Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Description of Articles and Publication Trends
3.2. Trends in Journal Publications
3.3. Global Distribution of Studies
3.4. Temporal Analysis of the Studies
3.5. Remote Sensing for Water Hyacinth Monitoring
Modeling Approaches for Water Hyacinth Monitoring
3.6. Remote Sensing for Water Quality Assessment
Methods Used for Establishing Inversion Algorithms
4. Discussion
4.1. Publication Trends
4.2. Satellite Sensors Used for Monitoring
4.3. The Changing Landscape of Peer-Reviewed Journals
4.4. Spatial and Temporal Variability of Water Hyacinth Expansion
Comparative Approaches to Water Hyacinth Monitoring and Assessment
4.5. Satellite-Based Monitoring of Water Quality Dynamics
4.5.1. Chlorophyll-a
4.5.2. Turbidity
4.5.3. Total Suspended Solids
4.5.4. Spatiotemporal Variability of Water Quality Parameters
4.6. Challenges and Gaps of Remote Sensing Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, M.P.; Coetzee, J.A. Integrated Control of Water Hyacinth in Africa. EPPO Bull. 2008, 38, 452–457. [Google Scholar] [CrossRef]
- Kabir, H.; Juthi, T.; Islam, M.T.; Rahman, M.W.; Khan, R. WaterHyacinth: A Comprehensive Image Dataset of Various Water Hyacinth Species from Different Regions of Bangladesh. Data Brief 2024, 52, 109872. [Google Scholar] [CrossRef]
- Cai, J.; Jiao, C.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Wondie, A.; Sato, S. Water Hyacinth Infestation in Lake Tana, Ethiopia: A Review of Population Dynamics. Limnology 2023, 24, 51–60. [Google Scholar] [CrossRef]
- Gaikwad, R.P.; Gavande, S. Major Factors Contributing Growth of Water Hyacinth in Natural Water Bodies. Int. J. Eng. Res. 2017, 6, 304. [Google Scholar] [CrossRef]
- Kiyemba, H.; Barasa, B.; Asaba, J.; Makoba Gudoyi, P.; Akello, G. Water Hyacinth’s Extent and Its Implication on Water Quality in Lake Victoria, Uganda. Sci. World J. 2023, 2023, 4947272. [Google Scholar] [CrossRef]
- Mitan, N.M.M. Water Hyacinth: Potential and Threat. Mater. Today Proc. 2019, 19, 1408–1412. [Google Scholar] [CrossRef]
- Mukarugwiro, J.A.; Newete, S.W.; Adam, E.; Nsanganwimana, F.; Abutaleb, K.A.; Byrne, M.J. Mapping Distribution of Water Hyacinth (Eichhornia Crassipes) in Rwanda Using Multispectral Remote Sensing Imagery. Afr. J. Aquat. Sci. 2019, 44, 339–348. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Melesse, A.M.; Tilahun, S.A.; Abate, M.; Dagnew, D.C. Water Hyacinth: Review of Its Impacts on Hydrology and Ecosystem Services-Lessons for Management of Lake Tana; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 1824, ISBN 9780128159989. [Google Scholar]
- Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; Leclair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote Sensing of the Environment with Small Unmanned Aircraft Systems (Uass), Part 2: Scientific and Commercial Applications. J. Unmanned Veh. Syst. 2014, 2, 86–102. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote Sensing Platforms and Sensors: A Survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote Sensing Techniques for Water Quality Monitoring: A Review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a Support Vector Machine Based Cloud Detection Method for MODIS with the Adjustability to Various Conditions. Remote Sens. Environ. 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Huemmrich, K.F. Relationship between Fraction of Radiation Absorbed by Photosynthesizing Maize and Soybean Canopies and NDVI from Remotely Sensed Data Taken at Close Range and from MODIS 250m Resolution Data. Remote Sens. Environ. 2014, 147, 108–120. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing Continuity and Increased Precision for Measuring Multi-Decadal Time Series of Total Suspended Matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Understanding Seasonal Dynamics of Invasive Water Hyacinth (Eichhornia Crassipes) in the Greater Letaba River System Using Sentinel-2 Satellite Data. GIsci Remote Sens. 2019, 56, 1355–1377. [Google Scholar] [CrossRef]
