Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,448)

Search Parameters:
Keywords = UAVs (unmanned aerial vehicles)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5436 KiB  
Article
Research on Dynamic Particle Swarm Optimization for Multi-Objective Reconnaissance Task Allocation of UAVs
by Suyu Wang, Peihong Qiao, Quan Yue, Zhenlei Xu and Qichen Shang
Drones 2025, 9(8), 556; https://doi.org/10.3390/drones9080556 (registering DOI) - 7 Aug 2025
Abstract
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in [...] Read more.
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in task objectives and resource constraints that traditional task allocation methods struggle with in complex environments, this paper proposes a multi-objective particle swarm optimization algorithm, DCMPSO, for UAV dynamic reconnaissance task allocation. First, the framework of DCMPSO is constructed, dividing the optimization of dynamic problems into three parts: environment change detection, environment change response, and actual optimization, with the designed strategy of range prediction strategy based on centroid translation. Then, simulation experiments are conducted to verify the effectiveness of the algorithm mechanisms through ablation experiments and to demonstrate the superiority of DCMPSO in convergence and distribution compared to DNSGA-II and SGEA through comparative experiments. Finally, a multi-UAV dynamic task allocation model is established and optimized, proving that DCMPSO can correctly solve the UAV dynamic multi-objective allocation problem and effectively find its optimal solution, providing an effective solution for practical applications. Full article
Show Figures

Figure 1

21 pages, 3849 KiB  
Article
Low-Power Branch CNN Hardware Accelerator with Early Exit for UAV Disaster Detection Using 16 nm CMOS Technology
by Yu-Pei Liang, Wen-Chin Chao and Ching-Che Chung
Sensors 2025, 25(15), 4867; https://doi.org/10.3390/s25154867 - 7 Aug 2025
Abstract
This paper presents a disaster detection framework based on aerial imagery, utilizing a Branch Convolutional Neural Network (B-CNN) to enhance feature learning efficiency. The B-CNN architecture incorporates branch training, enabling effective training and inference with reduced model parameters. To further optimize resource usage, [...] Read more.
This paper presents a disaster detection framework based on aerial imagery, utilizing a Branch Convolutional Neural Network (B-CNN) to enhance feature learning efficiency. The B-CNN architecture incorporates branch training, enabling effective training and inference with reduced model parameters. To further optimize resource usage, the framework integrates DoReFa-Net for weight quantization and fixed-point parameter representation. An early exit mechanism is introduced to support low-latency, energy-efficient predictions. The proposed B-CNN hardware accelerator is implemented using TSMC 16 nm CMOS technology, incorporating power gating techniques to manage memory power consumption. Post-layout simulations demonstrate that the proposed hardware accelerator operates at 500 MHz with a power consumption of 37.56 mW. The system achieves a disaster prediction accuracy of 88.18%, highlighting its effectiveness and suitability for low-power, real-time applications in aerial disaster monitoring. Full article
Show Figures

Figure 1

22 pages, 5681 KiB  
Article
Automatic Detection System for Rainfall-Induced Shallow Landslides in Southeastern China Using Deep Learning and Unmanned Aerial Vehicle Imagery
by Yunfu Zhu, Bing Xia, Jianying Huang, Yuxuan Zhou, Yujie Su and Hong Gao
Water 2025, 17(15), 2349; https://doi.org/10.3390/w17152349 - 7 Aug 2025
Abstract
In the southeast of China, seasonal rainfall intensity is high, the distribution of mountains and hills is extensive, and many small-scale, shallow landslides frequently occur after consecutive seasons of heavy rainfall. High-precision automated identification systems can quickly pinpoint the scope of the disaster [...] Read more.
In the southeast of China, seasonal rainfall intensity is high, the distribution of mountains and hills is extensive, and many small-scale, shallow landslides frequently occur after consecutive seasons of heavy rainfall. High-precision automated identification systems can quickly pinpoint the scope of the disaster and help with important decisions like evacuating people, managing engineering, and assessing damage. Many people have designed systems for detecting such shallow landslides, but few have designed systems that combine high resolution, high automation, and real-time capability of landslide identification. Taking accuracy, automation, and real-time capability into account, we designed an automatic rainfall-induced shallow landslide detection system based on deep learning and Unmanned Aerial Vehicle (UAV) images. The system uses UAVs to capture high-resolution imagery, the U-Net (a U-shaped convolutional neural network) to combine multi-scale features, an adaptive edge enhancement loss function to improve landslide boundary identification, and the development of the “UAV Cruise Geological Hazard AI Identification System” software with an automated processing chain. The system integrates UAV-specific preprocessing and achieves a processing speed of 30 s per square kilometer. It was validated in Wanli District, Nanchang City, Jiangxi Province. The results show a Mean Intersection over Union (MIoU) of 90.7% and a Pixel Accuracy of 92.3%. Compared with traditional methods, the system significantly improves the accuracy of landslide detection. Full article
Show Figures

Figure 1

26 pages, 10480 KiB  
Article
Monitoring Chlorophyll Content of Brassica napus L. Based on UAV Multispectral and RGB Feature Fusion
by Yongqi Sun, Jiali Ma, Mengting Lyu, Jianxun Shen, Jianping Ying, Skhawat Ali, Basharat Ali, Wenqiang Lan, Yiwa Hu, Fei Liu, Weijun Zhou and Wenjian Song
Agronomy 2025, 15(8), 1900; https://doi.org/10.3390/agronomy15081900 - 7 Aug 2025
Abstract
Accurate prediction of chlorophyll content in Brassica napus L. (rapeseed) is essential for monitoring plant nutritional status and precision agricultural management. The current study focuses on single cultivars, limiting general applicability. This study used unmanned aerial vehicle (UAV)-based RGB and multispectral imagery to [...] Read more.
Accurate prediction of chlorophyll content in Brassica napus L. (rapeseed) is essential for monitoring plant nutritional status and precision agricultural management. The current study focuses on single cultivars, limiting general applicability. This study used unmanned aerial vehicle (UAV)-based RGB and multispectral imagery to evaluate six rapeseed cultivars chlorophyll content across mixed-growth stages, including seedling, bolting, and initial flowering stages. The ExG-ExR threshold segmentation was applied to remove background interference. Subsequently, color and spectral indices were extracted from segmented images and ranked according to their correlations with measured chlorophyll content. Partial Least Squares Regression (PLSR), Multiple Linear Regression (MLR), and Support Vector Regression (SVR) models were independently established using subsets of the top-ranked features. Model performance was assessed by comparing prediction accuracy (R2 and RMSE). Results demonstrated significant accuracy improvements following background removal, especially for the SVR model. Compared to data without background removal, accuracy increased notably with background removal by 8.0% (R2p improved from 0.683 to 0.763) for color indices and 3.1% (R2p from 0.835 to 0.866) for spectral indices. Additionally, stepwise fusion of spectral and color indices further improved prediction accuracy. Optimal results were obtained by fusing the top seven color features ranked by correlation with chlorophyll content, achieving an R2p of 0.878 and an RMSE of 52.187 μg/g. These findings highlight the effectiveness of background removal and feature fusion in enhancing chlorophyll prediction accuracy. Full article
Show Figures

Figure 1

31 pages, 3735 KiB  
Article
An Analysis of Layer-Freezing Strategies for Enhanced Transfer Learning in YOLO Architectures
by Andrzej D. Dobrzycki, Ana M. Bernardos and José R. Casar
Mathematics 2025, 13(15), 2539; https://doi.org/10.3390/math13152539 (registering DOI) - 7 Aug 2025
Abstract
The You Only Look Once (YOLO) architecture is crucial for real-time object detection. However, deploying it in resource-constrained environments such as unmanned aerial vehicles (UAVs) requires efficient transfer learning. Although layer freezing is a common technique, the specific impact of various freezing configurations [...] Read more.
The You Only Look Once (YOLO) architecture is crucial for real-time object detection. However, deploying it in resource-constrained environments such as unmanned aerial vehicles (UAVs) requires efficient transfer learning. Although layer freezing is a common technique, the specific impact of various freezing configurations on contemporary YOLOv8 and YOLOv10 architectures remains unexplored, particularly with regard to the interplay between freezing depth, dataset characteristics, and training dynamics. This research addresses this gap by presenting a detailed analysis of layer-freezing strategies. We systematically investigate multiple freezing configurations across YOLOv8 and YOLOv10 variants using four challenging datasets that represent critical infrastructure monitoring. Our methodology integrates a gradient behavior analysis (L2 norm) and visual explanations (Grad-CAM) to provide deeper insights into training dynamics under different freezing strategies. Our results reveal that there is no universal optimal freezing strategy but, rather, one that depends on the properties of the data. For example, freezing the backbone is effective for preserving general-purpose features, while a shallower freeze is better suited to handling extreme class imbalance. These configurations reduce graphics processing unit (GPU) memory consumption by up to 28% compared to full fine-tuning and, in some cases, achieve mean average precision (mAP@50) scores that surpass those of full fine-tuning. Gradient analysis corroborates these findings, showing distinct convergence patterns for moderately frozen models. Ultimately, this work provides empirical findings and practical guidelines for selecting freezing strategies. It offers a practical, evidence-based approach to balanced transfer learning for object detection in scenarios with limited resources. Full article
(This article belongs to the Special Issue Artificial Intelligence: Deep Learning and Computer Vision)
Show Figures

Figure 1

19 pages, 2504 KiB  
Article
TSNetIQ: High-Resolution DOA Estimation of UAVs Using Microphone Arrays
by Kequan Zhu, Tian Jin, Shitong Xie, Zixuan Liu and Jinlong Sun
Appl. Sci. 2025, 15(15), 8734; https://doi.org/10.3390/app15158734 - 7 Aug 2025
Abstract
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. The microphone array is utilized to capture sound source reception from various angles. The proposed TSNetIQ combines elaborately designed Transformer and convolutional neural networks (CNN) modules, and the raw in-phase (I) and quadrature (Q) components of the audio signals are used as input data. Hence, the direction of arrival (DOA) estimation is treated as a regression problem. Experiments are conducted to evaluate the proposed method under different signal-to-noise ratios (SNRs), sampling frequencies, and array configurations. The results demonstrate that TSNetIQ can effectively estimate the direction of the sound source, outperforming conventional architectures trained with the same dataset. This study offers superior accuracy and robustness for real-time sound source localization in UAV applications under dynamic scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 14213 KiB  
Article
All-Weather Drone Vision: Passive SWIR Imaging in Fog and Rain
by Alexander Bessonov, Aleksei Rozanov, Richard White, Galih Suwito, Ivonne Medina-Salazar, Marat Lutfullin, Dmitrii Gusev and Ilya Shikov
Drones 2025, 9(8), 553; https://doi.org/10.3390/drones9080553 - 7 Aug 2025
Abstract
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a [...] Read more.
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a broadband 400–1700 nm setting and three sub-band filters, each at four lens apertures (f/1.8–5.6). Entropy, structural-similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were computed for every weather–aperture–filter combination. Broadband SWIR consistently outperformed all filtered configurations. The gain stems from higher photon throughput, which outweighs the modest scattering reduction offered by narrowband selection. Under passive illumination, broadband SWIR therefore represents the most robust single-camera choice for unmanned aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

20 pages, 589 KiB  
Article
Intelligent Queue Scheduling Method for SPMA-Based UAV Networks
by Kui Yang, Chenyang Xu, Guanhua Qiao, Jinke Zhong and Xiaoning Zhang
Drones 2025, 9(8), 552; https://doi.org/10.3390/drones9080552 - 6 Aug 2025
Abstract
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and [...] Read more.
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and collaborate to perform tasks autonomously or semi-autonomously. These networks leverage wireless communication technologies to share data, coordinate movements, and optimize mission execution. In SPMA, traffic arriving at the UAV network node can be divided into multiple priorities according to the information timeliness, and the packets of each priority are stored in the corresponding queues with different thresholds to transmit packet, thus guaranteeing the high success rate and low latency for the highest-priority traffic. Unfortunately, the multi-priority queue scheduling of SPMA deprives the packet transmitting opportunity of low-priority traffic, which results in unfair conditions among different-priority traffic. To address this problem, in this paper we propose the method of Adaptive Credit-Based Shaper with Reinforcement Learning (abbreviated as ACBS-RL) to balance the performance of all-priority traffic. In ACBS-RL, the Credit-Based Shaper (CBS) is introduced to SPMA to provide relatively fair packet transmission opportunity among multiple traffic queues by limiting the transmission rate. Due to the dynamic situations of the wireless environment, the Q-learning-based reinforcement learning method is leveraged to adaptively adjust the parameters of CBS (i.e., idleslope and sendslope) to achieve better performance among all priority queues. The extensive simulation results show that compared with traditional SPMA protocol, the proposed ACBS-RL can increase UAV network throughput while guaranteeing Quality of Service (QoS) requirements of all priority traffic. Full article
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

26 pages, 2933 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 - 4 Aug 2025
Viewed by 181
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Viewed by 192
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

20 pages, 1971 KiB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Viewed by 228
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

22 pages, 5136 KiB  
Article
Application of UAVs to Support Blast Design for Flyrock Mitigation: A Case Study from a Basalt Quarry
by Józef Pyra and Tomasz Żołądek
Appl. Sci. 2025, 15(15), 8614; https://doi.org/10.3390/app15158614 - 4 Aug 2025
Viewed by 114
Abstract
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in [...] Read more.
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in relation to controlling burden values and reducing flyrock. The research was conducted in a basalt quarry in Lower Silesia, where high rock fracturing complicated conventional blast planning. A DJI Mavic 3 Enterprise UAV was used to capture high-resolution aerial imagery, and 3D models were created using Strayos software. These models enabled precise analysis of bench face geometry and burden distribution with centimeter-level accuracy. The results showed a significant improvement in identifying zones with improper burden values and allowed for real-time corrections in blasthole design. Despite a ten-fold reduction in the number of images used, no loss in model quality was observed. UAV-based surveys followed software-recommended flight paths, and the application of this methodology reduced the flyrock range by an average of 42% near sensitive areas. This approach demonstrates the operational benefits and enhanced safety potential of integrating UAV-based photogrammetry into blasting design workflows. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

Back to TopTop