Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,171)

Search Parameters:
Keywords = Wireless Sensors Network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6958 KiB  
Article
Non-Intrusive Low-Cost IoT-Based Hardware System for Sustainable Predictive Maintenance of Industrial Pump Systems
by Sérgio Duarte Brito, Gonçalo José Azinheira, Jorge Filipe Semião, Nelson Manuel Sousa and Salvador Pérez Litrán
Electronics 2025, 14(14), 2913; https://doi.org/10.3390/electronics14142913 - 21 Jul 2025
Abstract
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and [...] Read more.
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and temperature data, performs local logging, and communicates wirelessly. An automated spectral band segmentation framework is introduced, comparing equal-energy, linear-width, nonlinear, clustering, and peak–valley partitioning methods, followed by a weighted feature scheme that emphasizes high-value bands. Three unsupervised one-class classifiers—transformer autoencoders, GANomaly, and Isolation Forest—are evaluated on these weighted spectral features. Experiments conducted on a custom pump test bench with controlled anomaly severities demonstrate strong anomaly classification performance across multiple configurations, supported by detailed threshold-characterization metrics. Among 150 model–segmentation configurations, 25 achieved perfect classification (100% precision, recall, and F1 score) with ROC-AUC = 1.0, 43 configurations achieved ≥90% accuracy, and the lowest-performing setup maintained 81.8% accuracy. The proposed end-to-end solution reduces the downtime, lowers maintenance costs, and extends the asset life, offering a scalable, predictive maintenance approach for diverse industrial settings. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
26 pages, 3533 KiB  
Article
EDMR: An Enhanced Dynamic Multi-Hop Routing Protocol with a Novel Sleeping Mechanism for Wireless Sensor Networks
by Emad Alnawafa and Mohammad Allaymoun
Sensors 2025, 25(14), 4510; https://doi.org/10.3390/s25144510 - 21 Jul 2025
Abstract
Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising [...] Read more.
Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising results in reducing energy consumption, prolonging the network lifetime, and increasing throughput. To improve the performance of WSNs, this paper proposes the Enhanced Dynamic Multi-Hop Routing (EDMR) protocol as a modification of the DMR protocol. The EDMR protocol introduces an effective sleeping mechanism that selectively deactivates clusters that do not generate significantly updated data for a specific duration. This mechanism reduces redundant transmissions, thereby saving energy and prolonging the network lifetime. The EDMR protocol incorporates static and dynamic approaches to support two major categories of applications: monitoring and event-driven applications. The proposed protocol is evaluated against the DMR protocol, the Enhanced Dynamic Multi-Hop Technique (EMDHT-LEACH) protocol, and the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. The simulation results demonstrate that the EDMR protocol mitigates energy depletion, extends the network lifetime, increases stability, and improves network throughput toward the Base Station (BS), while reducing packet redundancy compared with the other protocols. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

16 pages, 6343 KiB  
Article
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
by Kranti Dhirajsinh Patil, Dinesh M. Yadav and Jayshri Kulkarni
Electronics 2025, 14(14), 2892; https://doi.org/10.3390/electronics14142892 - 19 Jul 2025
Abstract
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed [...] Read more.
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

11 pages, 902 KiB  
Article
A Fuzzy-Based Relay Security Algorithm for Wireless Sensor Networks
by Nan-I Wu, Tung-Huang Feng and Min-Shiang Hwang
Sensors 2025, 25(14), 4422; https://doi.org/10.3390/s25144422 - 16 Jul 2025
Viewed by 172
Abstract
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best [...] Read more.
Wireless sensor network data is an important source of big data. A sensor node cooperatively transmits or forwards data through intermediate nodes to a collection center, which is then aggregated for big data analysis and application. The relay selection algorithm selects the best transmissible node among the candidate nodes to fully exploit the limited resources of the sense nodes and extend the network lifecycle. A wireless sensor network relay selection algorithm based on a fuzzy inference system often uses sorting methods or random methods as the selection mechanism to choose when the fuzzy system outputs the same result. However, in the state of communication, networks often face the retransmission of lost packets, which consumes excess electricity. This study proposes a contraindicated safety selection mechanism algorithm to address equal output values in fuzzy systems. The proposed algorithm effectively reduces the retransmission probability to achieve benefits that isolate destructive or malicious nodes, thereby maintaining a higher network lifespan and safety. Full article
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 324
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
Binary Secretary Bird Optimization Clustering by Novel Fitness Function Based on Voronoi Diagram in Wireless Sensor Networks
by Mohammed Abdulkareem, Hadi S. Aghdasi, Pedram Salehpour and Mina Zolfy
Sensors 2025, 25(14), 4339; https://doi.org/10.3390/s25144339 - 11 Jul 2025
Viewed by 149
Abstract
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster [...] Read more.
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster heads (CHs) are responsible for data collection, aggregation, and forwarding, making their optimal selection essential for prolonging network lifetime. The effectiveness of CH selection is highly dependent on the choice of metaheuristic optimization method and the design of the fitness function. Although numerous studies have applied metaheuristic algorithms with suitably designed fitness functions to tackle the CH selection problem, many existing approaches fail to fully capture both the spatial distribution of nodes and dynamic energy conditions. To address these limitations, we propose the binary secretary bird optimization clustering (BSBOC) method. BSBOC introduces a binary variant of the secretary bird optimization algorithm (SBOA) to handle the discrete nature of CH selection. Additionally, it defines a novel multiobjective fitness function that, for the first time, considers the Voronoi diagram of CHs as an optimization objective, besides other well-known objectives. BSBOC was thoroughly assessed via comprehensive simulation experiments, benchmarked against two advanced methods (MOBGWO and WAOA), under both homogeneous and heterogeneous network models across two deployment scenarios. Findings from these simulations demonstrated that BSBOC notably decreased energy usage and prolonged network lifetime, highlighting its effectiveness as a reliable method for energy-aware clustering in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 5006 KiB  
Article
Time-Domain ADC and Security Co-Design for SiP-Based Wireless SAW Sensor Readers
by Zhen Mao, Bing Li, Linning Peng and Jinghe Wei
Sensors 2025, 25(14), 4308; https://doi.org/10.3390/s25144308 - 10 Jul 2025
Viewed by 215
Abstract
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive [...] Read more.
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive electronics, and IoT applications, its potential for revolutionizing SAW sensor interrogator design remains underexplored. This paper presents a novel architecture that synergistically combines time-domain ADC design with SiP-based miniaturization to achieve unprecedented simplification of SAW sensor readout systems. The proposed time-domain ADC incorporates an innovative delay chain calibration methodology that integrates physical unclonable function (PUF) principles during time-to-digital converter (TDC) characterization, enabling the simultaneous generation of unique system IDs. The experimental results demonstrate that the integrated security mechanism provides variable-length bit entropy for device authentication, and has a reliability of 97.56 and uniqueness of 49.43, with 53.28 uniformity, effectively addressing vulnerability concerns in distributed sensor networks. The proposed SiP is especially suitable for space-constrained IoT applications requiring robust physical-layer security. This work advances the state-of-the-art wireless sensor interfaces by demonstrating how time-domain signal processing and advanced packaging technologies can be co-optimized to address performance and security challenges in next-generation sensor systems. Full article
Show Figures

Figure 1

18 pages, 5596 KiB  
Article
Transforming a Heritage Building into a Living Laboratory: A Case Study of Monitoring
by Carlos Naya, Sara Dorregaray-Oyaregui, Fernando Alonso, Juan Luis Roquette, Jose María Yoldi and César Martín-Gómez
Energies 2025, 18(14), 3622; https://doi.org/10.3390/en18143622 - 9 Jul 2025
Viewed by 191
Abstract
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network [...] Read more.
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network of over 50 sensors connected via 270 m of wired infrastructure, deliberately avoiding wireless transmission to ensure data reliability. This configuration generates 5568 data points daily, which are archived on a dedicated server. The data is planned for integration into the Campus Geographical Information System (GIS), enabling private and public access. A methodology was employed, involving the strategic placement of sensors based on building use patterns, continuous data monitoring, and iterative sensor performance evaluation. The findings from the study indicate that integrating sensory data through this structured approach significantly enhances building management capabilities. Specifically, the results demonstrate improved energy efficiency and environmental performance, which is particularly relevant for public and educational facilities. The research highlights that a data-driven, monitoring-based management system can optimize operational functions and inform future retrofitting strategies for aging buildings. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

21 pages, 2170 KiB  
Article
IoT-Driven Intelligent Energy Management: Leveraging Smart Monitoring Applications and Artificial Neural Networks (ANN) for Sustainable Practices
by Azza Mohamed, Ibrahim Ismail and Mohammed AlDaraawi
Computers 2025, 14(7), 269; https://doi.org/10.3390/computers14070269 - 9 Jul 2025
Cited by 1 | Viewed by 284
Abstract
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things [...] Read more.
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things (IoT) devices offers a promising and innovative solution due to their adaptability, low power consumption, and transformative potential in energy management. This study describes a novel, integrative strategy that integrates IoT and Artificial Neural Networks (ANNs) in a smart monitoring mobile application intended to optimize energy usage and promote sustainability in residential settings. While both IoT and ANN technologies have been investigated separately in previous research, the uniqueness of this work is the actual integration of both technologies into a real-time, user-adaptive framework. The application allows for continuous energy monitoring via modern IoT devices and wireless sensor networks, while ANN-based prediction models evaluate consumption data to dynamically optimize energy use and reduce environmental effect. The system’s key features include simulated consumption scenarios and adaptive user profiles, which account for differences in household behaviors and occupancy patterns, allowing for tailored recommendations and energy control techniques. The architecture allows for remote device control, real-time feedback, and scenario-based simulations, making the system suitable for a wide range of home contexts. The suggested system’s feasibility and effectiveness are proved through detailed simulations, highlighting its potential to increase energy efficiency and encourage sustainable habits. This study contributes to the rapidly evolving field of intelligent energy management by providing a scalable, integrated, and user-centric solution that bridges the gap between theoretical models and actual implementation. Full article
Show Figures

Figure 1

21 pages, 518 KiB  
Article
Bilevel Optimization for ISAC Systems with Proactive Eavesdropping Capabilities
by Tingyue Xue, Wenhao Lu, Mianyi Zhang, Yinghui He, Yunlong Cai and Guanding Yu
Sensors 2025, 25(13), 4238; https://doi.org/10.3390/s25134238 - 7 Jul 2025
Viewed by 203
Abstract
Integrated sensing and communication (ISAC) has attracted extensive attention as a key technology to improve spectrum utilization and system performance for future wireless sensor networks. At the same time, active surveillance, as a legitimate means of surveillance, can improve the success rate of [...] Read more.
Integrated sensing and communication (ISAC) has attracted extensive attention as a key technology to improve spectrum utilization and system performance for future wireless sensor networks. At the same time, active surveillance, as a legitimate means of surveillance, can improve the success rate of surveillance by sending interference signals to suspicious receivers, which is important for crime prevention and public safety. In this paper, we investigate the joint optimization of performance of both ISAC and active surveillance. Specifically, we formulate a bilevel optimization problem where the upper-level objective aims to maximize the probability of successful eavesdropping while the lower-level objective aims to optimize the localization performance of the radar on suspicious transmitters. By employing the Rayleigh quotient, introducing a decoupling strategy, and adding penalty terms, we propose an algorithm to solve the bilevel problem where the lower-level objective is convex. With the help of the proposed algorithm, we obtain the optimal solution of the analog transmit beamforming matrix and the digital beamforming vector. Performance analysis and discussion of key insights, such as the trade-off between eavesdropping success probability and radar localization accuracy, are also provided. Finally, comprehensive simulation results validate the effectiveness of our proposed algorithm in enhancing both the eavesdropping success probability and the accuracy of radar localization. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 2080 KiB  
Article
IoT Services for Monitoring Food Supply Chains
by Loucas Protopappas, Dimitrios Bechtsis and Nikolaos Tsotsolas
Appl. Sci. 2025, 15(13), 7602; https://doi.org/10.3390/app15137602 - 7 Jul 2025
Viewed by 437
Abstract
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product [...] Read more.
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product integrity, leading to deterioration and an increased risk of foodborne illness. Monitoring agrifood supply chains is essential, from packaging to last-mile delivery. Distribution methods that rely on non-automated monitoring systems, such as manual temperature measurements, are error-prone due to the failure of manual treatments and increase the likelihood of product deterioration. Emerging sensor technologies and the rapid development of Information and Communication Technologies offer new possibilities for real-time tracking, enabling stakeholders to maintain optimal conditions and monitor aesthetic, physicochemical, and nutritional quality. This paper proposes a cost-effective temperature and humidity traceability system that utilises wireless sensor networks (WSN) and Internet of Things (IoΤ) services to monitor perishable products within the agrifood supply chain ecosystem. It also provides an overview of recent innovations in sensor technologies, along with food quality indicators relevant to real-time monitoring of food quality. The proposed research examines the available sensor technologies and methodologies that enable continuous monitoring of agrifood supply chains. Moreover, the paper presents a pilot full-scale project from both functional and technological perspectives. Full article
(This article belongs to the Special Issue Data-Driven Supply Chain Management and Logistics Engineering)
Show Figures

Figure 1

18 pages, 9571 KiB  
Article
TCN-MAML: A TCN-Based Model with Model-Agnostic Meta-Learning for Cross-Subject Human Activity Recognition
by Chih-Yang Lin, Chia-Yu Lin, Yu-Tso Liu, Yi-Wei Chen, Hui-Fuang Ng and Timothy K. Shih
Sensors 2025, 25(13), 4216; https://doi.org/10.3390/s25134216 - 6 Jul 2025
Viewed by 257
Abstract
Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capturing variations in signal propagation [...] Read more.
Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capturing variations in signal propagation caused by human motion. This makes Wi-Fi sensing highly attractive for ambient healthcare, security, and elderly care applications. However, real-world deployment faces two major challenges: (1) significant cross-subject signal variability due to physical and behavioral differences among individuals, and (2) limited labeled data, which restricts model generalization. To address these sensor-related challenges, we propose TCN-MAML, a novel framework that integrates temporal convolutional networks (TCN) with model-agnostic meta-learning (MAML) for efficient cross-subject adaptation in data-scarce conditions. We evaluate our approach on a public Wi-Fi CSI dataset using a strict cross-subject protocol, where training and testing subjects do not overlap. The proposed TCN-MAML achieves 99.6% accuracy, demonstrating superior generalization and efficiency over baseline methods. Experimental results confirm the framework’s suitability for low-power, real-time HAR systems embedded in IoT sensor networks. Full article
(This article belongs to the Special Issue Sensors and Sensing Technologies for Object Detection and Recognition)
Show Figures

Figure 1

21 pages, 2578 KiB  
Article
Coverage Hole Recovery in Hybrid Sensor Networks Based on Key Perceptual Intersections for Emergency Communications
by He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu and Jiajia Liu
Sensors 2025, 25(13), 4217; https://doi.org/10.3390/s25134217 - 6 Jul 2025
Viewed by 288
Abstract
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, [...] Read more.
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

20 pages, 1179 KiB  
Article
Conv1D-GRU-Self Attention: An Efficient Deep Learning Framework for Detecting Intrusions in Wireless Sensor Networks
by Kenan Honore Robacky Mbongo, Kanwal Ahmed, Orken Mamyrbayev, Guanghui Wang, Fang Zuo, Ainur Akhmediyarova, Nurzhan Mukazhanov and Assem Ayapbergenova
Future Internet 2025, 17(7), 301; https://doi.org/10.3390/fi17070301 - 4 Jul 2025
Viewed by 359
Abstract
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and [...] Read more.
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and evaluate a deep learning-based Intrusion Detection System (IDS) that is both accurate and efficient for real-time threat detection in WSNs. This study proposes a hybrid IDS model combining one-dimensional Convolutional Neural Networks (Conv1Ds), Gated Recurrent Units (GRUs), and Self-Attention mechanisms. A Conv1D extracts spatial features from network traffic, GRU captures temporal dependencies, and Self-Attention emphasizes critical sequence components, collectively enhancing detection of subtle and complex intrusion patterns. The model was evaluated using the WSN-DS dataset and demonstrated superior performance compared to traditional machine learning and simpler deep learning models. It achieved an accuracy of 98.6%, precision of 98.63%, recall of 98.6%, F1-score of 98.6%, and an ROC-AUC of 0.9994, indicating strong predictive capability even with imbalanced data. In addition to centralized training, the model was tested under cooperative, node-based learning conditions, where each node independently detects anomalies and contributes to a collective decision-making framework. This distributed approach improves detection efficiency and robustness. The proposed IDS offers a scalable and resilient solution tailored to the unique challenges of WSN security. Full article
Show Figures

Figure 1

34 pages, 6019 KiB  
Article
Deploying a Wireless Sensor Network to Track Pesticide Pollution in Kiu Wetland Wells: A Field Study
by Titus Mutunga, Sinan Sinanovic, Funmilayo B. Offiong and Colin Harrison
Sensors 2025, 25(13), 4149; https://doi.org/10.3390/s25134149 - 3 Jul 2025
Viewed by 499
Abstract
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and [...] Read more.
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and machine-to-machine communication technologies (M2M) holds promise in overcoming this major global challenge. In this current research, an IoT-based wireless sensor network (WSN) is successfully deployed in rural Kenya at the Kiu watershed, providing in situ pesticide detections and a real-time data visualisation of shallow wells. Kiu is an off-grid community located in an area of intensive agriculture, where residents face a high exposure to pesticides due to farming activities and a reliance on shallow wells for domestic water. The evaluation of path loss models utilising channel characteristics obtained from this study indicate a marked departure from the continuous signal decay with distance. Transmitted packets from deployed sensor nodes indicate minimal mutations of payloads, underscoring systems reliability and data transmission integrity. Additionally, the proposed design significantly reduces the time taken to deliver pesticide measurement results to relevant stakeholders. For the entire monitoring period, pesticide residues were not detected in the selected wells, an outcome validated with lab procedures. These results are attributed to prevailing dry weather conditions which limited the leaching of pesticides to lower layers reaching the water table. Full article
(This article belongs to the Collection Sensing Technology in Smart Agriculture)
Show Figures

Figure 1

Back to TopTop