Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = UAV hyperspectral imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11530 KB  
Review
Transferability and Robustness in Proximal and UAV Crop Imaging
by Jayme Garcia Arnal Barbedo
Agronomy 2026, 16(3), 364; https://doi.org/10.3390/agronomy16030364 - 2 Feb 2026
Abstract
AI-driven imaging is becoming central to crop monitoring, with proximal and unmanned aerial vehicle (UAV) platforms now routinely used for disease and stress detection, yield estimation, canopy structure, and fruit counting. Yet, as these models move from plots to farms, the main bottleneck [...] Read more.
AI-driven imaging is becoming central to crop monitoring, with proximal and unmanned aerial vehicle (UAV) platforms now routinely used for disease and stress detection, yield estimation, canopy structure, and fruit counting. Yet, as these models move from plots to farms, the main bottleneck is no longer raw accuracy but robustness under distribution shift. Systems trained in one field, season, cultivar, or sensor often fail when the scene, sensor, protocol, or timing changes in realistic ways. This review synthesizes recent advances on robustness and transferability in proximal and UAV imaging, drawing on a corpus of 42 core studies across field crops, orchards, greenhouse environments, and multi-platform phenotyping. Shift types are organized into four axes, namely scene, sensor, protocol, and time. The article also maps the empirical evidence on when RGB imaging alone is sufficient and when multispectral, hyperspectral, or thermal modalities can potentially improve robustness. This serves as a basis to synthesize acquisition and evaluation practices that often matter more than architectural tweaks, which include phenology-aware flight planning, radiometric standardization, metadata logging, and leave-one-field/season-out splits. Adaptation options are consolidated into a practical symptom/remedy roadmap, ranging from lightweight normalization and small target-set fine-tuning to feature alignment, unsupervised domain adaptation, style translation, and test-time updates. Finally, a benchmark and dataset agenda are outlined with emphasis on object-oriented splits, cross-sensor and cross-scale collections, and longitudinal datasets where the same fields are followed across seasons under different management regimes. The goal is to outline practices and evaluation protocols that support progress toward deployable and auditable systems, noting that such claims require standardized out-of-distribution testing and transparent reporting as emphasized in the benchmark specification and experiment suite proposed here. Full article
32 pages, 5410 KB  
Review
Ambrosia artemisiifolia in Hungary: A Review of Challenges, Impacts, and Precision Agriculture Approaches for Sustainable Site-Specific Weed Management Using UAV Technologies
by Sherwan Yassin Hammad, Gergő Péter Kovács and Gábor Milics
AgriEngineering 2026, 8(1), 30; https://doi.org/10.3390/agriengineering8010030 - 15 Jan 2026
Viewed by 525
Abstract
Weed management has become a critical agricultural practice, as weeds compete with crops for nutrients, host pests and diseases, and cause major economic losses. The invasive weed Ambrosia artemisiifolia (common ragweed) is particularly problematic in Hungary, endangering crop productivity and public health through [...] Read more.
Weed management has become a critical agricultural practice, as weeds compete with crops for nutrients, host pests and diseases, and cause major economic losses. The invasive weed Ambrosia artemisiifolia (common ragweed) is particularly problematic in Hungary, endangering crop productivity and public health through its fast proliferation and allergenic pollen. This review examines the current challenges and impacts of A. artemisiifolia while exploring sustainable approaches to its management through precision agriculture. Recent advancements in unmanned aerial vehicles (UAVs) equipped with advanced imaging systems, remote sensing, and artificial intelligence, particularly deep learning models such as convolutional neural networks (CNNs) and Support Vector Machines (SVMs), enable accurate detection, mapping, and classification of weed infestations. These technologies facilitate site-specific weed management (SSWM) by optimizing herbicide application, reducing chemical inputs, and minimizing environmental impacts. The results of recent studies demonstrate the high potential of UAV-based monitoring for real-time, data-driven weed management. The review concludes that integrating UAV and AI technologies into weed management offers a sustainable, cost-effective, mitigate the socioeconomic impacts and environmentally responsible solution, emphasizing the need for collaboration between agricultural researchers and technology developers to enhance precision agriculture practices in Hungary. Full article
Show Figures

