Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = VAMP7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19033 KiB  
Article
Disclosing Pathogenic Variant Effects on the Structural Dynamics of the VAPB MSP Domain Causing Familial ALS
by Md Abul Bashar, Nayan Dash, Sarmistha Mitra and Raju Dash
Int. J. Mol. Sci. 2025, 26(13), 6489; https://doi.org/10.3390/ijms26136489 - 5 Jul 2025
Viewed by 476
Abstract
Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB) serves as a tethering factor that interacts with various proteins and recruits these proteins to the ER surface, exerting multiple functions, such as organelle membrane tethering, lipid transfer between organelles, regulation of calcium homeostasis, autophagy, and [...] Read more.
Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB) serves as a tethering factor that interacts with various proteins and recruits these proteins to the ER surface, exerting multiple functions, such as organelle membrane tethering, lipid transfer between organelles, regulation of calcium homeostasis, autophagy, and the unfolded protein response (UPR). Its interaction is often mediated by its MSP (major sperm) domain, which binds with FFAT (two phenylalanines in an acidic tract)-motif-containing proteins. However, pathogenic variations, such as P56S, P56H, and T46I, in the VAPB MSP domain lead to the familial form of amyotrophic lateral sclerosis (ALS8). Still, the underlying pathophysiology of ALS8 due to pathogenic variations in the VAPB MSP domain remains elusive. In this study, we conducted molecular dynamics (MD) simulations to understand the pathogenic-variant-derived changes in the structural dynamics of the VAPB MSP domain. We found that pathogenic variants altered the fluctuations and conformational dynamics of the VAPB protein. Analyzing the organizations of the secondary structure revealed that pathogenic variants changed the composition of secondary structure elements, especially increasing the proportion of α-helix while reducing β-sheet formation, which might affect the organelle tethering and other functions of VAPB, as well as VAPB homodimer and heterodimer formation. Taken together, these findings can be further investigated through in vivo and/or in vitro studies to not only clarify the pathophysiology of ALS8 resulting from VAPB MSP domain pathogenic variants but also develop novel therapeutics for the disease that restore the native structural organizations as well as fluctuations and motions. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

22 pages, 4917 KiB  
Article
FVIII Trafficking Dynamics Across Subcellular Organelles Using CRISPR/Cas9 Specific Gene Knockouts
by Salime El Hazzouri, Rawya Al-Rifai, Nicole Surges, Melanie Rath, Heike Singer, Johannes Oldenburg and Osman El-Maarri
Int. J. Mol. Sci. 2025, 26(13), 6349; https://doi.org/10.3390/ijms26136349 - 1 Jul 2025
Viewed by 501
Abstract
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence [...] Read more.
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence FVIII secretion. Here, we further investigated the intracellular dynamics of FVIII using single and double CRISPR/Cas9 Knockout (KO) models of the abovementioned chaperones as well as the GABARAP proteins in HEK293 cells expressing FVIII. Cellular pathways were manipulated by Brefeldin A (BFA), Chloroquine (CQ), a Rab7 inhibitor, and subjected to glucose starvation. The effect of each KO on FVIII secretion and organelle distribution was assessed by a two-stage chromogenic assay and immunofluorescence (IF) microscopy, prior and upon cell treatments. Using these approaches, we first observed distinct effects of each studied protein on FVIII trafficking. Notably, intracellular localization patterns revealed clustering of FVIII phenotypes in GABARAPKO, CANXKO, and CALRKO cells together under both basal and treated conditions, an observation that was also reflected in their respective double KO combinations. Besides, a clear involvement of additional components of the endomembrane system was evident, specifically at the trans-Golgi space, as marked by FVIII colocalization with the Ras-like proteins in brain (Rab8 and Rab7) and with the Vesicle-Associated Membrane Protein (VAMP8), along with the observed impact of the selected cell treatments on FVIII phenotypes. These outcomes enhance our understanding of the molecular mechanisms regulating FVIII and pave the way for new perspectives, which could be further projected into FVIII replacement, cell and gene therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

18 pages, 9688 KiB  
Article
The Role of a Conserved Arg-Asp Pair in the Structure and Function of Tetanus Neurotoxin
by Elizabeth A. Wilson, Ashtyn N. Bevans and Michael R. Baldwin
Toxins 2025, 17(6), 273; https://doi.org/10.3390/toxins17060273 - 30 May 2025
Viewed by 1242
Abstract
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This [...] Read more.
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This is achieved, in part, through pH-triggered membrane insertion of the translocation (HCT) domain, which delivers the catalytic light-chain (LC) domain to the cytosol. While the function of HCT is well defined, the mechanism by which it accomplishes this task is largely unknown. Based on the crystal structure of tetanus neurotoxin, we identified potential polar interactions between arginine 711, tryptophan 715 and aspartate 821 that appear to be evolutionarily conserved across the clostridial neurotoxin family. We show that the disruption of the Asp-Arg pair in a beltless HCT variant (bHCT) results in changes in thermal stability without significant alterations to the overall secondary structure. ANS (1-anilino-8-napthalene sulfonate) binding studies, in conjunction with liposome permeabilization assays, demonstrate that mutations at R711 or D821 trigger interactions with the membrane at higher pH values compared to wildtype bHCT. Interestingly, we show that the introduction of the D821N mutation into LHNT (LC-HCT only), but not the holotoxin, resulted in the increased cleavage of VAMP 2 in cortical neurons relative to the wildtype protein. This suggests that, as observed for botulinum toxin A, the receptor-binding domain is not necessary for LC translocation but rather helps determine the pH threshold of membrane insertion. The mutation of W715 did not result in detectable changes in the activity of either bHCT or the holotoxin, suggesting that it plays only a minor role in stabilizing the structure of the toxin. We conclude that the protonation of D821 at low pH disrupts interactions with R711 and W715, helping to drive the conformational refolding of HCT needed for membrane insertion and the subsequent translocation of the LC. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

28 pages, 3970 KiB  
Review
Beyond Static Tethering at Membrane Contact Sites: Structural Dynamics and Functional Implications of VAP Proteins
by Takashi S. Kodama, Kyoko Furuita and Chojiro Kojima
Molecules 2025, 30(6), 1220; https://doi.org/10.3390/molecules30061220 - 8 Mar 2025
Viewed by 1513
Abstract
The membranes surrounding the eukaryotic cell and its organelles are continuously invaginating, budding, and undergoing membrane fusion–fission events, which enable them to perform functions not found in prokaryotic cells. In addition, organelles come into close contact with each other at membrane contact sites [...] Read more.
The membranes surrounding the eukaryotic cell and its organelles are continuously invaginating, budding, and undergoing membrane fusion–fission events, which enable them to perform functions not found in prokaryotic cells. In addition, organelles come into close contact with each other at membrane contact sites (MCSs), which involve many types of proteins, and which regulate the signaling and transport of various molecules. Vesicle-associated membrane protein (VAMP)-associated protein (VAP) is an important factor involved in the tethering and contact of various organelles at MCSs in almost all eukaryotes and has attracted attention for its association with various diseases, mainly neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the detailed mechanism of its functional expression remains unclear. In this review, we quantitatively discuss the structural dynamics of the entire molecule, including intrinsically disordered regions and intramolecular and intermolecular interactions, focusing on the vertebrate VAP paralogs VAPA and VAPB. Molecular phylogenetic and biophysical considerations are the basis of the work. Full article
Show Figures

Graphical abstract

20 pages, 7256 KiB  
Article
Function of lamp2 Gene Response to Vibrio vulnificus Infection and LPS Stimulation in the Half-Smooth Tongue Sole (Cynoglossus semilaevis)
by Tian Han, Yufeng Liu, Mengchao Li, Yitong Zhang, Zhongwei He, Yuqin Ren, Wei Cao, Jiangong Ren, Yufen Wang, Guixing Wang, Chunguang Gong and Jilun Hou
Int. J. Mol. Sci. 2025, 26(5), 1999; https://doi.org/10.3390/ijms26051999 - 25 Feb 2025
Viewed by 675
Abstract
Lysosome-associated membrane glycoproteins (LAMPs), including lysosomal membrane protein 1 (Lamp1) and lysosomal membrane protein 2 (Lamp2), are involved in phagocytosis, chaperone-mediated autophagy (CMA), and other pathways that interact with lysosomal activity. However, the role of Lamp2 in teleosts has not been clarified. In [...] Read more.
Lysosome-associated membrane glycoproteins (LAMPs), including lysosomal membrane protein 1 (Lamp1) and lysosomal membrane protein 2 (Lamp2), are involved in phagocytosis, chaperone-mediated autophagy (CMA), and other pathways that interact with lysosomal activity. However, the role of Lamp2 in teleosts has not been clarified. In this study, we investigated the functions of lamp2 genes during Vibrio vulnificus infection. We achieved subcellular localization of the lamp2 gene at the cellular level and performed overexpression and RNA interference experiments followed by Lipopolysaccharides (LPS) stimulation to probe the expression changes of related genes. Ultrapathology analysis of the head-kidney revealed an increase in lysosomes and the formation of autophagosomal vesicles after V. vulnificus infection, suggesting that lysosomes bind to autophagosomes. The lamp2 gene, encoding 401 amino acids in Cynoglossus semilaevis, was constitutively expressed in all examined tissues of healthy half-smooth tongue sole, with the highest expression in blood. A challenge test was conducted to assess the response of half-smooth tongue sole (Cynoglossus semilaevis) to different concentrations of V. vulnificus. The results showed that the relative expression of lamp2 and its related genes—lc3, rab7, vamp8, atg14, stx17, snap29, ctsb, and ctsd—varied with time and concentration in the gill, spleen, head-kidney, blood, liver, and gut tissues. From the results of lamp2 gene overexpression and RNA interference experiments, it is hypothesized that lamp2 positively regulates lc3, rab7, vamp8, snap29, and stx17, and negatively regulates ctsd and ctsb. Our findings provide new primary data for the function of lamp2 gene in the half-smooth tongue sole., particularly its role in regulating the immune response against V. vulnificus. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3181 KiB  
Article
Sauchinone Ameliorates Senescence Through Reducing Mitochondrial ROS Production
by Myeong Uk Kuk, Yun Haeng Lee, Duyeol Kim, Kyeong Seon Lee, Ji Ho Park, Jee Hee Yoon, Yoo Jin Lee, Byeonghyeon So, Minseon Kim, Hyung Wook Kwon, Youngjoo Byun, Ki Yong Lee and Joon Tae Park
Antioxidants 2025, 14(3), 259; https://doi.org/10.3390/antiox14030259 - 24 Feb 2025
Cited by 2 | Viewed by 894
Abstract
One of the major causes of senescence is oxidative stress caused by ROS, which is mainly generated from dysfunctional mitochondria. Strategies to limit mitochondrial ROS production are considered important for reversing senescence, but effective approaches to reduce them have not yet been developed. [...] Read more.
One of the major causes of senescence is oxidative stress caused by ROS, which is mainly generated from dysfunctional mitochondria. Strategies to limit mitochondrial ROS production are considered important for reversing senescence, but effective approaches to reduce them have not yet been developed. In this study, we screened the secondary metabolites that plants produce under oxidative stress and discovered sauchinone as a potential candidate. Sauchinone induced mitochondrial function recovery, enabling efficient electron transport within the electron transport chain (ETC). This led to a decrease in ROS production, a byproduct of inefficient electron transport. The reduction in ROS by sauchinone rejuvenated senescence-associated phenotypes. To understand the underlying mechanism by which sauchinone rejuvenates senescence, we carried out RNA sequencing and found VAMP8 as a key gene. VAMP8 was downregulated by sauchinone. Knockdown of VAMP8 decreased mitochondrial ROS levels and subsequently rejuvenated mitochondrial function, which was similar to the effect of sauchinone. Taken together, these studies revealed a novel mechanism by which sauchinone reduces mitochondrial ROS production by regulating mitochondrial function and VAMP8 expression. Our results open a new avenue for aging research to control senescence by regulating mitochondrial ROS production. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Products—2nd Edition)
Show Figures

Figure 1

16 pages, 4740 KiB  
Article
Molecular Dynamics of Apolipoprotein Genotypes APOE4 and SNARE Family Proteins and Their Impact on Alzheimer’s Disease
by Yuqing Wang, Xuefeng Liu, Pengtao Zheng, Qing Xie, Chenxiang Wang and Chaoyang Pang
Life 2025, 15(2), 223; https://doi.org/10.3390/life15020223 - 2 Feb 2025
Cited by 1 | Viewed by 1198
Abstract
Alzheimer’s disease is a chronic neurodegenerative disorder characterized by progressive memory loss and a significant impact on quality of life. The APOE ε4 allele is a major genetic contributor to AD pathogenesis, with synaptic dysfunction being a central hallmark in its pathophysiology. While [...] Read more.
Alzheimer’s disease is a chronic neurodegenerative disorder characterized by progressive memory loss and a significant impact on quality of life. The APOE ε4 allele is a major genetic contributor to AD pathogenesis, with synaptic dysfunction being a central hallmark in its pathophysiology. While the role of APOE4 in reducing SNARE protein levels has been established, the underlying molecular mechanisms of this interaction remain obscure. Our research employs molecular dynamics simulations to analyze interactions between APOE4 and APOE3 isoforms and the synaptic proteins VAMP2, SNAP25, and SYNTAXIN1, which play crucial roles in the presynaptic membrane. Our findings reveal that APOE4 significantly destabilizes the SNARE complex, suppresses its structural dynamics, and reduces hydrogen bonding, consequently partially hindering neurotransmitter release—a very likely discovery for elucidating synaptic dysfunction in Alzheimer’s disease. We identified that APOE4 exhibits a diminished affinity for the SNARE complex in comparison to APOE3. This observation suggests that APOE4 may play a role in modulating the stability of the SNARE complex, potentially impacting the progression and occurrence of Alzheimer’s disease through free energy analysis. This work highlights the perturbations in synaptic function mediated by APOE4, which may offer novel insights into the molecular underpinnings of AD. By elucidating the molecular interplay between APOE4 and the SNARE complex, our study not only enhances our comprehension of AD’s synaptic pathology but also paves the way for devising innovative therapeutic interventions, such as targeting the APOE4–SNARE complex interaction or to restore neurotransmitter release. Full article
Show Figures

Figure 1

23 pages, 1102 KiB  
Review
Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action
by Raj Kumar and Bal Ram Singh
Int. J. Mol. Sci. 2025, 26(2), 777; https://doi.org/10.3390/ijms26020777 - 17 Jan 2025
Cited by 5 | Viewed by 5863
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its [...] Read more.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin’s structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT’s potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin’s structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin’s mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin’s structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT’s central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

15 pages, 3500 KiB  
Article
α-Synuclein Deletion Impairs Platelet Function: A Role for SNARE Complex Assembly
by Christopher Sennett, Wanzhu Jia, Jawad S. Khalil, Matthew S. Hindle, Charlie Coupland, Simon D. J. Calaminus, Julian D. Langer, Sean Frost, Khalid M. Naseem, Francisco Rivero, Natalia Ninkina, Vladimir Buchman and Ahmed Aburima
Cells 2024, 13(24), 2089; https://doi.org/10.3390/cells13242089 - 17 Dec 2024
Cited by 1 | Viewed by 1427
Abstract
Granule secretion is an essential platelet function that contributes not only to haemostasis but also to wound healing, inflammation, and atherosclerosis. Granule secretion from platelets is facilitated, at least in part, by Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex-mediated granule fusion. [...] Read more.
Granule secretion is an essential platelet function that contributes not only to haemostasis but also to wound healing, inflammation, and atherosclerosis. Granule secretion from platelets is facilitated, at least in part, by Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex-mediated granule fusion. Although α-synuclein is a protein known to modulate the assembly of the SNARE complex in other cells, its role in platelet function remains poorly understood. In this study, we provide evidence that α-synuclein is critical for haemostasis using α-synuclein-deficient (−/−) mice. The genetic deletion of α-synuclein resulted in impaired platelet aggregation, secretion, and adhesion in vitro. In vivo haemostasis models showed that α-synuclein−/− mice had prolonged bleeding times and activated partial thromboplastin times (aPTTs). Mechanistically, platelet activation induced α-synuclein serine (ser) 129 phosphorylation and re-localisation to the platelet membrane, accompanied by an increased association with VAMP 8, syntaxin 4, and syntaxin 11. This phosphorylation was calcium (Ca2+)- and RhoA/ROCK-dependent and was inhibited by prostacyclin (PGI2). Our data suggest that α-synuclein regulates platelet secretion by facilitating SNARE complex formation. Full article
Show Figures

Figure 1

21 pages, 6529 KiB  
Article
Radial Data Visualization-Based Step-by-Step Eliminative Algorithm to Predict Colorectal Cancer Patients’ Response to FOLFOX Therapy
by Jakub Kryczka, Rafał Adam Bachorz, Jolanta Kryczka and Joanna Boncela
Int. J. Mol. Sci. 2024, 25(22), 12149; https://doi.org/10.3390/ijms252212149 - 12 Nov 2024
Viewed by 1402
Abstract
Application of the FOLFOX scheme to colorectal cancer (CRC) patients often results in the development of chemo-resistance, leading to therapy failure. This study aimed to develop a functional and easy-to-use algorithm to predict patients’ response to FOLFOX treatment. Transcriptomic data of CRC patient’s [...] Read more.
Application of the FOLFOX scheme to colorectal cancer (CRC) patients often results in the development of chemo-resistance, leading to therapy failure. This study aimed to develop a functional and easy-to-use algorithm to predict patients’ response to FOLFOX treatment. Transcriptomic data of CRC patient’s samples treated with FOLFOX were downloaded from the Gene Expression Omnibus database (GSE83129, GSE28702, GSE69657, GSE19860 and GSE41568). Comparing the expression of top up- and downregulated genes in FOLFOX responder and non-responder patients’ groups, we selected 30 potential markers that were used to create a step-by-step eliminative procedure based on modified radial data visualization, which depicts the interplay between the expression level of chosen attributes (genes) to locate data points in low-dimensional space. Our analysis proved that FOLFOX-resistant CRC samples are predominantly characterized by upregulated expression levels of TMEM182 and MCM9 and downregulated LRRFIP1. Additionally, the procedure developed based on expression levels of TMEM182, MCM9, LRRFIP1, LAMP1, FAM161A, KLHL36, ETV5, RNF168, SRSF11, NCKAP5, CRTAP, VAMP2, ZBTB49 and RIMBP2 proved to be capable in predicting FOLFOX therapy response. In conclusion, our approach can give a unique insight into clinical decision-making regarding therapy scheme administration, potentially increasing patients’ survival and, consequently, medical futility due to incorrect therapy application. Full article
Show Figures

Figure 1

19 pages, 19576 KiB  
Article
Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice
by Cristina Ballesteros-Pla, Julio Sevillano, María Gracia Sánchez-Alonso, María Limones, Jimena Pita, Begoña Zapatería, Marta Inmaculada Sanz-Cuadrado, Javier Pizarro-Delgado, Adriana Izquierdo-Lahuerta, Gema Medina-Gómez, Gonzalo Herradón and María del Pilar Ramos-Álvarez
Int. J. Mol. Sci. 2024, 25(20), 10960; https://doi.org/10.3390/ijms252010960 - 11 Oct 2024
Viewed by 1417
Abstract
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact [...] Read more.
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life. We analyzed glucose tolerance and circulating parameters on female wild-type (Ptn+/+) and knock-out (Ptn−/−) mice. At 9 and 15 months, we conducted morphometric analyses of pancreatic islets and evaluated the levels of insulin, glucagon, somatostatin, glucose transporter 2 (GLUT2), vesicle-associated membrane protein 2 (VAMP2), and synaptosome-associated protein 25 (SNAP25) via immunofluorescence. The effect of PTN on glucose-stimulated insulin secretion (GSIS) was evaluated in INS1E cells and isolated islets. Ptn−/− mice showed hyperinsulinemia, impaired glucose tolerance, and increased homeostatic model assessment for insulin resistance (HOMA-IR) with age. While Ptn+/+ islets enlarge with age, in Ptn−/− mice, the median size decreased, and insulin content increased. Vesicle transport and exocytosis proteins were significantly increased in 9-month-old Ptn−/− islets. Islets from Ptn−/− mice showed impaired GSIS and decreased cell membrane localization of GLUT2 whereas, PTN increased GSIS in INS1E cells. Ptn deletion accelerated age-related changes in the endocrine pancreas, affecting islet number and size, and altering VAMP2 and SNAP25 levels and GLUT2 localization leading to impaired GSIS and insulin accumulation in islets. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

11 pages, 5723 KiB  
Article
Effects of Human Neural Stem Cells Overexpressing Neuroligin and Neurexin in a Spinal Cord Injury Model
by Jiwon Jeong, Yunseo Choi, Narae Kim, Haneul Lee, Eun-Jung Yoon and Dongsun Park
Int. J. Mol. Sci. 2024, 25(16), 8744; https://doi.org/10.3390/ijms25168744 - 10 Aug 2024
Viewed by 1837
Abstract
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key [...] Read more.
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key role in therapy of neurodegenerative disorders. Neurexins (NRXNs) and neuroligins (NLGNs) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses, mediate trans-synaptic signaling, and shape neural network properties by specifying synaptic functions. In this study, we investigated the synaptic regeneration effect of human neural stem cells (NSCs) overexpressing NRXNs (F3.NRXN) and NLGNs (F3.NLGN) in a spinal cord injury model. Overexpression of NRXNs and NLGNs in the neural stem cells upregulated the expression of synaptophysin, PSD95, VAMP2, and synapsin, which are synaptic markers. The BMS scores indicated that the transplantation of F3.NRXN and F3.NLGN enhanced the recovery of locomotor function in adult rodents following spinal cord injury. Transplanted F3.NRXN and F3.NLGN differentiated into neurons and formed a synapse with the host cells in the spinal cord injury mouse model. In addition, F3.NRXN and F3.NLGN cells restored growth factors (GFs) and neurotrophic factors (NFs) and induced the proliferation of host cells. This study suggested that NSCs overexpressing NRXNs and NLGNs could be candidates for cell therapy in spinal cord injuries by facilitating synaptic regeneration. Full article
(This article belongs to the Special Issue Therapeutic Uses of Adult Stem Cells)
Show Figures

Figure 1

18 pages, 5052 KiB  
Article
Exploring the Role of Extracellular Vesicles in the Pathogenesis of Tuberculosis
by Rakesh Arya, Hemlata Shakya, Reetika Chaurasia, Md Azizul Haque and Jong-Joo Kim
Genes 2024, 15(4), 434; https://doi.org/10.3390/genes15040434 - 29 Mar 2024
Viewed by 2599
Abstract
Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB [...] Read more.
Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB patients and healthy controls (HCs), to identify differentially expressed genes (DEGs) and their associated protein–protein interaction networks and immune cell profiles, the common EV-related DEGs were identified and validated in the GSE42830 and GSE40553 datasets. We have identified nine common EV-related DEGs (SERPINA1, TNFAIP6, MAPK14, STAT1, ITGA2B, VAMP5, CTSL, CEACAM1, and PLAUR) upregulated in TB patients. Immune cell infiltration analysis revealed significant differences between TB patients and HCs, highlighting increased proportions of various immune cells in TB patients. These DEGs are involved in crucial cellular processes and pathways related to exocytosis and immune response regulation. Notably, VAMP5 exhibited excellent diagnostic performance (AUC—0.993, sensitivity—93.8%, specificity—100%), with potential as a novel biomarker for TB. The EV-related genes can serve as novel potential biomarkers that can distinguish between TB and HCs. VAMP5, which functions in exosome biogenesis and showed significant upregulation in TB, can be targeted for therapeutic interventions and treatment outcomes. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

16 pages, 562 KiB  
Article
Vector Approximate Message Passing Based OFDM-IM Detection for Underwater Acoustic Communications
by Xiao Feng, Feng Tian, Mingzhang Zhou, Haixin Sun and Zeyad A. H. Qasem
Entropy 2023, 25(12), 1667; https://doi.org/10.3390/e25121667 - 17 Dec 2023
Cited by 1 | Viewed by 1690
Abstract
Orthogonal frequency division multiplexing with index modulation (OFDM-IM) has great potential for the implementation of high spectral-efficiency underwater acoustic (UWA) communications. However, general receivers consisting of the optimal maximum likelihood detection suffer from high computational load, which prohibits real-time data transmissions in underwater [...] Read more.
Orthogonal frequency division multiplexing with index modulation (OFDM-IM) has great potential for the implementation of high spectral-efficiency underwater acoustic (UWA) communications. However, general receivers consisting of the optimal maximum likelihood detection suffer from high computational load, which prohibits real-time data transmissions in underwater scenarios. In this paper, we propose a detection based on a vector approximate message passing (VAMP) algorithm for UWA OFDM-IM communications. Firstly, a VAMP framework with a non-loopy factor graph for index detection is formulated. Secondly, by utilizing the sparsity inherently existing in OFDM-IM symbols, a novel shrinkage function is derived based on the minimum mean square error criterion, which guarantees better posterior estimation. To reduce the errors from estimated non-existing indices, one trick is utilized to search the elements from the look-up table with the minimal Euclidean distance for the replacement of erroneously estimated indices. Experiments verify the advantages of the proposed detector in terms of low complexity, robustness and effectiveness compared with the state-of-art benchmarks. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

24 pages, 3427 KiB  
Article
VAMP7j: A Splice Variant of Human VAMP7 That Modulates Neurite Outgrowth by Regulating L1CAM Transport to the Plasma Membrane
by Matteo Gasparotto, Elena Dall’Ara, Marcella Vacca and Francesco Filippini
Int. J. Mol. Sci. 2023, 24(24), 17326; https://doi.org/10.3390/ijms242417326 - 10 Dec 2023
Cited by 1 | Viewed by 1818
Abstract
The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative [...] Read more.
The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative splicing. Among the minor isoforms identified so far, VAMP7j is the one most expressed and modulated in the human brain. Therefore, we focused on gaining functional evidence on VAMP7j, which lacks a functional SNARE motif but retains both the longin and transmembrane domains. In human SH-SY5Y cells, we found VAMP7j to modulate neuritogenesis by mediating transport of L1CAM toward the plasma membrane, in a fashion regulated by phosphorylation of the longin domain. VAMP7-mediated regulation of L1CAM trafficking seems at least to differentiate humans from rats, with VAMP7j CNS expression being restricted to primates, including humans. Since L1CAM is a central player in neuritogenesis and axon guidance, these findings suggest the species-specific splicing of SYBL1 is among the fine tuners of human neurodevelopmental complexity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop