Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = Wolbachia-infected mosquitoes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3253 KiB  
Article
Infections of Aedes Mosquito Cells by Wolbachia Strains wAu and wMelpop Modulate Host Cellular Transcriptomes Differently and Suppress Dengue Viral Replication
by Amber R. Mickelson, Julia Felton, Olivia Cheschi, Emily Spacone, Kaitlyn Connors, Jacob Thornsberry and Tadahisa Teramoto
Viruses 2025, 17(7), 922; https://doi.org/10.3390/v17070922 - 28 Jun 2025
Viewed by 1826
Abstract
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, [...] Read more.
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, we showed that a Wolbachia strain, wMelPop, suppresses DENV2 replication in the C6/36 albopictus cell line, with the mutant DENV2 appearing and replacing the wild type DENV2. In this study, we expanded the analysis to include replications of all DENV serotypes 1-4, effects of wAu Wolbachia in C6/36 cells, and wMelPop-influences on the Aag2 aegypti cell line. It was revealed that both wAu and wMelPop reduce all DENV infectious titers without dominant appearances of the mutant viruses, despite varied effects on the viral copy numbers. The host transcriptomic profiles by RNA-seq were also variously altered by wAu and wMelPop (ranging from 10 to 30%, Log2FC > 2 or <−2, p < 0.05). Those transcripts were not further altered by DENV infection. In contrast, abundant transcriptomic alterations by DENV infection in naïve C6/36 and Aag2 cells were blocked by either wAu or wMelPop. These results indicate that Wolbachia prevents host cellular transcriptomic alterations which are induced by DENV infection, affecting the cellular homeostasis necessary for DENV replication. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

12 pages, 1061 KiB  
Article
Wolbachia Screening in Aedes aegypti and Culex pipiens Mosquitoes from Madeira Island, Portugal
by Rita Fernandes, Tiago Melo, Líbia Zé-Zé, Inês C. Freitas, Manuel Silva, Eva Dias, Nuno C. Santos, Bruna R. Gouveia, Gonçalo Seixas and Hugo Costa Osório
Insects 2025, 16(4), 418; https://doi.org/10.3390/insects16040418 - 15 Apr 2025
Viewed by 1488
Abstract
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 [...] Read more.
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 Ae. aegypti and 40 Cx. pipiens mosquitoes collected exclusively in the municipality of Funchal, Madeira Island, to assess the presence and diversity of Wolbachia, a naturally occurring bacterium known to reduce mosquitos’ ability to transmit viruses. Molecular identification confirmed that all Cx. pipiens specimens belonged to the molestus biotype, with three individuals identified as hybrids between molestus and pipiens biotypes. This is the first evidence of such hybrids in Madeira. Wolbachia was not detected in any of the Ae. aegypti samples. In contrast, all Cx. pipiens mosquitoes were positive, showing a 100% prevalence. Genetic characterization placed these infections within the wPip clade, supergroup B, sequence type 9. These findings provide key baseline data to inform future mosquito control strategies on the island. As Ae. aegypti showed no natural Wolbachia infection, introducing Wolbachia-infected mosquitoes may be necessary to implement such biocontrol approaches in Madeira. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

65 pages, 2112 KiB  
Review
Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability
by Riccardo Moretti, Jue Tao Lim, Alvaro Gil Araujo Ferreira, Luigi Ponti, Marta Giovanetti, Chow Jo Yi, Pranav Tewari, Maria Cholvi, Jacob Crawford, Andrew Paul Gutierrez, Stephen L. Dobson and Perran A. Ross
Pathogens 2025, 14(3), 285; https://doi.org/10.3390/pathogens14030285 - 14 Mar 2025
Cited by 1 | Viewed by 3206
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several [...] Read more.
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise—ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens—becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change. Full article
(This article belongs to the Special Issue Surveillance and Control Strategies to Fight Mosquito-Borne Diseases)
Show Figures

Figure 1

18 pages, 4273 KiB  
Article
Sequencing and Analysis of Wolbachia Strains from A and B Supergroups Detected in Sylvatic Mosquitoes from Brazil
by Luísa Maria Inácio da Silva, José Irnaldo da Silva, Alexandre Freitas da Silva, Filipe Zimmer Dezordi, Lais Ceschini Machado, Si Qin, Hang Fan, Yigang Tong, Túlio de Lima Campos, Marcelo Henrique Santos Paiva and Gabriel Luz Wallau
Microorganisms 2024, 12(11), 2206; https://doi.org/10.3390/microorganisms12112206 - 31 Oct 2024
Viewed by 2092
Abstract
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to [...] Read more.
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to investigate the diversity and prevalence of Wolbachia infections in sylvatic mosquitoes from two locations in Recife, Brazil. Multiple mosquito species were screened for Wolbachia using both target marker gene amplification coupled with Sanger sequencing and whole-genome sequencing (WGS) approaches. Phylogenetic analyses were conducted to classify Wolbachia strains into supergroups and assess their evolutionary relationships. Results revealed the presence of Wolbachia in eleven mosquito species examined, with different infection rates. Both supergroups A and B of Wolbachia strains were identified, with Aedes albopictus showing co-infection by both supergroups through the WGS approach. We also detected indirect evidence of Wolbachia horizontal transmission among mosquitoes and other distant host orders. This study provides valuable insights into the distribution and diversity of Wolbachia in sylvatic mosquitoes from Brazil and adds new important data about Wolbachia detection through target marker gene amplicon coupled with Sanger sequencing and WGS methods, highlighting its complementarity to ascertain the presence of Wolbachia in mosquito samples. Full article
Show Figures

Figure 1

17 pages, 2460 KiB  
Article
Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping
by Emmanuelle Clervil, Amandine Guidez, Stanislas Talaga, Romuald Carinci, Pascal Gaborit, Anne Lavergne, Sourakhata Tirera and Jean-Bernard Duchemin
Microorganisms 2024, 12(10), 1994; https://doi.org/10.3390/microorganisms12101994 - 30 Sep 2024
Viewed by 1481
Abstract
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around [...] Read more.
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around the world. In South America, Wolbachia have been studied in human pathogen vectors such as sand flies and mosquitoes. In French Guiana, the diversity and distribution of Wolbachia are not well known in mosquitoes. In this study, we screened for Wolbachia natural infection in mosquitoes in French Guiana by using 16S rRNA, Wolbachia surface protein (WSP), and multi-locus sequence typing (MLST) molecular assays. A total of 29 out of 44 (65.9%) mosquito species were positive for natural Wolbachia infection according to the PCR results, and two Wolbachia strains co-infected three specimens of Mansonia titillans. Then, we analyzed the phylogenetic relationships among the Wolbachia detected. All of the tested specimens of Aedes aegypti, the major dengue vector of French Guiana, were negative. These results regarding Wolbachia strain, distribution, and prevalence in mosquitoes from French Guiana highlight Wolbachia–mosquito associations and pave the way for a future Wolbachia-based strategy for vector control in this Amazonian territory. Full article
(This article belongs to the Special Issue Microbiota of Insect Vectors)
Show Figures

Figure 1

11 pages, 1204 KiB  
Article
European Culex pipiens Populations Carry Different Strains of Wolbachia pipientis
by Tobias Lilja, Anders Lindström, Luis M. Hernández-Triana, Marco Di Luca and Olivia Wesula Lwande
Insects 2024, 15(9), 639; https://doi.org/10.3390/insects15090639 - 26 Aug 2024
Cited by 1 | Viewed by 1669
Abstract
The mosquito Culex pipiens occurs in two ecotypes differing in their mating and overwintering behavior: pipiens mate in open environments and diapause, and molestus also mate in small spaces and is active throughout the year. Cx. pipiens carry Wolbachia endosymbionts of the w [...] Read more.
The mosquito Culex pipiens occurs in two ecotypes differing in their mating and overwintering behavior: pipiens mate in open environments and diapause, and molestus also mate in small spaces and is active throughout the year. Cx. pipiens carry Wolbachia endosymbionts of the wPip strain, but the frequency of infection differs between studied populations. Wolbachia infection affects the host reproductive success through cytoplasmic incompatibility. wPip Wolbachia is divided into five types, wPip I–V. The type of wPip carried varies among Cx. pipiens populations. In northern European locations different wPip types are found in the two ecotypes, whereas in southern locations, they often carry the same type, indicating differences in hybridization between ecotypes. In this study, Cx. pipiens specimens of both ecotypes were collected from Sweden and compared to specimens from Norway, England, Italy, and the Netherlands, as well as Cx. quinquefasciatus from Mali and Thailand. The abundance varied, but all specimens were infected by Wolbachia, while the tested specimens of other mosquito species were often uninfected. The wPip strains were determined through the sequence analysis of Wolbachia genes ank2 and pk1, showing that Cx. pipiens ecotypes in Scandinavia carry different wPip strains. The observed differences in wPip strains indicate that hybridization is not frequent and may contribute to barriers against hybridization of the ecotypes in Sweden and Norway. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 3554 KiB  
Article
Bunyamwera Virus Infection of Wolbachia-Carrying Aedes aegypti Mosquitoes Reduces Wolbachia Density
by Daniella A. Lefteri, Stephanie M. Rainey, Shivan M. Murdochy and Steven P. Sinkins
Viruses 2024, 16(8), 1336; https://doi.org/10.3390/v16081336 - 21 Aug 2024
Viewed by 1464
Abstract
Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia [...] Read more.
Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia is against negative-sense RNA viruses. Therefore, the effect of Wolbachia on Bunyamwera virus (BUNV) infection in Aedes aegypti was investigated using wMel and wAlbB, two strains currently used in Wolbachia releases for dengue control, as well as wAu, a strain that typically persists at a high density and is an extremely efficient blocker of positive-sense viruses. Wolbachia was found to reduce BUNV infection in vitro but not in vivo. Instead, BUNV caused significant impacts on density of all three Wolbachia strains following infection of Ae. aegypti mosquitoes. The ability of Wolbachia to successfully persist within the mosquito and block virus transmission is partially dependent on its intracellular density. However, reduction in Wolbachia density was not observed in offspring of infected mothers. This could be due in part to a lack of transovarial transmission of BUNV observed. The results highlight the importance of understanding the complex interactions between multiple arboviruses, mosquitoes and Wolbachia in natural environments, the impact this can have on maintaining protection against diseases, and the necessity for monitoring Wolbachia prevalence at release sites. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Mosquito Gut Microbiota: A Review
by Hongmei Liu, Jianhai Yin, Xiaodan Huang, Chuanhui Zang, Ye Zhang, Jianping Cao and Maoqing Gong
Pathogens 2024, 13(8), 691; https://doi.org/10.3390/pathogens13080691 - 15 Aug 2024
Cited by 4 | Viewed by 5081
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease [...] Read more.
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level. Full article
Show Figures

Figure 1

15 pages, 1410 KiB  
Article
Wolbachia Infection through Hybridization to Enhance an Incompatible Insect Technique-Based Suppression of Aedes albopictus in Eastern Spain
by Maria Cholvi, María Trelis, Rubén Bueno-Marí, Messaoud Khoubbane, Rosario Gil, Antonio Marcilla and Riccardo Moretti
Insects 2024, 15(3), 206; https://doi.org/10.3390/insects15030206 - 20 Mar 2024
Cited by 2 | Viewed by 3151
Abstract
The emergence of insecticide resistance in arbovirus vectors is putting the focus on the development of new strategies for control. In this regard, the exploitation of Wolbachia endosymbionts is receiving increasing attention due to its demonstrated effectiveness in reducing the vectorial capacity of [...] Read more.
The emergence of insecticide resistance in arbovirus vectors is putting the focus on the development of new strategies for control. In this regard, the exploitation of Wolbachia endosymbionts is receiving increasing attention due to its demonstrated effectiveness in reducing the vectorial capacity of Aedes mosquitoes. Here, we describe the establishment of a naïve Wolbachia infection in a wild Aedes albopictus population of eastern Spain through a hybridization approach to obtain males capable of sterilizing wild females. The obtained lines were compared with the Wolbachia donor, Ae. albopictus ARwP, previously artificially infected with Wolbachia wPip, regarding immature and adult survival, female fecundity, egg fertility, and level of induced sterility. Our results did not show significant differences between lines in any of the biological parameters analyzed, indicating the full suitability of the hybrids to be used as a control tool against Ae. albopictus. In particular, hybrid males induced 99.9% sterility in the eggs of wild females without the need for any preliminary treatment. Being harmless to non-target organisms and the environment, the use of this bacterium for the control of Ae. albopictus deserves further exploration. This is especially relevant in areas such as eastern Spain, where this mosquito species has recently spread and may represent a serious threat due to its competence as a vector for dengue, chikungunya, and Zika viruses. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

13 pages, 1193 KiB  
Article
Wolbachia and Asaia Distribution among Different Mosquito Vectors Is Affected by Tissue Localization and Host Species
by Mahdokht Ilbeigi Khamseh Nejad, Alessia Cappelli, Claudia Damiani, Monica Falcinelli, Paolo Luigi Catapano, Ferdinand Nanfack-Minkeu, Marie Paul Audrey Mayi, Chiara Currà, Irene Ricci and Guido Favia
Microorganisms 2024, 12(3), 545; https://doi.org/10.3390/microorganisms12030545 - 8 Mar 2024
Cited by 5 | Viewed by 2542
Abstract
Microbial communities play an important role in the fitness of mosquito hosts. However, the factors shaping microbial communities in wild populations, with regard to interactions among microbial species, are still largely unknown. Previous research has demonstrated that two of the most studied mosquito [...] Read more.
Microbial communities play an important role in the fitness of mosquito hosts. However, the factors shaping microbial communities in wild populations, with regard to interactions among microbial species, are still largely unknown. Previous research has demonstrated that two of the most studied mosquito symbionts, the bacteria Wolbachia and Asaia, seem to compete or not compete, depending on the genetic background of the reference mosquito host. The large diversity of WolbachiaAsaia strain combinations that infect natural populations of mosquitoes may offer a relevant opportunity to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction. We surveyed Wolbachia and Asaia in 44 mosquito populations belonging to 11 different species of the genera Anopheles, Aedes, and Culex using qualitative PCR. Through quantitative PCR, the amounts of both bacteria were assessed in different mosquito organs, and through metagenomics, we determined the microbiota compositions in some selected mosquito populations. We show that variation in microbial community structure is likely associated with the species/strain of mosquito, its geographical position, and tissue localization. Together, our results shed light on the interactions among different bacterial species in the microbial communities of mosquito vectors, and this can aid the development and/or improvement of methods for symbiotic control of insect vectors. Full article
(This article belongs to the Special Issue Microbiota of Insect Vectors)
Show Figures

Figure 1

16 pages, 1548 KiB  
Article
DENV-1 Titer Impacts Viral Blocking in wMel Aedes aegypti with Brazilian Genetic Background
by Jessica Corrêa-Antônio, Mariana R. David, Dinair Couto-Lima, Gabriela Azambuja Garcia, Milan S. G. Keirsebelik, Rafael Maciel-de-Freitas and Márcio Galvão Pavan
Viruses 2024, 16(2), 214; https://doi.org/10.3390/v16020214 - 31 Jan 2024
Cited by 1 | Viewed by 2475
Abstract
Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a [...] Read more.
Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes’ bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans. Full article
(This article belongs to the Special Issue Molecular Epidemiology, Evolution, and Dispersion of Flaviviruses)
Show Figures

Figure 1

12 pages, 1404 KiB  
Article
Evidence of Differences in Cellular Regulation of Wolbachia-Mediated Viral Inhibition between Alphaviruses and Flaviviruses
by Stephanie M. Rainey, Daniella A. Lefteri, Christie Darby, Alain Kohl, Andres Merits and Steven P. Sinkins
Viruses 2024, 16(1), 115; https://doi.org/10.3390/v16010115 - 13 Jan 2024
Cited by 2 | Viewed by 2318
Abstract
The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous [...] Read more.
The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous studies have indicated that for some strains of Wolbachia, perturbations in lipid metabolism and cholesterol storage are vital in Wolbachia-mediated antiviral activity against the flaviviruses dengue and Zika; however, it has not yet been examined whether arboviruses in the alphavirus group are affected in the same way. Here, using the reporters for the alphavirus Semliki Forest virus (SFV) in Aedes albopictus cells, we found that Wolbachia strains wMel, wAu and wAlbB blocked viral replication/translation early in infection and that storage of cholesterol in lipid droplets is not key to this inhibition. Another alphavirus, o’nyong nyong virus (ONNV), was tested in both Aedes albopictus cells and in vivo in stable, transinfected Aedes aegypti mosquito lines. The strains wMel, wAu and wAlbB show strong antiviral activity against ONNV both in vitro and in vivo. Again, 2-hydroxypropyl-β-cyclodextrin (2HPCD) was not able to rescue ONNV replication in cell lines, suggesting that the release of stored cholesterol caused by wMel is not able to rescue blockage of ONNV. Taken together, this study shows that alphaviruses appear to be inhibited early in replication/translation and that there may be differences in how alphaviruses are inhibited by Wolbachia in comparison to flaviviruses. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research)
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
The Molecular Detection, Characterization, and Temperature Dependence of Wolbachia Infections in Field Populations of Aedes albopictus (Diptera: Culicidae) Mosquitoes in Greece
by Michail Misailidis, Nikolaos Kotsiou, Aristotelis Moulistanos, Sandra Gewehr, Antonios A. Augustinos, Spiros Mourelatos, Spiros Papakostas and Elena Drosopoulou
Diversity 2024, 16(1), 43; https://doi.org/10.3390/d16010043 - 9 Jan 2024
Cited by 3 | Viewed by 2411
Abstract
We investigated the prevalence and genetic diversity of Wolbachia pipientis strains in Aedes albopictus populations in Greece. Using a combination of PCR and Sanger sequencing techniques, we genotyped Wolbachia strains in 105 mosquitoes collected across eight different administrative regions in 2021. We found [...] Read more.
We investigated the prevalence and genetic diversity of Wolbachia pipientis strains in Aedes albopictus populations in Greece. Using a combination of PCR and Sanger sequencing techniques, we genotyped Wolbachia strains in 105 mosquitoes collected across eight different administrative regions in 2021. We found a high prevalence of Wolbachia in both male (90%) and female (97%) mosquitoes. Among the infected samples, 84% had double infections with both wAlbA and wAlbB strains, while 16% had infections with only wAlbB. Our comparison of the Multi-Locus Sequence Typing (MLST) profile, employing gatB–coxA–hcpA–ftsZ–fbpA genotyping, revealed a single MLST profile for each wAlbA and wAlbB strain in Greek populations. The same MLST profiles were also reported in populations from China, Russia, and Argentina, suggesting low levels of global diversity in wAlbA and wAlbB strains. Furthermore, our results indicated a significant association between temperature and the prevalence of single infections (p = 6.498 × 10−7), with higher temperatures correlating with an increased likelihood of single infections. Although male bias showed a tendency towards single infections, the effect was marginally non-significant (p = 0.053). These results were confirmed using a bootstrap-with-replacement analysis approach. Overall, our findings offer novel insights into the distribution and species diversity of Wolbachia strains in Greek Ae. albopictus populations, emphasizing the importance of understanding the short-term plastic and adaptive responses of these organisms to environmental stressors and rapid climate change. Full article
Show Figures

Figure 1

13 pages, 260 KiB  
Article
Finite-Time Contraction Stability and Optimal Control for Mosquito Population Suppression Model
by Lin Zhang and Wenjuan Guo
Mathematics 2024, 12(1), 22; https://doi.org/10.3390/math12010022 - 21 Dec 2023
Cited by 1 | Viewed by 1103
Abstract
Releasing Wolbachia-infected mosquitoes into the wild to suppress wild mosquito populations is an effective method for mosquito control. This paper investigates the finite-time contraction stability and optimal control problem of a mosquito population suppression model with different release strategies. By taking into [...] Read more.
Releasing Wolbachia-infected mosquitoes into the wild to suppress wild mosquito populations is an effective method for mosquito control. This paper investigates the finite-time contraction stability and optimal control problem of a mosquito population suppression model with different release strategies. By taking into account the average duration of one reproductive cycle and the influences of environmental fluctuations on mosquitoes, we consider two cases: one with a time delay and another perturbed by stochastic noises. By employing Lyapunov’s method and comparison theorem, the finite-time contraction stabilities of these two cases under a constant release strategy are analyzed. Sufficient conditions dependent on delay and noise for these two systems are provided, respectively. These conditions are related to the prespecified bounds in finite-time stability (FTS) and finite-time contraction stability (FTCS) of the system, and FTCS required stronger conditions than FTS. This also suggests that the specified bounds and the delay (or the noise intensity) play a critical role in the FTCS analysis. And finally, the optimal control for the stochastic mosquito population model under proportional releases is researched. Full article
12 pages, 335 KiB  
Review
Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review
by Marta Garrigós, Mario Garrido, Guillermo Panisse, Jesús Veiga and Josué Martínez-de la Puente
Pathogens 2023, 12(11), 1287; https://doi.org/10.3390/pathogens12111287 - 27 Oct 2023
Cited by 11 | Viewed by 3010
Abstract
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic [...] Read more.
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic and abiotic factors determine the capacity of mosquitoes for pathogen transmission, with the mosquito gut microbiota being recognized as an important one. Here, we review the published studies on the interactions between the microbiota of the Culex pipiens complex and WNV infections in mosquitoes. Most articles published so far studied the interactions between bacteria of the genus Wolbachia and WNV infections, obtaining variable results regarding the directionality of this relationship. In contrast, only a few studies investigate the role of the whole microbiome or other bacterial taxa in WNV infections. These studies suggest that bacteria of the genera Serratia and Enterobacter may enhance WNV development. Thus, due to the relevance of WNV in human and animal health and the important role of mosquitoes of the Cx. pipiens complex in its transmission, more research is needed to unravel the role of mosquito microbiota and those factors affecting this microbiota on pathogen epidemiology. In this respect, we finally propose future lines of research lines on this topic. Full article
(This article belongs to the Special Issue West Nile Virus and Other Zoonotic Infections)
Back to TopTop