Figure 1

24 pages, 10131 KB  
Article
A Cooperative UAV Hyperspectral Imaging and USV In Situ Sampling Framework for Rapid Chlorophyll-a Retrieval
by Zixiang Ye, Xuewen Chen, Lvxin Qian, Chaojun Lin and Wenbin Pan
Drones 2026, 10(1), 39; https://doi.org/10.3390/drones10010039 - 7 Jan 2026
Viewed by 217
Abstract
Traditional water quality monitoring methods are limited in providing timely chlorophyll-a (Chl-a) assessments in small inland reservoirs. This study presents a rapid Chl-a retrieval approach based on a cooperative unmanned aerial vehicle–uncrewed surface vessel (UAV–USV) framework that integrates UAV [...] Read more.
Traditional water quality monitoring methods are limited in providing timely chlorophyll-a (Chl-a) assessments in small inland reservoirs. This study presents a rapid Chl-a retrieval approach based on a cooperative unmanned aerial vehicle–uncrewed surface vessel (UAV–USV) framework that integrates UAV hyperspectral imaging, machine learning algorithms, and synchronized USV in situ sampling. We carried out a three-day cooperative monitoring campaign in the Longhu Reservoir of Fujian Province, during which high-frequency hyperspectral imagery and water samples were collected. An innovative median-based correction method was developed to suppress striping noise in UAV hyperspectral data, and a two-step band selection strategy combining correlation analysis and variance inflation factor screening was used to determine the input features for the subsequent inversion models. Four commonly used machine-learning-based inversion models were constructed and evaluated, with the random forest model achieving the highest accuracy and stability across both training and testing datasets. The generated Chl-a maps revealed overall good water quality, with localized higher concentrations in weakly hydrodynamic zones. Overall, the cooperative UAV–USV framework enables synchronized data acquisition, rapid processing, and fine-scale mapping, demonstrating strong potential for fast-response and emergency water-quality monitoring in small inland drinking-water reservoirs. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

21 pages, 4547 KB  
Article
Attention-Gated U-Net for Robust Cross-Domain Plastic Waste Segmentation Using a UAV-Based Hyperspectral SWIR Sensor
by Soufyane Bouchelaghem, Marco Balsi and Monica Moroni
Remote Sens. 2026, 18(1), 182; https://doi.org/10.3390/rs18010182 - 5 Jan 2026
Viewed by 348
Abstract
The proliferation of plastic waste across natural ecosystems has created a global environmental and public health crisis. Monitoring plastic litter using remote sensing remains challenging due to the significant variability in terrain, lighting, and weather conditions. Although earlier approaches, including classical supervised machine [...] Read more.
The proliferation of plastic waste across natural ecosystems has created a global environmental and public health crisis. Monitoring plastic litter using remote sensing remains challenging due to the significant variability in terrain, lighting, and weather conditions. Although earlier approaches, including classical supervised machine learning techniques such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), applied to hyperspectral and multispectral data have shown promise in controlled settings, they often may face challenges in generalizing across diverse environmental conditions encountered in real-world scenarios. In this work, we present a deep learning framework for pixel-wise segmentation of plastic waste in short-wave infrared (900–1700 nm) hyperspectral imagery acquired from an Unmanned Aerial Vehicle (UAV). Our architecture integrates attention gates and residual connections within a U-Net backbone to enhance contextual modeling and spatial-spectral consistency. We introduce a multi-flight dataset spanning over 9 UAV missions across varied environmental settings, consisting of hyperspectral cubes with centimeter-level resolution. Using a leave-one-out cross-validation protocol, our model achieves test accuracy of up to 96.8% (average 90.5%) and a 91.1% F1 score, demonstrating robust generalization to unseen data collected in different environments. Compared to classical models, the deep network captures richer semantic representations, particularly under challenging conditions. This work offers a scalable and deployable tool for automated plastic waste monitoring and represents a significant advancement in remote environmental sensing. Full article
Show Figures

Figure 1

46 pages, 26174 KB  
Article
VNIR Hyperspectral Signatures for Early Detection and Machine-Learning Classification of Wheat Diseases
by Rimma M. Ualiyeva, Mariya M. Kaverina, Anastasiya V. Osipova, Yernar B. Kairbayev, Sayan B. Zhangazin, Nurgul N. Iksat and Nariman B. Mapitov
Plants 2025, 14(23), 3644; https://doi.org/10.3390/plants14233644 - 29 Nov 2025
Cited by 1 | Viewed by 788
Abstract
This article presents the results of a comprehensive study aimed at developing automated diagnostic methods for identifying spring wheat phytopathologies using hyperspectral imaging (HSI). The research aimed to create an effective plant disease detection system, including at the early stages, which is critically [...] Read more.
This article presents the results of a comprehensive study aimed at developing automated diagnostic methods for identifying spring wheat phytopathologies using hyperspectral imaging (HSI). The research aimed to create an effective plant disease detection system, including at the early stages, which is critically important for ensuring food security in regions where wheat plays a key role in the agro-industrial sector. The study analyses the spectral characteristics of major wheat diseases, including powdery mildew, fusarium head blight, septoria glume blotch, root rots, various types of leaf spots, brown rust, and loose smut. Healthy plants differ from diseased ones in that they show a mostly uniform tone without distinct spots or patches on hyperspectral images, and their spectra have a consistent shape without sharp fluctuations. In contrast, disease spectra, differ sharply from those of healthy areas and can take diverse forms. Wheat diseases with a light coating (powdery mildew, fusarium head blight) exhibit high reflectance; chlorosis in the early stages of diseases (rust, leaf spot, septoria leaf blotch) exhibits curves with medium reflectance, and diseases with dark colouration (loose smut, root rot) have low reflectance values. These differences in reflectance among fungal diseases are caused by pigments produced by the pathogens, which either strongly absorb light or reflect most of it. The presence or absence of pigment production is determined by adaptive mechanisms. Based on these patterns in the spectral characteristics and optical properties of the diseases, a classification model was developed with 94% overall accuracy. Random Forest proved to be the most effective method for the automated detection of wheat phytopathogens using hyperspectral data. The practical significance of this research lies in the potential integration of the developed phytopathology detection approach into precision agriculture systems and the use of UAV platforms, enabling rapid large-scale crop monitoring for the timely detection. The study’s results confirm the promising potential of combining hyperspectral technologies and machine learning methods for monitoring the phytosanitary condition of crops. Our findings contribute to the advancement of digital agriculture and are particularly valuable for the agro-industrial sector of Central Asia, where adopting precision farming technologies is a strategic priority given the climatic risks and export-oriented nature of grain production. Full article
Show Figures

Figure 1

22 pages, 2027 KB  
Article
Agri-DSSA: A Dual Self-Supervised Attention Framework for Multisource Crop Health Analysis Using Hyperspectral and Image-Based Benchmarks
by Fatema A. Albalooshi
AgriEngineering 2025, 7(10), 350; https://doi.org/10.3390/agriengineering7100350 - 17 Oct 2025
Viewed by 789
Abstract
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a [...] Read more.
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a novel Dual Self-Supervised Attention (DSSA) framework that simultaneously models spectral and spatial dependencies through two complementary self-attention branches. The proposed architecture enables robust and interpretable feature learning across heterogeneous data sources, facilitating the estimation of spectral proxies of chlorophyll content, plant vigor, and disease stress indicators rather than direct physiological measurements. Experiments were performed on seven publicly available benchmark datasets encompassing diverse spectral and visual domains: three hyperspectral datasets (Indian Pines with 16 classes and 10,366 labeled samples; Pavia University with 9 classes and 42,776 samples; and Kennedy Space Center with 13 classes and 5211 samples), two plant disease datasets (PlantVillage with 54,000 labeled leaf images covering 38 diseases across 14 crop species, and the New Plant Diseases dataset with over 30,000 field images captured under natural conditions), and two chlorophyll content datasets (the Global Leaf Chlorophyll Content Dataset (GLCC), derived from MERIS and OLCI satellite data between 2003–2020, and the Leaf Chlorophyll Content Dataset for Crops, which includes paired spectrophotometric and multispectral measurements collected from multiple crop species). To ensure statistical rigor and spatial independence, a block-based spatial cross-validation scheme was employed across five independent runs with fixed random seeds. Model performance was evaluated using R2, RMSE, F1-score, AUC-ROC, and AUC-PR, each reported as mean ± standard deviation with 95% confidence intervals. Results show that Agri-DSSA consistently outperforms baseline models (PLSR, RF, 3D-CNN, and HybridSN), achieving up to R2=0.86 for chlorophyll content estimation and F1-scores above 0.95 for plant disease detection. The attention distributions highlight physiologically meaningful spectral regions (550–710 nm) associated with chlorophyll absorption, confirming the interpretability of the model’s learned representations. This study serves as a methodological foundation for UAV-based and field-deployable crop monitoring systems. By unifying hyperspectral, chlorophyll, and visual disease datasets, Agri-DSSA provides an interpretable and generalizable framework for proxy-based vegetation stress estimation. Future work will extend the model to real UAV campaigns and in-field spectrophotometric validation to achieve full agronomic reliability. Full article
Show Figures

Figure 1

29 pages, 12119 KB  
Article
Method for Obtaining Water-Leaving Reflectance from Unmanned Aerial Vehicle Hyperspectral Remote Sensing Based on Air–Ground Collaborative Calibration for Water Quality Monitoring
by Hong Liu, Xingsong Hou, Bingliang Hu, Tao Yu, Zhoufeng Zhang, Xiao Liu, Xueji Wang and Zhengxuan Tan
Remote Sens. 2025, 17(20), 3413; https://doi.org/10.3390/rs17203413 - 12 Oct 2025
Viewed by 1116
Abstract
Unmanned aerial vehicle (UAV) hyperspectral remote sensing imaging systems have demonstrated significant potential for water quality monitoring. However, accurately obtaining water-leaving reflectance from UAV imagery remains challenging due to complex atmospheric radiation transmission above water bodies. This study proposes a method for water-leaving [...] Read more.
Unmanned aerial vehicle (UAV) hyperspectral remote sensing imaging systems have demonstrated significant potential for water quality monitoring. However, accurately obtaining water-leaving reflectance from UAV imagery remains challenging due to complex atmospheric radiation transmission above water bodies. This study proposes a method for water-leaving reflectance inversion based on air–ground collaborative correction. A fully connected neural network model was developed using TensorFlow Keras to establish a non-linear mapping between UAV hyperspectral reflectance and the measured near-water and water-leaving reflectance from ground-based spectral. This approach addresses the limitations of traditional linear correction methods by enabling spatiotemporal synchronization correction of UAV remote sensing images with ground observations, thereby minimizing atmospheric interference and sensor differences on signal transmission. The retrieved water-leaving reflectance closely matched measured data within the 450–900 nm band, with the average spectral angle mapping reduced from 0.5433 to 0.1070 compared to existing techniques. Moreover, the water quality parameter inversion models for turbidity, color, total nitrogen, and total phosphorus achieved high determination coefficients (R2 = 0.94, 0.93, 0.88, and 0.85, respectively). The spatial distribution maps of water quality parameters were consistent with in situ measurements. Overall, this UAV hyperspectral remote sensing method, enhanced by air–ground collaborative correction, offers a reliable approach for UAV hyperspectral water quality remote sensing and promotes the advancement of stereoscopic water environment monitoring. Full article
(This article belongs to the Special Issue Remote Sensing in Water Quality Monitoring)
Show Figures

Figure 1

18 pages, 7359 KB  
Article
Estimating Field-Scale Soil Organic Matter in Agricultural Soils Using UAV Hyperspectral Imagery
by Chenzhen Xia and Yue Zhang
AgriEngineering 2025, 7(10), 339; https://doi.org/10.3390/agriengineering7100339 - 10 Oct 2025
Cited by 1 | Viewed by 887
Abstract
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil [...] Read more.
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil period is short, which makes reliable SOM prediction complex and difficult. In this study, an unmanned aerial vehicle (UAV) was utilized to acquire multi-temporal hyperspectral images of maize across the key growth stages at the field scale. The auxiliary predictors, such as spectral indices (I), field management (F), plant characteristics (V), and soil properties (S), were also introduced. We used stepwise multiple linear regression, partial least squares regression (PLSR), random forest (RF) regression, and XGBoost regression models for SOM prediction, and the results show the following: (1) Multi-temporal remote sensing information combined with multi-source predictors and their combinations can accurately estimate SOM content across the key growth periods. The best-fitting model depended on the types of models and predictors selected. With the I + F + V + S predictor combination, the best SOM prediction was achieved by using the XGBoost model (R2 = 0.72, RMSE = 0.27%, nRMSE = 0.16%) in the R3 stage. (2) The relative importance of soil properties, spectral indices, plant characteristics, and field management was 55.36%, 26.09%, 9.69%, and 8.86%, respectively, for the multiple periods combination. Here, this approach can overcome the impact of the crop cover condition by using multi-temporal UAV hyperspectral images combined with valuable auxiliary variables. This study can also improve the field-scale farmland soil properties assessment and mapping accuracy, which will aid in soil carbon sequestration and soil management. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
Show Figures

Figure 1

21 pages, 1768 KB  
Review
Evolution of Deep Learning Approaches in UAV-Based Crop Leaf Disease Detection: A Web of Science Review
by Dorijan Radočaj, Petra Radočaj, Ivan Plaščak and Mladen Jurišić
Appl. Sci. 2025, 15(19), 10778; https://doi.org/10.3390/app151910778 - 7 Oct 2025
Cited by 1 | Viewed by 2369
Abstract
The integration of unmanned aerial vehicles (UAVs) and deep learning (DL) has significantly advanced crop disease detection by enabling scalable, high-resolution, and near real-time monitoring within precision agriculture. This systematic review analyzes peer-reviewed literature indexed in the Web of Science Core Collection as [...] Read more.
The integration of unmanned aerial vehicles (UAVs) and deep learning (DL) has significantly advanced crop disease detection by enabling scalable, high-resolution, and near real-time monitoring within precision agriculture. This systematic review analyzes peer-reviewed literature indexed in the Web of Science Core Collection as articles or proceeding papers through 2024. The main selection criterion was combining “unmanned aerial vehicle*” OR “UAV” OR “drone” with “deep learning”, “agriculture” and “leaf disease” OR “crop disease”. Results show a marked surge in publications after 2019, with China, the United States, and India leading research contributions. Multirotor UAVs equipped with RGB sensors are predominantly used due to their affordability and spatial resolution, while hyperspectral imaging is gaining traction for its enhanced spectral diagnostic capability. Convolutional neural networks (CNNs), along with emerging transformer-based and hybrid models, demonstrate high detection performance, often achieving F1-scores above 95%. However, critical challenges persist, including limited annotated datasets for rare diseases, high computational costs of hyperspectral data processing, and the absence of standardized evaluation frameworks. Addressing these issues will require the development of lightweight DL architectures optimized for edge computing, improved multimodal data fusion techniques, and the creation of publicly available, annotated benchmark datasets. Advancements in these areas are vital for translating current research into practical, scalable solutions that support sustainable and data-driven agricultural practices worldwide. Full article
Show Figures

Figure 1

24 pages, 2583 KB  
Review
Every Pixel You Take: Unlocking Urban Vegetation Insights Through High- and Very-High-Resolution Remote Sensing
by Germán Catalán, Carlos Di Bella, Paula Meli, Francisco de la Barrera, Rodrigo Vargas-Gaete, Rosa Reyes-Riveros, Sonia Reyes-Packe and Adison Altamirano
Urban Sci. 2025, 9(9), 385; https://doi.org/10.3390/urbansci9090385 - 22 Sep 2025
Viewed by 1002
Abstract
Urban vegetation plays a vital role in mitigating the impacts of urbanization, improving biodiversity, and providing key ecosystem services. However, the spatial distribution, ecological dynamics, and social implications of urban vegetation remain insufficiently understood, particularly in underrepresented regions. This systematic review aims to [...] Read more.
Urban vegetation plays a vital role in mitigating the impacts of urbanization, improving biodiversity, and providing key ecosystem services. However, the spatial distribution, ecological dynamics, and social implications of urban vegetation remain insufficiently understood, particularly in underrepresented regions. This systematic review aims to synthesize global research trends in very-high-resolution (VHR) remote sensing of urban vegetation between 2000 and 2024. A total of 123 peer-reviewed empirical studies were analyzed using bibliometric and thematic approaches, focusing on the spatial resolution (<10 m), sensor type, research objectives, and geographic distribution. The findings reveal a predominance of biophysical studies (72%) over social-focused studies (28%), with major thematic clusters related to urban climate, vegetation structure, and technological applications such as UAVs and machine learning. The research is heavily concentrated in the Global North, particularly China and the United States, while regions like Latin America and Africa remain underrepresented. This review identifies three critical gaps: (1) limited research in the Global South, (2) insufficient integration of ecological and social dimensions, and (3) underuse of advanced technologies such as hyperspectral imaging and AI-driven analysis. Addressing these gaps is essential for promoting equitable, technology-informed urban planning. This review provides a comprehensive overview of the state of the field and offers directions for future interdisciplinary research in urban remote sensing. Full article
Show Figures

Figure 1

28 pages, 1950 KB  
Review
Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications
by Lakachew Y. Alemneh, Daganchew Aklog, Ann van Griensven, Goraw Goshu, Seleshi Yalew, Wubneh B. Abebe, Minychl G. Dersseh, Demesew A. Mhiret, Claire I. Michailovsky, Selamawit Amare and Sisay Asress
Water 2025, 17(17), 2573; https://doi.org/10.3390/w17172573 - 31 Aug 2025
Cited by 1 | Viewed by 3470
Abstract
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial [...] Read more.
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial and temporal coverage with improved resolution. This systematic review examines remote sensing applications for monitoring water hyacinth and water quality in studies published from 2014 to 2024. Seventy-eight peer-reviewed articles were selected from the Web of Science, Scopus, and Google Scholar following strict criteria. The research spans 25 countries across five continents, focusing mainly on lakes (61.5%), rivers (21%), and wetlands (10.3%). Approximately 49% of studies addressed water quality, 42% focused on water hyacinth, and 9% covered both. The Sentinel-2 Multispectral Instrument (MSI) was the most used sensor (35%), followed by the Landsat 8 Operational Land Imager (OLI) (26%). Multi-sensor fusion, especially Sentinel-2 MSI with Unmanned Aerial Vehicles (UAVs), was frequently applied to enhance monitoring capabilities. Detection accuracies ranged from 74% to 98% using statistical, machine learning, and deep learning techniques. Key challenges include limited ground-truth data and inadequate atmospheric correction. The integration of high-resolution sensors with advanced analytics shows strong promise for effective inland water monitoring. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Graphical abstract

26 pages, 7726 KB  
Article
Multi-Branch Channel-Gated Swin Network for Wetland Hyperspectral Image Classification
by Ruopu Liu, Jie Zhao, Shufang Tian, Guohao Li and Jingshu Chen
Remote Sens. 2025, 17(16), 2862; https://doi.org/10.3390/rs17162862 - 17 Aug 2025
Viewed by 937
Abstract
Hyperspectral classification of wetland environments remains challenging due to high spectral similarity, class imbalance, and blurred boundaries. To address these issues, we propose a novel Multi-Branch Channel-Gated Swin Transformer network (MBCG-SwinNet). In contrast to previous CNN-based designs, our model introduces a Swin Transformer [...] Read more.
Hyperspectral classification of wetland environments remains challenging due to high spectral similarity, class imbalance, and blurred boundaries. To address these issues, we propose a novel Multi-Branch Channel-Gated Swin Transformer network (MBCG-SwinNet). In contrast to previous CNN-based designs, our model introduces a Swin Transformer spectral branch to enhance global contextual modeling, enabling improved spectral discrimination. To effectively fuse spatial and spectral features, we design a residual feature interaction chain comprising a Residual Spatial Fusion (RSF) module, a channel-wise gating mechanism, and a multi-scale feature fusion (MFF) module, which together enhance spatial adaptivity and feature integration. Additionally, a DenseCRF-based post-processing step is employed to refine classification boundaries and suppress salt-and-pepper noise. Experimental results on three UAV-based hyperspectral wetland datasets from the Yellow River Delta (Shandong, China)—NC12, NC13, and NC16—demonstrate that MBCG-SwinNet achieves superior classification performance, with overall accuracies of 97.62%, 82.37%, and 97.32%, respectively—surpassing state-of-the-art methods. The proposed architecture offers a robust and scalable solution for hyperspectral image classification in complex ecological settings. Full article
Show Figures

Figure 1

22 pages, 5692 KB  
Article
RiceStageSeg: A Multimodal Benchmark Dataset for Semantic Segmentation of Rice Growth Stages
by Jianping Zhang, Tailai Chen, Yizhe Li, Qi Meng, Yanying Chen, Jie Deng and Enhong Sun
Remote Sens. 2025, 17(16), 2858; https://doi.org/10.3390/rs17162858 - 16 Aug 2025
Viewed by 2229
Abstract
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers [...] Read more.
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers complementary and enriched spectral–spatial information, providing novel pathways for crop growth stage recognition in complex agricultural scenarios. However, the lack of publicly available multimodal datasets specifically designed for rice growth stage identification remains a significant bottleneck that limits the development and evaluation of relevant methods. To address this gap, we present RiceStageSeg, a multimodal benchmark dataset captured by unmanned aerial vehicles (UAVs), designed to support the development and assessment of segmentation models for rice growth monitoring. RiceStageSeg contains paired centimeter-level RGB and 10-band multispectral (MS) images acquired during several critical rice growth stages, including jointing and heading. Each image is accompanied by fine-grained, pixel-level annotations that distinguish between the different growth stages. We establish baseline experiments using several state-of-the-art semantic segmentation models under both unimodal (RGB-only, MS-only) and multimodal (RGB + MS fusion) settings. The experimental results demonstrate that multimodal feature-level fusion outperforms unimodal approaches in segmentation accuracy. RiceStageSeg offers a standardized benchmark to advance future research in multimodal semantic segmentation for agricultural remote sensing. The dataset will be made publicly available on GitHub v0.11.0 (accessed on 1 August 2025). Full article
Show Figures

Figure 1

23 pages, 4597 KB  
Article
High-Throughput UAV Hyperspectral Remote Sensing Pinpoints Bacterial Leaf Streak Resistance in Wheat
by Alireza Sanaeifar, Ruth Dill-Macky, Rebecca D. Curland, Susan Reynolds, Matthew N. Rouse, Shahryar Kianian and Ce Yang
Remote Sens. 2025, 17(16), 2799; https://doi.org/10.3390/rs17162799 - 13 Aug 2025
Cited by 2 | Viewed by 1860
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet [...] Read more.
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet visual ratings in inoculated nurseries are labor-intensive, subjective, and time-consuming. To accelerate this process, we combined unmanned-aerial-vehicle hyperspectral imaging (UAV-HSI) with a carefully tuned chemometric workflow that delivers rapid, objective estimates of disease severity. Principal component analysis cleanly separated BLS, leaf rust, and Fusarium head blight, with the first component explaining 97.76% of the spectral variance, demonstrating in-field pathogen discrimination. Pre-processing of the hyperspectral cubes, followed by robust Partial Least Squares (RPLS) regression, improved model reliability by managing outliers and heteroscedastic noise. Four variable-selection strategies—Variable Importance in Projection (VIP), Interval PLS (iPLS), Recursive Weighted PLS (rPLS), and Genetic Algorithm (GA)—were evaluated; rPLS provided the best balance between parsimony and accuracy, trimming the predictor set from 244 to 29 bands. Informative wavelengths clustered in the near-infrared and red-edge regions, which are linked to chlorophyll loss and canopy water stress. The best model, RPLS with optimal preprocessing and variable selection based on the rPLS method, showed high predictive accuracy, achieving a cross-validated R2 of 0.823 and cross-validated RMSE of 7.452, demonstrating its effectiveness for detecting and quantifying BLS. We also explored the spectral overlap with Sentinel-2 bands, showing how UAV-derived maps can nest within satellite mosaics to link plot-level scouting to landscape-scale surveillance. Together, these results lay a practical foundation for breeders to speed the selection of resistant lines and for agronomists to monitor BLS dynamics across multiple spatial scales. Full article
Show Figures

Figure 1

19 pages, 4142 KB  
Article
Onboard Real-Time Hyperspectral Image Processing System Design for Unmanned Aerial Vehicles
by Ruifan Yang, Min Huang, Wenhao Zhao, Zixuan Zhang, Yan Sun, Lulu Qian and Zhanchao Wang
Sensors 2025, 25(15), 4822; https://doi.org/10.3390/s25154822 - 5 Aug 2025
Viewed by 2515
Abstract
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA [...] Read more.
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA SSD storage. Through hardware-level task partitioning—utilizing FPGA for high-speed data buffering and ARM for core computational processing—it achieves a real-time end-to-end acquisition–storage–processing–display pipeline. The compact integrated device exhibits a total weight of merely 6 kg and power consumption of 40 W, suitable for airborne platforms. Experimental validation confirms the system’s capability to store over 200 frames per second (at 640 × 270 resolution, matching the camera’s maximum frame rate), quick-look imaging capability, and demonstrated real-time processing efficacy via relative radio-metric correction tasks (processing 5000 image frames within 1000 ms). This framework provides an effective technical solution to address hyperspectral data processing bottlenecks more efficiently on UAV platforms for dynamic scenario applications. Future work includes actual flight deployment to verify performance in operational environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop