Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = Wilson’s disease (WD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 980 KiB  
Article
Wilson’s Disease in Oman: A National Cohort Study of Clinical Spectrum, Diagnostic Delay, and Long-Term Outcomes
by Said A. Al-Busafi, Juland N. Al Julandani, Zakariya Alismaeili and Juhaina J. Al Raisi
Clin. Pract. 2025, 15(8), 144; https://doi.org/10.3390/clinpract15080144 - 3 Aug 2025
Viewed by 158
Abstract
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of [...] Read more.
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of WD in Oman, examining clinical features, diagnostic challenges, treatment patterns, and long-term outcomes. Methods: A retrospective cohort study was conducted on 36 Omani patients diagnosed with WD between 2013 and 2020 at Sultan Qaboos University Hospital using AASLD diagnostic criteria. Clinical presentation, biochemical parameters, treatment regimens, and progression-free survival were analyzed. Results: The median age at diagnosis was 14.5 years, with a slight female predominance (55.6%). Clinical presentation varied: 25% had hepatic symptoms, 22.2% had mixed hepatic-neurological features, and 16.7% presented with neurological symptoms alone. Asymptomatic cases identified via family screening accounted for 33.3%. Diagnostic delays were most pronounced among patients presenting with neurological symptoms. A positive family history was reported in 88.9% of cases, suggesting strong familial clustering despite a low rate of consanguinity (5.6%). Regional distribution was concentrated in Ash Sharqiyah North and Muscat. Chelation therapy with trientine or penicillamine, often combined with zinc, was the mainstay of treatment. Treatment adherence was significantly associated with improved progression-free survival (p = 0.012). Conclusions: WD in Oman is marked by heterogeneous presentations, frequent diagnostic delays, and strong familial clustering. Early detection through cascade screening and sustained treatment adherence are critical for favorable outcomes. These findings support the need for national screening policies and structured long-term care models for WD in the region. Full article
Show Figures

Figure 1

18 pages, 755 KiB  
Article
Oxidative Stress and Psychiatric Symptoms in Wilson’s Disease
by Grażyna Gromadzka, Agata Karpińska, Tomasz Krzysztof Szafrański and Tomasz Litwin
Int. J. Mol. Sci. 2025, 26(14), 6774; https://doi.org/10.3390/ijms26146774 - 15 Jul 2025
Viewed by 311
Abstract
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to [...] Read more.
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to assess the relationship between oxidative stress, selected genetic polymorphisms, and psychiatric symptoms in WD. A total of 464 patients under the care of the Institute of Psychiatry and Neurology in Warsaw were studied. Genotyping for GPX1 (rs1050450), SOD2 (rs4880), and CAT (rs1001179) was performed, along with biochemical analyses of copper metabolism, oxidative DNA, lipid and protein damage, and systemic antioxidant capacity. Among the most important observations are the following: the homozygous GPX1 rs1050450 TT and SOD2 rs4880 CC genotypes were associated with the lowest prevalence of psychiatric symptoms. The CAT rs1001179 TT genotype was linked to a delayed onset of psychiatric symptoms by 6.0–8.5 years. Patients with or without psychiatric symptoms did not differ significantly in saliva 8-OHdG, total antioxidant capacity, serum glutathione (GSH), catalase, and MnSOD; however, patients reporting psychiatric symptoms had significantly higher prostaglandin F2α 8-epimer (8-iso-PGF2α) concentrations and tended to have lower serum glutathione peroxidase (Gpx) concentrations compared to those without such symptoms. Our data firstly provide consistent evidence that oxidative stress balance associated with copper overload in the CNS may be associated with CNS damage and the development of psychiatric symptoms of WD. In particular, our findings of increased oxidative lipid damage together with decreased Gpx activity indirectly suggest that damage to neuronal membrane lipids, which may be potentially related to abnormalities in GSH metabolism, may have an etiological role in CNS damage and related symptoms. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 1805 KiB  
Article
CLSI Validation of Exchangeable Copper Determination in Serum by ICP-MS: A Focus on Alzheimer’s Disease and Wilson Disease
by Rosanna Squitti, Amit Pal, Irena D. Ivanova, Massimo Marianetti and Mauro Rongioletti
Biomolecules 2025, 15(6), 788; https://doi.org/10.3390/biom15060788 - 29 May 2025
Viewed by 627
Abstract
Background: Copper dyshomeostasis has been implicated in a subset of Alzheimer’s disease (AD) patients, characterized by elevated non-ceruloplasmin-bound copper (non-Cp Cu). However, traditional methods for estimating non-Cp Cu are indirect and analytically imprecise. This study introduces and validates a direct assay for exchangeable [...] Read more.
Background: Copper dyshomeostasis has been implicated in a subset of Alzheimer’s disease (AD) patients, characterized by elevated non-ceruloplasmin-bound copper (non-Cp Cu). However, traditional methods for estimating non-Cp Cu are indirect and analytically imprecise. This study introduces and validates a direct assay for exchangeable copper (ExcCu) by inductively coupled plasma-mass spectrometry (ICP-MS), compliant with Clinical and Laboratory Standards Institute (CLSI) guidelines. Methods: We performed analytical validation of the ExcCu assay following CLSI protocols (EP5, EP6, EP7, EP9, EP15, and EP28). ExcCu and other copper-related biomarkers were quantified in serum samples from 154 healthy controls, 82 AD patients, and 10 patients with Wilson disease (WD). Diagnostic performance was evaluated via receiver operating characteristic (ROC) curve analysis, and inter-method agreement was assessed using Bland–Altman plots. Results: The ExcCu assay demonstrated excellent linearity, precision (CV < 6%), and inter-laboratory reproducibility. Among AD patients, ExcCu levels were significantly elevated compared to controls (p < 0.001). ExcCu distinguished AD from controls with an AUC of 0.80 and a specificity of 95%. Compared to non-Cp Cu, ExcCu yielded no negative values and showed reduced bias. The relative exchangeable copper (REC) index was more effective in differentiating AD from WD (AUC = 0.88). Conclusions: The validated ExcCu assay overcomes the limitations of the traditional non-Cp Cu calculation, offering a reliable biomarker for copper-related AD subtypes. Its high specificity supports its use in patient stratification, potentially contributing to personalized approaches in AD diagnosis and therapy. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Members)
Show Figures

Graphical abstract

15 pages, 1455 KiB  
Article
Some Properties of the C. elegans Multicopper Oxidase F21D5.3, an Ortholog of Human Ceruloplasmin
by Polina D. Samuseva, Aleksandra A. Mekhova-Caramalac, Federico Catalano, Anna D. Shchukina, Sofia A. Baikina, Daria N. Magazenkova, Ludmila V. Puchkova and Ekaterina Yu. Ilyechova
Int. J. Mol. Sci. 2025, 26(10), 4776; https://doi.org/10.3390/ijms26104776 - 16 May 2025
Viewed by 468
Abstract
This study identified an oxidase-positive protein in the plasma membrane fraction of the C. elegans N2 strain. The protein with a molecular weight of approximately 85 kDa reacted with antibodies against human and mouse, but not rat, ceruloplasmin and exhibited oxidase activity. Bioinformatic [...] Read more.
This study identified an oxidase-positive protein in the plasma membrane fraction of the C. elegans N2 strain. The protein with a molecular weight of approximately 85 kDa reacted with antibodies against human and mouse, but not rat, ceruloplasmin and exhibited oxidase activity. Bioinformatic analysis revealed that the F21D5.3 protein possesses four copper-binding sites, similar to those in other multicopper oxidases (MCOs), and plastocyanin-like domains characteristic of MCOs. However, neither an iron-binding domain nor ferroxidase activity, typical features of MCOs, were detected through in silico analysis and or in-gel assays. Despite the absence of ferroxidase activity, these findings suggest that the protein may be the product of the F21D5.3 gene, an ortholog of MCOs in C. elegans. Heat map analysis indicated F21D5.3 expression in the entero-rectal valve cells and both the anterior and posterior intestines. Among the genes associated with copper transport, only cua-1 exhibited a similar expression pattern. In the C. elegans cua-1H828Q strain, which mimics a mutation in human ATP7B linked to Wilson’s disease (WD), oxidase activity was also observed. Notably, both strains showed reduced oxidase activity when cultured with silver nanoparticles (AgNPs). These findings highlight the potential of the cua-1H828Q strain as a model for studying copper and iron metabolism and for developing therapeutic strategies for WD. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

16 pages, 4717 KiB  
Article
Natural Copper Ion Scavenger: Investigation of the Hepatoprotective Effects of Green Tea Extract in Toxic-Milk Mice with Wilson’s Disease Model
by Delai Yang, Shujuan Xuan, Wang Zhang, Huan Wu, Yuge Jiang and An Zhou
Foods 2025, 14(4), 679; https://doi.org/10.3390/foods14040679 - 17 Feb 2025
Viewed by 1047
Abstract
Wilson’s disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, the mechanism of copper overload-induced hepatic injury is unclear. Green tea is a natural chelator, and its main ingredients, green tea polyphenol (GTP) and L-theanine (L-TA) [...] Read more.
Wilson’s disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, the mechanism of copper overload-induced hepatic injury is unclear. Green tea is a natural chelator, and its main ingredients, green tea polyphenol (GTP) and L-theanine (L-TA) are good at binding to heavy metals like iron and copper. There have been no reports on green tea extracts (GTE) for the treatment of Wilson’s disease. This study investigated the hepatoprotective effect of GTE on WD model mice. Initially, we examined the impact of green tea extract on copper metabolism, excretion, and hepatoprotective effects in WD model toxic milk mice. Then, Ultra performance liquid chromatography (UPLC-DAD) was established to analyze GTP and L-TA in green tea extract. Further screening of eight active components and copper complex active components in green tea extract was carried out by ion analyzer. Finally, we verified the pharmacodynamic effects of these active ingredients at the animal level. The results showed that GTE improves liver function and attenuates liver injury in TX mice by promoting tissue copper excretion and inhibiting oxidative stress, which provides a theoretical basis for green tea’s potential to improve the clinical symptoms of WD. Full article
Show Figures

Figure 1

21 pages, 2954 KiB  
Article
Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity
by Claire Klippel, Jiwoon Park, Sean Sandin, Tara M. L. Winstone, Xue Chen, Dennis Orton, Aranjeet Singh, Jonathan D. Hill, Tareq K. Shahbal, Emily Hamacher, Brandon Officer, John Thompson, Phi Duong, Tim Grotzer and Si Houn Hahn
Int. J. Neonatal Screen. 2025, 11(1), 6; https://doi.org/10.3390/ijns11010006 - 10 Jan 2025
Cited by 1 | Viewed by 1893
Abstract
For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots [...] Read more.
For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots (DBSs) has been shown to successfully identify patients with Wilson Disease (WD) and three life-threatening inborn errors of immunity, X-linked agammaglobulinemia (XLA), Wiskott–Aldrich syndrome (WAS), and adenosine deaminase deficiency (ADAD). A novel proteomic-based multiplex assay to detect these four conditions from DBS using high-throughput LC-MS/MS was developed and validated. The clinical validation results showed that the assay can accurately identify patients of targeted disorders from controls. Additionally, 30,024 newborn DBS samples from the Washington State Department of Health Newborn Screening Laboratory have been screened from 2022 to 2024. One true presumptive positive case of WD was found along with three false positive cases. Five false positives for WAS were detected, but all of them were premature and/or low-birth-weight babies and four of them had insufficient DNA for confirmation. The pilot study demonstrates the feasibility and effectiveness of utilizing this multiplexed proteomic assay for newborn screening. Full article
Show Figures

Figure 1

18 pages, 3134 KiB  
Article
Spectrum of Pathogenic Variants of the ATP7B Gene and Genotype–Phenotype Correlation in Eastern Eurasian Patient Cohorts with Wilson’s Disease
by Mikhail Garbuz, Elena Ovchinnikova, Anna Ovchinnikova, Valeriya Vinokurova, Yulya Aristarkhova, Olga Kuziakova, Mariya Mashurova and Vadim Kumeiko
Biomedicines 2024, 12(12), 2833; https://doi.org/10.3390/biomedicines12122833 - 13 Dec 2024
Viewed by 1343
Abstract
Background/Objectives: Wilson’s disease (WD) (OMIM 277900) or hepatolenticular degeneration is an autosomal recessive disorder caused by impaired copper excretion with subsequent accumulation in the liver, brain, and other tissues of the body. The defects in copper metabolism are based on various pathogenic variants [...] Read more.
Background/Objectives: Wilson’s disease (WD) (OMIM 277900) or hepatolenticular degeneration is an autosomal recessive disorder caused by impaired copper excretion with subsequent accumulation in the liver, brain, and other tissues of the body. The defects in copper metabolism are based on various pathogenic variants of the ATP7B gene encoding copper-transporting P-type ATPase. The aim of this work is to search for pathogenic variants of the ATP7B gene among Eastern Eurasian patient cohorts and to pick correlations between pathogenic variants, gender, age of onset of the disease, and the course of the disease. Methods: The material for the study was the biomaterial of 100 people. The search for mutations was carried out by Sanger sequencing. Multiple alignment of nucleotide sequences and their analysis was performed using the MEGA-X software. To study the genotype-phenotypic correlation, an analysis of the medical records of each patient was carried out. Results: Most common pathogenic variant (48%) in the sample is p.His1069Gln (c.3207C>A), located in exon 14 of the ATP7B gene. Pathogenic variants of p.Glu1064Lys (c.3190G>A)—20%—and p.Met769HisfsTer26 (c.2304insC)—8%—of exons 14 and 8 were also common. For patients with pathogenic alleles p.His1069Gln (c.3207C>A) and p.Glu1064Lys (c.3190G>A), typical deviations are mental and neurological manifestations of WD. In patients with the pathogenic allele p.Met769HisfsTer26 (c.2304insC), deviations are more characteristic of the liver and a combination of various symptoms that are atypical for WD. Conclusions: In this study, we were able to obtain differences in symptoms in patients with different pathogenic alleles of the ATP7B gene. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

30 pages, 652 KiB  
Review
Psychiatric Symptoms in Wilson’s Disease—Consequence of ATP7B Gene Mutations or Just Coincidence?—Possible Causal Cascades and Molecular Pathways
by Grażyna Gromadzka, Agnieszka Antos, Zofia Sorysz and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(22), 12354; https://doi.org/10.3390/ijms252212354 - 18 Nov 2024
Cited by 4 | Viewed by 3429
Abstract
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the [...] Read more.
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic “free”—unbound to Cp—copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including “Wilson’s disease”, “hepatolenticular degeneration”, “psychiatric manifestations”, “molecular mechanisms”, “pathomechanism”, and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1326 KiB  
Article
Acute Liver Failure Etiology Determines Long-Term Outcomes in Patients Undergoing Liver Transplantation: An Analysis of the UNOS Database
by Natalia Rojas Amaris, Ana Marenco-Flores, Romelia Barba, Denisse Rubio-Cruz, Esli Medina-Morales, Daniela Goyes, Behnam Saberi, Vilas Patwardhan and Alan Bonder
J. Clin. Med. 2024, 13(22), 6642; https://doi.org/10.3390/jcm13226642 - 5 Nov 2024
Cited by 1 | Viewed by 2258
Abstract
Background: Acute liver failure (ALF) involves rapid liver injury, often leading to multi-organ failure. Liver transplantation (LT) has improved survival rates, with U.S. rates reaching 92%. This study analyzes UNOS data (2002–2020) to evaluate long-term survival and identify risk factors affecting waitlist [...] Read more.
Background: Acute liver failure (ALF) involves rapid liver injury, often leading to multi-organ failure. Liver transplantation (LT) has improved survival rates, with U.S. rates reaching 92%. This study analyzes UNOS data (2002–2020) to evaluate long-term survival and identify risk factors affecting waitlist and post-LT outcomes in ALF patients. Methods: A retrospective analysis was performed on adult ALF patients waitlisted for LT (Status 1/1A). ALF etiologies, including viral infections, drug-induced liver injury (DILI), acetaminophen (APAP) overdose, autoimmune hepatitis (AIH), Wilson disease (WD), and unknown causes, were assessed with patient and donor characteristics. Kaplan–Meier and Cox regression analyses identified predictors of patient and graft survival. Sensitivity analysis confirmed the model’s robustness. Results: We identified 2759 ALF patients. APAP (HR 1.7; p < 0.001) and unknown etiology (HR 1.3; p = 0.037) were linked to higher waitlist removal risk, while WD (HR 0.36; p < 0.001) increased LT probability. Among 2014 LT recipients, WD showed improved survival (HR 0.53; p = 0.002). Black/African American race (HR 1.47; p < 0.001), diabetes (HR 1.81; p < 0.001), and encephalopathy (HR 1.27; p < 0.001) predicted higher mortality. AIH had the lowest 1- and 10-year survival (83% and 62%), while APAP had the lowest 5-year survival (76%). WD had the highest graft survival at 1, 5, and 10 years (93%, 88%, and 80%). Conclusions: ALF etiology significantly affects survival outcomes. AIH and APAP are associated with worse survival, while WD shows favorable outcomes. Tailored post-LT management is essential to improve survival in ALF patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

67 pages, 12154 KiB  
Review
The Microbiota–Gut–Brain Axis and Neurological Disorders: A Comprehensive Review
by Mohammed M. Nakhal, Lidya K. Yassin, Rana Alyaqoubi, Sara Saeed, Alreem Alderei, Alya Alhammadi, Mirah Alshehhi, Afra Almehairbi, Shaikha Al Houqani, Shamsa BaniYas, Haia Qanadilo, Bassam R. Ali, Safa Shehab, Yauhen Statsenko, Sarah Meribout, Bassem Sadek, Amal Akour and Mohammad I. K. Hamad
Life 2024, 14(10), 1234; https://doi.org/10.3390/life14101234 - 26 Sep 2024
Cited by 19 | Viewed by 16128
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota–gut–brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres [...] Read more.
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota–gut–brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut–brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer’s disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer’s neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson–Konovalov disease (WD), multisystem atrophy (MSA), Huntington’s chorea (HC), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut–brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases. Full article
(This article belongs to the Special Issue Microbiota in Health and Disease)
Show Figures

Figure 1

39 pages, 2843 KiB  
Review
Wilson’s Disease—Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues
by Grażyna Gromadzka, Julia Czerwińska, Elżbieta Krzemińska, Adam Przybyłkowski and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(16), 9034; https://doi.org/10.3390/ijms25169034 - 20 Aug 2024
Cited by 10 | Viewed by 4592
Abstract
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical [...] Read more.
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD. Full article
Show Figures

Figure 1

18 pages, 4716 KiB  
Review
Brain Magnetic Resonance Imaging in Wilson’s Disease—Significance and Practical Aspects—A Narrative Review
by Tomasz Litwin, Barbara Rędzia-Ogrodnik, Agnieszka Antos, Adam Przybyłkowski, Anna Członkowska and Jan Paweł Bembenek
Brain Sci. 2024, 14(7), 727; https://doi.org/10.3390/brainsci14070727 - 19 Jul 2024
Cited by 6 | Viewed by 4908
Abstract
Wilson’s disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in many organs, resulting in clinical symptoms, mostly hepatic and neuropsychiatric. As copper accumulates in the brain during WD, and almost 50% of WD patients at diagnosis present with [...] Read more.
Wilson’s disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in many organs, resulting in clinical symptoms, mostly hepatic and neuropsychiatric. As copper accumulates in the brain during WD, and almost 50% of WD patients at diagnosis present with neurological symptoms, neuroimaging studies (especially brain magnetic resonance imaging (MRI)) are part of WD diagnosis. The classical sequences (T1, T2, and fluid-attenuated inversion recovery) were used to describe brain MRI; however, with the development of neuroradiology, several papers proposed the use of new MRI sequences and techniques like susceptibility-weighted images, T2*, diffusion MRI, tractography, volumetric assessment and post-processing brain MRI analysis of paramagnetic accumulation—quantitative susceptibility mapping. Based on these neuroradiological data in WD, currently, brain MRI semiquantitative scale and the pathognomonic neuroradiological brain MRI signs in WD were proposed. Further, the volumetric studies and brain iron accumulation MRI analysis suggested brain atrophy and iron accumulation as biomarkers of neurological WD disease severity. All these results highlight the significance of brain MRI examinations in WD. Due to the extreme progress of these studies, based on the available literature, the authors present the current state of knowledge about the significance, practical aspects, and future directions of brain MRI in WD. Full article
(This article belongs to the Special Issue Brain Magnetic Resonance Imaging in Neurological Disorders)
Show Figures

Figure 1

34 pages, 2835 KiB  
Review
Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson’s Disease
by Woong Choi, Seongkwang Cha and Kyoungmi Kim
Cells 2024, 13(14), 1214; https://doi.org/10.3390/cells13141214 - 18 Jul 2024
Cited by 5 | Viewed by 4260
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In [...] Read more.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson’s disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome. Full article
Show Figures

Graphical abstract

23 pages, 1257 KiB  
Review
The Role of Glia in Wilson’s Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives
by Grażyna Gromadzka, Anna Wilkaniec, Beata Tarnacka, Krzysztof Hadrian, Maria Bendykowska, Adam Przybyłkowski and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(14), 7545; https://doi.org/10.3390/ijms25147545 - 9 Jul 2024
Cited by 4 | Viewed by 3030
Abstract
Wilson’s disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the [...] Read more.
Wilson’s disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood–brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson’s disease and Alzheimer’s disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

9 pages, 772 KiB  
Case Report
Obesity as a Confounding Factor in the Diagnosis of Wilson’s Disease: Case Report of Two Siblings with the Same Genotype but Different Clinical Courses
by Emanuele Bracciamà, Annamaria Sapuppo, Laura Rapisarda, Enrico Siciliano, Anna Caciotti, Amelia Morrone, Martino Ruggieri, Giuseppina Cantarella, Renato Bernardini and Gaetano Bertino
Curr. Issues Mol. Biol. 2024, 46(6), 6112-6120; https://doi.org/10.3390/cimb46060365 - 17 Jun 2024
Cited by 2 | Viewed by 1707
Abstract
Wilson’s disease (WD) is a biallelic disease-causing variant in the ATP7B gene on chromosome 13q14.3 that results in copper accumulation in many organs, particularly the liver and brain. The phenotypic spectrum is wide and symptoms at onset can be heterogeneous. We describe two [...] Read more.
Wilson’s disease (WD) is a biallelic disease-causing variant in the ATP7B gene on chromosome 13q14.3 that results in copper accumulation in many organs, particularly the liver and brain. The phenotypic spectrum is wide and symptoms at onset can be heterogeneous. We describe two Sicilian siblings, a young man and his elder sister, both compound heterozygous for the variants c.1286-2A>G and c.2668G>A (p.Val890Met) in the ATB7B gene. The male patient presented with liver cirrhosis, which quickly progressed to end-stage liver disease (Child–Pugh score = C10), while his sister had moderate steatotic liver disease (SLD). Our findings highlight that SLD may not always be related to obesity in overweight patients, especially when there are other potential risk factors such as a family history of chronic liver disease, or the persistence of high transaminase despite the adoption of adequate dietary and pharmacological intervention. Screening for conditions such as WD could identify patients at risk of developing SLD and avoid delays in diagnosis. Phenotypic variability in WD is considerable; therefore, further studies are needed to identify which WD patients have a greater risk of developing SLD and determine factors that can predict the severity of the disease. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop