Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,240)

Search Parameters:
Keywords = Unmanned aerial vehicle (UAV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4342 KB  
Article
Energy–Latency–Accuracy Trade-off in UAV-Assisted VECNs: A Robust Optimization Approach Under Channel Uncertainty
by Tiannuo Liu, Menghan Wu, Hanjun Yu, Yixin He, Dawei Wang, Li Li and Hongbo Zhao
Drones 2026, 10(2), 86; https://doi.org/10.3390/drones10020086 (registering DOI) - 26 Jan 2026
Abstract
Federated learning (FL)-based vehicular edge computing networks (VECNs) are emerging as a key enabler of intelligent transportation systems, as their privacy-preserving and distributed architecture can safeguard vehicle data while reducing latency and energy consumption. However, conventional roadside units face processing bottlenecks in dense [...] Read more.
Federated learning (FL)-based vehicular edge computing networks (VECNs) are emerging as a key enabler of intelligent transportation systems, as their privacy-preserving and distributed architecture can safeguard vehicle data while reducing latency and energy consumption. However, conventional roadside units face processing bottlenecks in dense traffic and at the network edge, motivating the adoption of unmanned aerial vehicle (UAV)-assisted VECNs. To address this challenge, this paper proposes a UAV-assisted VECN framework with FL, aiming to improve model accuracy while minimizing latency and energy consumption during computation and transmission. Specifically, a reputation-based client selection mechanism is introduced to enhance the accuracy and reliability of federated aggregation. Furthermore, to address the channel dynamics induced by high vehicle mobility, we design a robust reinforcement learning-based resource allocation scheme. In particular, an asynchronous parallel deep deterministic policy gradient (APDDPG) algorithm is developed to adaptively allocate computation and communication resources in response to real-time channel states and task demands. To ensure consistency with real vehicular communication environments, field experiments were conducted and the obtained measurements were used as simulation parameters to analyze the proposed algorithm. Compared with state-of-the-art algorithms, the developed APDDPG algorithm achieves 20% faster convergence, 9% lower energy consumption, a FL accuracy of 95.8%, and the most robust standard deviation under varying channel conditions. Full article
(This article belongs to the Special Issue Low-Latency Communication for Real-Time UAV Applications)
25 pages, 1446 KB  
Article
A Wind Field–Perception Hybrid Algorithm for UAV Path Planning in Strong Wind Conditions
by Hongping Pu, Xinshuai Liu, Shiyong Yang, Chunlan Luo, Yuanyuan He, Mingju Chen and Xiaoxia Zheng
Algorithms 2026, 19(2), 97; https://doi.org/10.3390/a19020097 (registering DOI) - 26 Jan 2026
Abstract
As unmanned aerial vehicles (UAVs) are increasingly utilized in urban inspection and emergency rescue missions, path planning under strong wind conditions persists as a critical challenge. Traditional algorithms frequently exhibit deficiencies in environmental adaptability or encounter difficulties in balancing exploration and exploitation. This [...] Read more.
As unmanned aerial vehicles (UAVs) are increasingly utilized in urban inspection and emergency rescue missions, path planning under strong wind conditions persists as a critical challenge. Traditional algorithms frequently exhibit deficiencies in environmental adaptability or encounter difficulties in balancing exploration and exploitation. This paper presents a dynamic-proportion Bat–Cuckoo Search (BA-CS) Hybrid Algorithm enhanced with wind field perception to tackle the challenges of UAV path planning in urban environments with strong winds, specifically addressing the issues of insufficient environmental adaptation and the exploration–exploitation imbalance. The algorithm integrates a dual-feedback mechanism that dynamically modifies the ratio of the BA/CS subpopulations in accordance with real-time iteration progress and population diversity. By incorporating wind field perception into population initialization, interpopulation information exchange, and wind resistance perturbation strategies, it attains efficient path optimization under multiple constraints. Experimental results under strong winds with speeds ranging from 10.8 to 13.8 m/s indicate that the proposed algorithm generates paths that are smooth, continuous, and entirely collision-free. It achieves a superior average wind resistance cost of 0.92, which is 9.8%, 17.1%, and 52.6% lower than those of the A*, RRT, and PSO algorithms, respectively. With a planning time of 3.95 s, it satisfies the path wind resistance stability requirements stipulated in the GB/T 38930-2020 standard, providing an effective solution for UAV inspection and emergency rescue operations in urban wind scenarios. Full article
24 pages, 7306 KB  
Article
Drone-Based Maritime Anomaly Detection with YOLO and Motion/Appearance Fusion
by Nutchanon Suvittawat, De Wen Soh and Sutthiphong Srigrarom
Remote Sens. 2026, 18(3), 412; https://doi.org/10.3390/rs18030412 - 26 Jan 2026
Abstract
Maritime surveillance is critical for ensuring the safety and continuity of sea logistics, port operations, and coastal activities in the presence of anomalies such as unlawful maritime activities, security-related incidents, and anomalous events (e.g., tsunamis or aggressive marine wildlife). Recent advances in unmanned [...] Read more.
Maritime surveillance is critical for ensuring the safety and continuity of sea logistics, port operations, and coastal activities in the presence of anomalies such as unlawful maritime activities, security-related incidents, and anomalous events (e.g., tsunamis or aggressive marine wildlife). Recent advances in unmanned aerial vehicles (UAVs)/drones and computer vision enable automated, wide-area monitoring that can reduce dependence on continuous human observation and mitigate the limitations of traditional methods in complex maritime environments (e.g., waves, ship clutter, and marine animal movement). This study proposes a hybrid anomaly detection and tracking pipeline that integrates YOLOv12, as the primary object detector, with two auxiliary modules: (i) motion assistance for tracking moving anomalies and (ii) stillness (appearance) assistance for tracking slow-moving or stationary anomalies. The system is trained and evaluated on a custom maritime dataset captured using a DJI Mini 2 drone operating around a port area near Bayshore MRT Station (TE29), Singapore. Windsurfers are used as proxy (dummy) anomalies because real anomaly footage is restricted for security reasons. On the held-out test set, the trained model achieves over 90% on Precision, Recall, and mAP50 across all classes. When deployed on real maritime video sequences, the pipeline attains a mean Precision of 92.89% (SD 13.31), a mean Recall of 90.44% (SD 15.24), and a mean Accuracy of 98.50% (SD 2.00%), indicating strong potential for real-world maritime anomaly detection. This proof of concept provides a basis for future deployment and retraining on genuine anomaly footage obtained from relevant authorities to further enhance operational readiness for maritime and coastal security. Full article
47 pages, 2599 KB  
Review
The Role of Artificial Intelligence in Next-Generation Handover Decision Techniques for UAVs over 6G Networks
by Mohammed Zaid, Rosdiadee Nordin and Ibraheem Shayea
Drones 2026, 10(2), 85; https://doi.org/10.3390/drones10020085 (registering DOI) - 26 Jan 2026
Abstract
The rapid integration of unmanned aerial vehicles (UAVs) into next-generation wireless systems demands seamless and reliable handover (HO) mechanisms to ensure continuous connectivity. However, frequent topology changes, high mobility, and dynamic channel variations make traditional HO schemes inadequate for UAV-assisted 6G networks. This [...] Read more.
The rapid integration of unmanned aerial vehicles (UAVs) into next-generation wireless systems demands seamless and reliable handover (HO) mechanisms to ensure continuous connectivity. However, frequent topology changes, high mobility, and dynamic channel variations make traditional HO schemes inadequate for UAV-assisted 6G networks. This paper presents a comprehensive review of existing HO optimization studies, emphasizing artificial intelligence (AI) and machine learning (ML) approaches as enablers of intelligent mobility management. The surveyed works are categorized into three main scenarios: non-UAV HOs, UAVs acting as aerial base stations, and UAVs operating as user equipment, each examined under traditional rule-based and AI/ML-based paradigms. Comparative insights reveal that while conventional methods remain effective for static or low-mobility environments, AI- and ML-driven approaches significantly enhance adaptability, prediction accuracy, and overall network robustness. Emerging techniques such as deep reinforcement learning and federated learning (FL) demonstrate strong potential for proactive, scalable, and energy-efficient HO decisions in future 6G ecosystems. The paper concludes by outlining key open issues and identifying future directions toward hybrid, distributed, and context-aware learning frameworks for resilient UAV-enabled HO management. Full article
27 pages, 49724 KB  
Article
AMSRDet: An Adaptive Multi-Scale UAV Infrared-Visible Remote Sensing Vehicle Detection Network
by Zekai Yan and Yuheng Li
Sensors 2026, 26(3), 817; https://doi.org/10.3390/s26030817 - 26 Jan 2026
Abstract
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an [...] Read more.
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an adaptive multi-scale detection network fusing infrared (IR) and visible (RGB) modalities for robust UAV-based vehicle detection. Our framework comprises four novel components: (1) a MobileMamba-based dual-stream encoder extracting complementary features via Selective State-Space 2D (SS2D) blocks with linear complexity O(HWC), achieving 2.1× efficiency improvement over standard Transformers; (2) a Cross-Modal Global Fusion (CMGF) module capturing global dependencies through spatial-channel attention while suppressing modality-specific noise via adaptive gating; (3) a Scale-Coordinate Attention Fusion (SCAF) module integrating multi-scale features via coordinate attention and learned scale-aware weighting, improving small object detection by 2.5 percentage points; and (4) a Separable Dynamic Decoder generating scale-adaptive predictions through content-aware dynamic convolution, reducing computational cost by 48.9% compared to standard DETR decoders. On the DroneVehicle dataset, AMSRDet achieves 45.8% mAP@0.5:0.95 (81.2% mAP@0.5) at 68.3 Frames Per Second (FPS) with 28.6 million (M) parameters and 47.2 Giga Floating Point Operations (GFLOPs), outperforming twenty state-of-the-art detectors including YOLOv12 (+0.7% mAP), DEIM (+0.8% mAP), and Mamba-YOLO (+1.5% mAP). Cross-dataset evaluation on Camera-vehicle yields 52.3% mAP without fine-tuning, demonstrating strong generalization across viewpoints and scenarios. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
23 pages, 14742 KB  
Article
Grapevine Canopy Volume Estimation from UAV Photogrammetric Point Clouds at Different Flight Heights
by Leilson Ferreira, Pedro Marques, Emanuel Peres, Raul Morais, Joaquim J. Sousa and Luís Pádua
Remote Sens. 2026, 18(3), 409; https://doi.org/10.3390/rs18030409 - 26 Jan 2026
Abstract
Vegetation volume is a useful indicator for assessing canopy structure and supporting vineyard management tasks such as foliar applications and canopy management. The photogrammetric processing of imagery acquired using unmanned aerial vehicles (UAVs) enables the generation of dense point clouds suitable for estimating [...] Read more.
Vegetation volume is a useful indicator for assessing canopy structure and supporting vineyard management tasks such as foliar applications and canopy management. The photogrammetric processing of imagery acquired using unmanned aerial vehicles (UAVs) enables the generation of dense point clouds suitable for estimating canopy volume, although point cloud quality depends on spatial resolution, which is influenced by flight height. This study evaluates the effect of three flight heights (30 m, 60 m, and 100 m) on grapevine canopy volume estimation using convex hull, alpha shape, and voxel-based models. UAV-based RGB imagery and field measurements were collected during three periods at different phenological stages in an experimental vineyard. The strongest agreement with field-measured volume occurred at 30 m, where point density was highest. Envelope-based methods showed reduced performance at higher flight heights, while voxel-based grids remained more stable when voxel size was adapted to point density. Estimator behavior also varied with canopy architecture and development. The results indicate appropriate parameter choices for different flight heights and confirm that UAV-based RGB imagery can provide reliable grapevine canopy volume estimates. Full article
Show Figures

Figure 1

25 pages, 7286 KB  
Article
High-Altitude UAV-Based Detection of Rice Seedlings in Large-Area Paddy Fields
by Zhenhua Li, Xinfeng Yao, Songtao Ban, Dong Hu, Minglu Tian, Tao Yuan and Linyi Li
Agriculture 2026, 16(3), 307; https://doi.org/10.3390/agriculture16030307 - 26 Jan 2026
Abstract
Accurate quantification of field-grown rice seedlings is essential for evaluating yield potential and guiding precision field management. Unmanned aerial vehicle (UAV)-based remote sensing, with its high spatial resolution and broad coverage, provides a robust basis for accurate seedling detection and population density estimation. [...] Read more.
Accurate quantification of field-grown rice seedlings is essential for evaluating yield potential and guiding precision field management. Unmanned aerial vehicle (UAV)-based remote sensing, with its high spatial resolution and broad coverage, provides a robust basis for accurate seedling detection and population density estimation. However, in previous studies, UAVs were typically employed at relatively low altitudes, which provided high-resolution imagery and facilitated seedling recognition but limited efficiency. To enable large-area monitoring, higher flight altitudes are required, which reduces image resolution and adversely affects rice seedling recognition accuracy. In this study, UAVs were flown at a height of 30 m, and the resulting lower-resolution imagery, combined with the small size of seedlings, their dense spatial distribution, and the complex field background, necessitated algorithmic improvements for accurate detection. To address these challenges, we propose an enhanced You Only Look Once version 8 nano (YOLOv8n)-based detection model specifically designed to improve seedling recognition under high-altitude UAV imagery. The model incorporates an improved Bidirectional Feature Pyramid Network (BiFPN) for multi-scale feature fusion and small-object detection, a Global-to-Local Spatial Aggregation (GLSA) module for enriched spatial context modeling, and a Content-Guided Attention Fusion (CGAFusion) module to enhance discriminative feature learning. Experiments on high-altitude UAV imagery demonstrate that the proposed model achieves an mAP@0.5 of 94.7%, a precision of 91.0%, and a recall of 91.2%, representing a 2.3% improvement over the original YOLOv8n. These results highlight the model’s innovation in handling high-altitude UAV imagery for large-area rice seedling detection, demonstrating its effectiveness and practical potential under complex field conditions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 15789 KB  
Data Descriptor
Multi-Background UAV Spraying Behavior Recognition Dataset for Precision Agriculture
by Chang Meng, Lei Shu and Leijing Bai
J. Sens. Actuator Netw. 2026, 15(1), 14; https://doi.org/10.3390/jsan15010014 - 26 Jan 2026
Abstract
The rapid growth of precision agriculture has accelerated the deployment of plant protection unmanned aerial vehicles (UAVs). However, reliable data resources for vision-based intelligent supervision of operational states, such as whether a UAV is currently spraying, remain limited. Most publicly available UAV detection [...] Read more.
The rapid growth of precision agriculture has accelerated the deployment of plant protection unmanned aerial vehicles (UAVs). However, reliable data resources for vision-based intelligent supervision of operational states, such as whether a UAV is currently spraying, remain limited. Most publicly available UAV detection datasets target urban security and surveillance scenarios, where annotations emphasize object localization rather than agricultural operation state recognition, making them insufficient for farmland spraying supervision. Therefore, agricultural-oriented data resources are needed to cover diverse backgrounds and include operation state labels, thereby supporting both academic research and practical deployment. In this study, we construct and release the first multi-background dataset dedicated to agricultural UAV spraying behavior recognition. The dataset contains 9548 high-quality annotated images spanning the following six typical backgrounds: green cropland, bare farmland, orchard, woodland, mountainous terrain, and sky. For each UAV instance, we provide both a bounding box and a binary operation state label, namely spraying and flying without spraying. We further conduct systematic benchmark evaluations of mainstream object detection algorithms on this dataset. The dataset captures agriculture-specific challenges, including a high proportion of small objects, substantial scale variation, motion blur, and complex dynamic backgrounds, and can be used to assess algorithm robustness in real-world agricultural settings. Benchmark results show that YOLOv5n achieves the best overall performance, with an accuracy of 97.86% and an mAP@50 of 98.30%. This dataset provides critical data support for automated supervision of plant protection UAV spraying operations and precision agriculture monitoring platforms. Full article
(This article belongs to the Special Issue AI-Assisted Machine-Environment Interaction)
Show Figures

Figure 1

33 pages, 10743 KB  
Article
Bi-Level Optimization for Multi-UAV Collaborative Coverage Path Planning in Irregular Areas
by Hua Gong, Ziyang Fu, Ke Xu, Wenjuan Sun, Wanning Xu and Mingming Du
Mathematics 2026, 14(3), 416; https://doi.org/10.3390/math14030416 - 25 Jan 2026
Abstract
Multiple Unmanned Aerial Vehicle (UAV) collaborative coverage path planning is widely applied in fields such as regional surveillance. However, optimizing the trade-off between deployment costs and task execution efficiency remains challenging. To balance resource costs and execution efficiency with an uncertain number of [...] Read more.
Multiple Unmanned Aerial Vehicle (UAV) collaborative coverage path planning is widely applied in fields such as regional surveillance. However, optimizing the trade-off between deployment costs and task execution efficiency remains challenging. To balance resource costs and execution efficiency with an uncertain number of UAVs, this paper analyzes the characteristics of irregular mission areas and formulates a bi-level optimization model for multi-UAV collaborative CPP. The model aims to minimize both the number of UAVs and the total path length. First, in the upper level, an improved Best Fit Decreasing algorithm based on binary search is designed. Straight-line scanning paths are generated by determining the minimum span direction of the irregular regions. Task allocation follows a longest-path-first, minimum-residual-range rule to rapidly determine the minimum number of UAVs required for complete coverage. Considering UAV’s turning radius constraints, Dubins curves are employed to plan transition paths between scanning regions, ensuring path feasibility. Second, the lower level transforms the problem into a Multiple Traveling Salesman Problem that considers path continuity, range constraints, and non-overlapping path allocation. This problem is solved using an Improved Biased Random Key Genetic Algorithm. The algorithm employs a variable-length master–slave chromosome encoding structure to adapt to the task allocation of each UAV. By integrating biased crossover operators with 2-opt interval mutation operators, the algorithm accelerates convergence and improves solution quality. Finally, comparative experiments on mission regions of varying scales demonstrate that, compared with single-level optimization and other intelligent algorithms, the proposed method reduces the required number of UAVs and shortens the total path length, while ensuring complete coverage of irregular regions. This method provides an efficient and practical solution for multi-UAV collaborative CPP in complex environments. Full article
Show Figures

Figure 1

26 pages, 3219 KB  
Article
Car-Following-Truck Risk Identification and Its Influencing Factors Under Truck Occlusion on Mountainous Two-Lane Roads
by Taiwu Yu, Kairui Pu, Wenwen Qin and Jie Chen
Sustainability 2026, 18(3), 1201; https://doi.org/10.3390/su18031201 - 24 Jan 2026
Viewed by 46
Abstract
Unstable car-following behavior under truck-induced visual occlusion on mountainous two-lane roads significantly increases rear-end crash risk. However, compared with studies focusing on overtaking or curve risk prediction, the car-following-truck (CFT) risk and its influencing factors have received limited attention. Therefore, this study used [...] Read more.
Unstable car-following behavior under truck-induced visual occlusion on mountainous two-lane roads significantly increases rear-end crash risk. However, compared with studies focusing on overtaking or curve risk prediction, the car-following-truck (CFT) risk and its influencing factors have received limited attention. Therefore, this study used unmanned aerial vehicles (UAVs) to collect high-resolution trajectory data of CFT scenarios on both straight and curved segments under truck-induced occlusion. First, the CFT risk was quantified based on an anticipated collision time (ACT) indicator, a two-dimensional surrogate safety measure that accounts for vehicle acceleration variations. Then, extreme value theory (EVT) was applied to calibrate alignment-specific risk thresholds. Finally, an XGBoost-based risk identification model was developed using vehicle dynamics-related features, and feature importance analysis combined with partial dependence interpretability was conducted to obtain key influencing factors. The results show that the calibrated ACT thresholds are approximately 3.838 s for straight segments and 4.385 s for curved segments, providing a reliable basis for risk classification. In addition, the XGBoost-based risk identification achieved accuracies of 90.63% and 95.87% for straight and curved segments, respectively. Further analysis indicates that CFT distance was the contributing factor. Moreover, risk increases markedly within a 10–20 m range on straight segments, while it rises rapidly once spacing falls below about 10 m on curved segments. Speed and acceleration differences exhibited stronger amplifying effects under short-spacing conditions. These findings provide a micro-behavioral basis for safety management and intelligent driving applications on mountainous roads with high truck mixing rates, supporting safer and more sustainable traffic operations. Full article
Show Figures

Figure 1

27 pages, 101543 KB  
Article
YOLO-WL: A Lightweight and Efficient Framework for UAV-Based Wildlife Detection
by Chang Liu, Peng Wang, Yunping Gong and Anyu Cheng
Sensors 2026, 26(3), 790; https://doi.org/10.3390/s26030790 - 24 Jan 2026
Viewed by 65
Abstract
Accurate wildlife detection in Unmanned Aerial Vehicle (UAV)-captured imagery is crucial for biodiversity conservation, yet it remains challenging due to the visual similarity of species, environmental disturbances, and the small size of target animals. To address these challenges, this paper introduces YOLO-WL, a [...] Read more.
Accurate wildlife detection in Unmanned Aerial Vehicle (UAV)-captured imagery is crucial for biodiversity conservation, yet it remains challenging due to the visual similarity of species, environmental disturbances, and the small size of target animals. To address these challenges, this paper introduces YOLO-WL, a wildlife detection algorithm specifically designed for UAV-based monitoring. First, a Multi-Scale Dilated Depthwise Separable Convolution (MSDDSC) module, integrated with the C2f-MSDDSC structure, expands the receptive field and enriches semantic representation, enabling reliable discrimination of species with similar appearances. Next, a Multi-Scale Large Kernel Spatial Attention (MLKSA) mechanism adaptively highlights salient animal regions across different spatial scales while suppressing interference from vegetation, terrain, and lighting variations. Finally, a Shallow-Spatial Alignment Path Aggregation Network (SSA-PAN), combined with a Spatial Guidance Fusion (SGF) module, ensures precise alignment and effective fusion of multi-scale shallow features, thereby improving detection accuracy for small and low-resolution targets. Experimental results on the WAID dataset demonstrate that YOLO-WL outperforms existing state-of-the-art (SOTA) methods, achieving 94.2% mAP@0.5 and 58.0% mAP@0.5:0.95. Furthermore, evaluations on the Aerial Sheep and AI-TOD datasets confirm YOLO-WL’s robustness and generalization ability across diverse ecological environments. These findings highlight YOLO-WL as an effective tool for enhancing UAV-based wildlife monitoring and supporting ecological conservation practices. Full article
(This article belongs to the Section Intelligent Sensors)
21 pages, 1075 KB  
Article
Human-in-the-Loop Time-Varying Formation Tracking of Networked UAV Systems with Compound Actuator Faults
by Jiaqi Lu, Kaiyu Qin and Mengji Shi
Drones 2026, 10(2), 81; https://doi.org/10.3390/drones10020081 - 23 Jan 2026
Viewed by 62
Abstract
Time-varying formation tracking of networked unmanned aerial vehicle (UAV) systems plays a crucial role in cooperative missions such as encirclement, cooperative surveillance, and search-and-rescue operations, where human operators are often involved and system reliability is challenged by actuator faults and external disturbances. Motivated [...] Read more.
Time-varying formation tracking of networked unmanned aerial vehicle (UAV) systems plays a crucial role in cooperative missions such as encirclement, cooperative surveillance, and search-and-rescue operations, where human operators are often involved and system reliability is challenged by actuator faults and external disturbances. Motivated by these practical considerations, this paper investigates a human-in-the-loop time-varying formation tracking problem for networked UAV systems subject to compound actuator faults and external disturbances. To address this problem, a novel two-layer control architecture is developed, comprising a distributed observer and a fault-tolerant controller. The distributed observer enables each UAV to estimate the states of the human-in-the-loop leader using only local information exchange, while the fault-tolerant controller is designed to preserve formation tracking performance in the presence of compound actuator faults. By incorporating dynamic iteration regulation and adaptive laws, the proposed control scheme ensures that the formation tracking errors converge to a bounded neighborhood of the origin. Rigorous Lyapunov-based analysis is conducted to establish the stability, convergence, and robustness of the resulting closed-loop system. Numerical simulations further demonstrate the effectiveness of the proposed method in achieving practical time-varying formation tracking under complex fault scenarios. Full article
(This article belongs to the Special Issue Security-by-Design in UAVs: Enabling Intelligent Monitoring)
23 pages, 12977 KB  
Article
High-Precision Modeling of UAV Electric Propulsion for Improving Endurance Estimation
by Xunhua Dai, Wei Liu and Yong Chen
Drones 2026, 10(2), 80; https://doi.org/10.3390/drones10020080 - 23 Jan 2026
Viewed by 70
Abstract
The electric propulsion system is a critical determinant of unmanned aerial vehicles’ (UAVs’) operational capabilities, particularly endurance performance. This paper proposes a high-precision modeling framework for UAV electric propulsion systems to improve endurance estimation. By integrating dimensional analysis based on the Buckingham π [...] Read more.
The electric propulsion system is a critical determinant of unmanned aerial vehicles’ (UAVs’) operational capabilities, particularly endurance performance. This paper proposes a high-precision modeling framework for UAV electric propulsion systems to improve endurance estimation. By integrating dimensional analysis based on the Buckingham π theorem with data-driven parameter fitting, the method accurately predicts propeller thrust, power, and motor current under varying inflow conditions using limited experimental data. The proposed models and complete implementation are publicly available, facilitating reproducibility and further research. The key novelty of this work lies in the tight integration of dimensional analysis (via Buckingham’s π theorem) with a data-driven torque-based motor current model, enabling accurate cross-configuration predictions for both propeller aerodynamics and motor electrical characteristics using limited experimental data. The model is rigorously validated against the UIUC propeller database, a custom-built inflow test rig, and actual flight tests. The results demonstrate that the proposed approach achieves superior prediction accuracy across multiple propeller-motor configurations while significantly reducing computational costs. This work provides a reliable foundation for improving UAV endurance estimation and propulsion system design. Full article
35 pages, 581 KB  
Review
Conflict Detection, Resolution, and Collision Avoidance for Decentralized UAV Autonomy: Classical Methods and AI Integration
by Francesco d’Apolito, Phillipp Fanta-Jende, Verena Widhalm and Christoph Sulzbachner
Aerospace 2026, 13(2), 113; https://doi.org/10.3390/aerospace13020113 - 23 Jan 2026
Viewed by 81
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly deployed across diverse domains. Many applications demand a high degree of automation, supported by reliable Conflict Detection and Resolution (CD&R) and Collision Avoidance (CA) systems. At the same time, public mistrust, safety and privacy concerns, the presence [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly deployed across diverse domains. Many applications demand a high degree of automation, supported by reliable Conflict Detection and Resolution (CD&R) and Collision Avoidance (CA) systems. At the same time, public mistrust, safety and privacy concerns, the presence of uncooperative airspace users, and rising traffic density are increasing research interest toward decentralized concepts such as free flight, in which each actor is responsible for its own safe trajectory. This survey reviews CD&R and CA methods with a particular focus on decentralized automation. It analyzes qualitatively classical rule-based approaches and their limitations, then examines machine learning (ML)-based techniques that aim to improve adaptability in complex environments. Building on recent regulatory discussions, it further considers how requirements for trust, transparency, explainability, and interpretability evolve with the degree of human oversight and autonomy, addressing gaps left by prior surveys. Full article
Show Figures

Figure 1

18 pages, 6362 KB  
Article
From Human Teams to Autonomous Swarms: A Reinforcement Learning-Based Benchmarking Framework for Unmanned Aerial Vehicle Search and Rescue Missions
by Julian Bialas, Mohammad Reza Mohebbi, Michiel J. van Veelen, Abraham Mejia-Aguilar, Robert Kathrein and Mario Döller
Drones 2026, 10(2), 79; https://doi.org/10.3390/drones10020079 - 23 Jan 2026
Viewed by 62
Abstract
The adoption of novel technologies such as Unmanned Aerial Vehicles (UAVs) in Search and Rescue (SAR) operations remains limited. As a result, their full potential is not yet realized. Although UAVs have been deployed on an ad hoc basis, typically under manual control [...] Read more.
The adoption of novel technologies such as Unmanned Aerial Vehicles (UAVs) in Search and Rescue (SAR) operations remains limited. As a result, their full potential is not yet realized. Although UAVs have been deployed on an ad hoc basis, typically under manual control by dedicated operators, assisted and fully autonomous configurations remain largely unexplored. In this study, three SAR frameworks are systematically evaluated within a unified benchmarking framework: conventional ground missions, UAV-assisted missions, and fully autonomous UAV operations. As the key performance indicator, the target localization time was quantified and used as the means of comparison amongst frameworks. The conventional and assisted frameworks were experimentally tested through physical hardware in a controlled outdoor setting, wherein simulated callouts occurred via rescue teams. The autonomous swarm framework was simulated in the form of a multi-agent Reinforcement Learning (RL) method via the use of the Proximal Policy Optimization (PPO) algorithm. This enabled the optimization of the decentralized cooperative actions that could occur for efficient exploration of a partially observed three-dimensional environment. Our results demonstrated that the autonomous swarm significantly outperformed the conventional and assisted approaches in terms of speed and coverage. Finally, a detailed depiction of the framework’s integration into an operational system is provided. Full article
Show Figures

Figure 1

Back to TopTop