorylation in Huh-7 cells and evaluated how oleate prevents palmitate-mediated ER stress. Treatment with insulin resulted in an increase of 38–45% in the uptake of glucose in control cells compared to non-insulin-treated control cells, along with an increase in the phosphorylation of AKT and ERK. We found that treatment with palmitate increased the expression of ER stress genes, including the splicing of X box binding protein 1 (XBP1) mRNA. At the same time, we observed a decrease in insulin-mediated uptake of glucose and ERK phosphorylation in Huh-7 cells, without any change in AKT phosphorylation. Supplementation of oleate along with palmitate mitigated the palmitate-induced ER stress but did not affect insulin-mediated glucose uptake or ERK phosphorylation. The findings of this study suggest that palmitate reduces insulin-mediated ERK phosphorylation in liver cells and this effect is independent of fatty-acid-induced ER stress. Full article
(This article belongs to the Special Issue Nutritional Regulation of Insulin Resistance and Lipid Metabolism)
Show Figures

Figure 1

11 pages, 2128 KiB  
Article
An α2-Adrenergic Agonist, Brimonidine, Beneficially Affects the TGF-β2-Treated Cellular Properties in an In Vitro Culture Model
by Megumi Watanabe, Tatsuya Sato, Yuri Tsugeno, Megumi Higashide, Masato Furuhashi, Araya Umetsu, Soma Suzuki, Yosuke Ida, Fumihito Hikage and Hiroshi Ohguro
Bioengineering 2022, 9(7), 310; https://doi.org/10.3390/bioengineering9070310 - 12 Jul 2022
Cited by 7 | Viewed by 2299
Abstract
We report herein on the effects of brimonidine (BRI), an α2-adrenergic agonist, on two-dimensional (2D) and three-dimensional (3D) cell-cultured TGF-β2-untreated and -treated human trabecular meshwork (HTM) cells. In the presence of TGF-β2 (5 ng/mL), (1) the effects of BRI on (1) the 2D HTM [...] Read more.
We report herein on the effects of brimonidine (BRI), an α2-adrenergic agonist, on two-dimensional (2D) and three-dimensional (3D) cell-cultured TGF-β2-untreated and -treated human trabecular meshwork (HTM) cells. In the presence of TGF-β2 (5 ng/mL), (1) the effects of BRI on (1) the 2D HTM monolayers’ barrier function were investigated as estimated using trans-endothelial electrical resistance (TEER) measurement and FITC dextran permeability; (2) real-time analyses of cellular metabolism using a Seahorse Bioanalyzer; (3) the largeness and hardness of 3D spheroids; and (4) the expression of genes that encode extracellular matrix (ECM) proteins, including collagens (COL) 1, 4, and 6; fibronectin (FN) and α-smooth muscle actin (α-SMA); ECM modulators, including a tissue inhibitor of matrix proteinase (TIMP) 1–4; matrix metalloproteinase (MMP) 2, 9, and 14; and several endoplasmic reticulum (ER) stress-related genes, including the X-box-binding protein 1 (XBP1), the spliced XBP1 (sXBP1), glucose-regulated protein (GRP)78, GRP94, and CCAAT-enhancer-binding protein homologous protein (CHOP). BRI markedly inhibited the TGF-β2-induced increase in the values of TEER of the 2D cell monolayer and the hardness of the 3D spheroids, although it had no effect on their sizes. BRI also cancelled the TGF-β2-induced reduction in mitochondrial maximal respiration but had no effect on the glycolytic capacity. In addition, the gene expression of these molecules was quite different between the 2D and 3D cultures of HTM cells. The present observations found in this study indicate that BRI may beneficially affect TGF-β2-induced changes in both cultures, 2D and 3D, of HTM cells, although their structural and functional properties that were altered varied significantly between both cultures of HTM cells. Full article
(This article belongs to the Special Issue Advances in Organoid Research and Developmental Engineering)
Show Figures

Figure 1

22 pages, 7460 KiB  
Article
Oxidative Stress-Induced Growth Inhibitor (OSGIN1), a Target of X-Box-Binding Protein 1, Protects Palmitic Acid-Induced Vascular Lipotoxicity through Maintaining Autophagy
by Chong-Sun Khoi, Cai-Qin Xiao, Kuan-Yu Hung, Tzu-Yu Lin and Chih-Kang Chiang
Biomedicines 2022, 10(5), 992; https://doi.org/10.3390/biomedicines10050992 - 25 Apr 2022
Cited by 12 | Viewed by 3876
Abstract
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of [...] Read more.
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of spliced form of X-box-binding protein 1 (XBP1s) target gene oxidative stress-induced growth inhibitor 1 (OSGIN1) in PA-induced vascular dysfunction. PA inhibited the tube formation assay of primary human umbilical vein endothelial cells (HUVECs). Simultaneously, PA treatment induced the XBP1s expression in HUVECs. Attenuate the induction of XBP1s by silencing the XBP1s retarded cell migration and diminished endothelial nitric oxide synthase (eNOS) expression. OSGIN1 is a target gene of XBP1s under PA treatment. The silencing of OSGIN1 inhibits cell migration by decreasing phospho-eNOS expression. PA activated autophagy in endothelial cells, inhibiting autophagy by 3-methyladenine (3-MA) decreased endothelial cell migration. Silencing XBP1s and OSGIN1 would reduce the induction of LC3 II; therefore, OSGIN1 could maintain autophagy to preserve endothelial cell migration. In conclusion, PA treatment induced ER stress and activated the inositol-requiring enzyme 1 alpha–spliced XBP1 (IRE1α–XBP1s) pathway. OSGIN1, a target gene of XBP1s, could protect endothelial cells from vascular lipotoxicity by regulating autophagy. Full article
Show Figures

Figure 1

19 pages, 2054 KiB  
Review
Regulation of the Homeostatic Unfolded Protein Response in Diabetic Nephropathy
by Hongjie Wang, Srikanth Karnati and Thati Madhusudhan
Pharmaceuticals 2022, 15(4), 401; https://doi.org/10.3390/ph15040401 - 25 Mar 2022
Cited by 12 | Viewed by 3838
Abstract
A growing body of scientific evidence indicates that protein homeostasis, also designated as proteostasis, is causatively linked to chronic diabetic nephropathy (DN). Experimental studies have demonstrated that the insulin signaling in podocytes maintain the homeostatic unfolded protein response (UPR). Insulin signaling via the [...] Read more.
A growing body of scientific evidence indicates that protein homeostasis, also designated as proteostasis, is causatively linked to chronic diabetic nephropathy (DN). Experimental studies have demonstrated that the insulin signaling in podocytes maintain the homeostatic unfolded protein response (UPR). Insulin signaling via the insulin receptor non-canonically activates the spliced X-box binding protein-1 (sXBP1), a highly conserved endoplasmic reticulum (ER) transcription factor, which regulates the expression of genes that control proteostasis. Defective insulin signaling in mouse models of diabetes or the genetic disruption of the insulin signaling pathway in podocytes propagates hyperglycemia induced maladaptive UPR and DN. Insulin resistance in podocytes specifically promotes activating transcription factor 6 (ATF6) dependent pathogenic UPR. Akin to insulin, recent studies have identified that the cytoprotective effect of anticoagulant serine protease-activated protein C (aPC) in DN is mediated by sXBP1. In mouse models of DN, treatment with chemical chaperones that improve protein folding provides an additional benefit on top of currently used ACE inhibitors. Understanding the molecular mechanisms that transmute renal cell specific adaptive responses and that deteriorate renal function in diabetes will enable researchers to develop new therapeutic regimens for DN. Within this review, we focus on the current understanding of homeostatic mechanisms by which UPR is regulated in DN. Full article
(This article belongs to the Special Issue Advances in the Management of Diabetic Nephropathy)
Show Figures

Figure 1

25 pages, 2000 KiB  
Review
Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology
by Xinxin Luo, Leader Alfason, Mankun Wei, Shourong Wu and Vivi Kasim
Int. J. Mol. Sci. 2022, 23(5), 2746; https://doi.org/10.3390/ijms23052746 - 2 Mar 2022
Cited by 30 | Viewed by 6362
Abstract
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element [...] Read more.
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

26 pages, 3224 KiB  
Review
Roles of XBP1s in Transcriptional Regulation of Target Genes
by Sung-Min Park, Tae-Il Kang and Jae-Seon So
Biomedicines 2021, 9(7), 791; https://doi.org/10.3390/biomedicines9070791 - 8 Jul 2021
Cited by 180 | Viewed by 16960
Abstract
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted [...] Read more.
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease. Full article
(This article belongs to the Special Issue Roles of Endoplasmic Reticulum Stress in Immune Responses)
Show Figures

Figure 1

Back to TopTop