- Medina-Lopez, E.; McMillan, D.; Lazic, J.; Hart, E.; Zen, S.; Angeloudis, A.; Bannon, E.; Browell, J.; Dorling, S.; Dorrell, R.M.; et al. Satellite Data for the Offshore Renewable Energy Sector: Synergies and Innovation Opportunities. Remote Sens. Environ. 2021, 264, 112588. [Google Scholar] [CrossRef]
- Moges, M.A.; Schmitter, P.; Tilahun, S.A.; Ayana, E.K.; Ketema, A.A.; Nigussie, T.E.; Steenhuis, T.S. Water Quality Assessment by Measuring and Using Landsat 7 ETM+ Images for the Current and Previous Trend Perspective: Lake Tana Ethiopia. J. Water Resour. Prot. 2017, 09, 1564–1585. [Google Scholar] [CrossRef]
- Fu, B.; Lao, Z.; Liang, Y.; Sun, J.; He, X.; Deng, T.; He, W.; Fan, D.; Gao, E.; Hou, Q. Evaluating Optically and Non-Optically Active Water Quality and Its Response Relationship to Hydro-Meteorology Using Multi-Source Data in Poyang. Ecol. Indic. 2022, 145, 109675. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Huang, X.; Qin, B. Monitoring Water Quality Using Proximal Remote Sensing Technology. Sci. Total Environ. 2022, 803, 149805. [Google Scholar] [CrossRef]
- Dapke, P.P.; Quadri, S.A.; Nagare, S.M.; Bandal, S.B.; Baheti, M.R. A Literature Review on Watershed Management Using Remote Sensing And GIS. Int. J. Comput. Sci. Inf. Secur. 2024, 22, 1–8. [Google Scholar]
- Hestir, E.L.; Khanna, S.; Andrew, M.E.; Santos, M.J.; Viers, J.H.; Greenberg, J.A.; Rajapakse, S.S.; Ustin, S.L. Identification of Invasive Vegetation Using Hyperspectral Remote Sensing in the California Delta Ecosystem. Remote Sens. Environ. 2008, 112, 4034–4047. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Noor, K.; Herbert, K. Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. J. Sens. 2020, 2020, 8858408. [Google Scholar] [CrossRef]
- Gerardo, R.; de Lima, I.P. Assessing the Potential of Sentinel-2 Data for Tracking Invasive Water Hyacinth in a River Branch. J. Appl. Remote Sens. 2022, 16, 014511. [Google Scholar] [CrossRef]
- Sari, D.N.; Wismoyo, G.S. Spatio-Temporal Analysis of Water Hyacinth Density (Eichhornia Crassipes) in Lake Rawa Pening 2019–2023 Using NDVI Algorithm on Google Earth Engine (GEE). IOP Conf. Ser. Earth Environ. Sci. 2024, 1406, 012022. [Google Scholar] [CrossRef]
- Mucheye, T.; Haro, S.; Papaspyrou, S.; Caballero, I. Water Quality and Water Hyacinth Monitoring with the Sentinel-2A/B Satellites in Lake Tana (Ethiopia). Remote Sens. 2022, 14, 4921. [Google Scholar] [CrossRef]
- Belayhun, M.; Chere, Z.; Abay, N.G.; Nicola, Y.; Asmamaw, A. Spatiotemporal Pattern of Water Hyacinth (Pontederia crassipes) Distribution in Lake Tana, Ethiopia, Using a Random Forest Machine Learning Model. Front. Environ. Sci. 2024, 12, 1476014. [Google Scholar] [CrossRef]
- Singh, G.; Reynolds, C.; Byrne, M.; Rosman, B. A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and Invasive Water Hyacinth at National Extents. Remote Sens. 2020, 12, 4021. [Google Scholar] [CrossRef]
- Ahmed, T.; Zounemat-Kermani, M.; Scholz, M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 8518. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Remote Sensing of Invasive Water Hyacinth (Eichhornia Crassipes): A Review on Applications and Challenges. Remote Sens. Appl. 2018, 10, 36–46. [Google Scholar] [CrossRef]
- Worku, M.; Sahile, S. Impact of Water Hyacinth, Eichhornia Crassipes (Martius) (Pontederiaceae) in Lake Tana Ethiopia: A Review. J. Aquac. Res. Dev. 2018, 9, 3. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Das, S.; Nandi, D.; Thakur, R.R.; Bera, D.K.; Behera, D.; Đurin, B.; Cetl, V. A Novel Approach for Ex Situ Water Quality Monitoring Using the Google Earth Engine and Spectral Indices in Chilika Lake, Odisha, India. ISPRS Int. J. Geoinf. 2024, 13, 381. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews Systematic Reviews and Meta-Analyses. Res. Cent. Eco-Environ. Sci. 2021, 372, n71. [Google Scholar] [CrossRef]
- Ngwenya, N.; Bangira, T.; Sibanda, M.; Kebede Gurmessa, S.; Mabhaudhi, T. Trends in Remote Sensing of Water Quality Parameters in Inland Water Bodies: A Systematic Review. Geocarto Int. 2025, 40, 1–22. [Google Scholar] [CrossRef]
- Castro, C.C.; Gómez, J.A.D.; Martín, J.D.; Sánchez, B.A.H.; Arango, J.L.C.; Tuya, F.A.C.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Papa, A. A Versatile Constellation of Microsatellites with Electric Propulsion for Earth Observation: Mission Analysis and Platform Design. J. Sustain. Reg. Initiat. 2021, 3, 4–13. [Google Scholar]
- Mouta, N.; Silva, R.; Pinto, E.M.; Vaz, A.S.; Alonso, J.M.; Gonçalves, J.F.; Honrado, J.; Vicente, J.R. Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant Species along a River—The Case of Water-Hyacinth. Remote Sens. 2023, 15, 3248. [Google Scholar] [CrossRef]
- Pádua, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Rodrigues, M.Â.; Oliveira, V.; Santos, D.; Miguens, M.F.P.; Castro, J.P. Water Hyacinth (Eichhornia Crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones 2022, 6, 47. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Li, X.; Huang, Y.; Zhang, L.; Zhu, Z.; Sun, X.; Lan, Z.; Guo, W. Hyperspectral Remote Sensing Technology for Water Quality Monitoring: Knowledge Graph Analysis and Frontier Trend. Front. Environ. Sci. 2023, 11, 1133325. [Google Scholar] [CrossRef]
- Shen, J.; He, P.; Sun, X.; Shen, Z.; Xu, R. Impact Eichhornia Crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal. Remote Sens. 2023, 15, 2260. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Inter-Comparison of Remote Sensing Sensing-Based Shoreline Mapping Techniques at Different Coastal Stretches of India. Environ. Monit. Assess. 2017, 189, 290. [Google Scholar] [CrossRef] [PubMed]
- Ghoussein, Y.; Nicolas, H.; Haury, J.; Fadel, A.; Pichelin, P.; Hamdan, H.A.; Faour, G. Multitemporal Remote Sensing Based on an FVC Reference Period Using Sentinel-2 for Monitoring Eichhornia Crassipes on a Mediterranean River. Remote Sens. 2019, 11, 1856. [Google Scholar] [CrossRef]
- Ade, C.; Khanna, S.; Lay, M.; Ustin, S.L.; Hestir, E.L. Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using Sentinel-2 Satellite Remote Sensing. Remote Sens. 2022, 14, 3013. [Google Scholar] [CrossRef]
- Pádua, L.; Duarte, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Castro, J.P. Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data. Plants 2022, 11, 3465. [Google Scholar] [CrossRef]
- Nassar, M.; Salah, K.; ur Rehman, M.H.; Svetinovic, D. Blockchain for Explainable and Trustworthy Artificial Intelligence. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1340. [Google Scholar] [CrossRef]
- Herrera Ollachica, D.A.; Asiedu Asante, B.K.; Imamura, H. Advancing Water Hyacinth Recognition: Integration of Deep Learning and Multispectral Imaging for Precise Identification. Remote Sens. 2025, 17, 689. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Gao, T. The Multifaceted Function of Water Hyacinth in Maintaining Environmental Sustainability and the Underlying Mechanisms: A Mini Review. Int. J. Environ. Res. Public Health 2022, 19, 16725. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, J.; Yue, Y.; Lan, Y.; Ling, M.; Li, X.; You, H.; Han, X.; Zhou, G. Tradeoffs among Multi-Source Remote Sensing Images, Spatial Resolution, and Accuracy for the Classification of Wetland Plant Species and Surface Objects Based on the MRS_DeepLabV3+ Model. Ecol. Inf. 2024, 81, 102594. [Google Scholar] [CrossRef]
- Chawira, M.; Dube, T.; Gumindoga, W. Remote Sensing Based Water Quality Monitoring in Chivero and Manyame Lakes of Zimbabwe. Phys. Chem. Earth 2013, 66, 38–44. [Google Scholar] [CrossRef]
- Rajora, K.; Tyagi, S.; Jena, R. Evaluation of Water Hyacinth Utility through Geospatial Mapping and in Situ Biomass Estimation Approach: A Case Study of Deepor Beel (Wetland), Assam, India. Environ. Monit. Assess. 2023, 195, 1277. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lakewater Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of Water Quality Parameters Using Temporal Remote Sensing Spectral Reflectance in Arid Environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef]
- Kupssinskü, L.S.; Guimarães, T.T.; De Souza, E.M.; Zanotta, D.C.; Veronez, M.R.; Gonzaga, L.; Mauad, F.F. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B.; Wieprecht, S. Machine Learning Approach for Water Quality Predictions Based on Multispectral Satellite Imageries. Ecol. Inf. 2024, 84, 102868. [Google Scholar] [CrossRef]
- Leggesse, E.S.; Zimale, F.A.; Sultan, D.; Enku, T.; Srinivasan, R.; Tilahun, S.A. Predicting Optical Water Quality Indicators from Remote Sensing Using Machine Learning Algorithms in Tropical Highlands of Ethiopia. Hydrology 2023, 10, 110. [Google Scholar] [CrossRef]
- Trisakti, B.; Suwargana, N.; Cahyono, J.S. Monitoring of Lake Ecosystem Parameter Using Landsat Data (a Case Study: Lake Rawa Pening). Int. J. Remote Sens. Earth Sci. 2017, 12, 71. [Google Scholar] [CrossRef]
- Adjovu, G.; Stephen, H.; James, D.; Ahmad, S. Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems. Remote Sens. 2023, 15, 3534. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M. Study on Spatiotemporal Variability of Water Quality Parameters in Florida Bay Using Remote Sensing. J. Remote Sens. GIS 2017, 6, 1000207. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W. Water Quality Monitoring and Evaluation Using Remote-Sensing Techniques in China: A Systematic Review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef]
- Mirmazloumi, S.M.; Moghimi, A.; Ranjgar, B.; Mohseni, F.; Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Brisco, B. Status and Trends of Wetland Studies in Canada Using Remote Sensing Technology with a Focus on Wetland Classification: A Bibliographic Analysis. Remote Sens. 2021, 13, 4025. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Zou, D.; Chen, H.; Zhong, R.; Li, H.; Zhou, W.; Yan, K. Social Network and Bibliometric Analysis of Unmanned Aerial Vehicle Remote Sensing Applications from 2010 to 2021. Remote Sens. 2021, 13, 2912. [Google Scholar] [CrossRef]
- Yang, H.; Du, Y.; Zhao, H.; Chen, F. Water Quality Chl-a Inversion Based on Spatio-Temporal Fusion and Convolutional Neural Network. Remote Sens. 2022, 14, 1267. [Google Scholar] [CrossRef]
- Kilonzo, F.; Masese, F.O.; Van Griensven, A.; Bauwens, W.; Obando, J.; Lens, P.N.L. Spatial-Temporal Variability in Water Quality and Macro-Invertebrate Assemblages in the Upper Mara River Basin, Kenya. Phys. Chem. Earth 2014, 67–69, 93–104. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Latwal, A.; Rehana, S.; Rajan, K.S. Detection and Mapping of Water and Chlorophyll-a Spread Using Sentinel-2 Satellite Imagery for Water Quality Assessment of Inland Water Bodies. Environ. Monit. Assess. 2023, 195, 1304. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate Change and the World’s River Basins: Anticipating Management Options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Mukarugwiro, J.A.; Newete, S.W.; Abutaleb, E.A.F.N.K.; Byrne, M.J. Mapping Spatio—Temporal Variations in Water Hyacinth (Eichhornia Crassipes) Coverage on Rwandan Water Bodies Using Multispectral Imageries. Int. J. Environ. Sci. Technol. 2021, 18, 275–286. [Google Scholar] [CrossRef]
- Sachan, A.; Pradhan, A.K.; Mohindra, V.; Menegaki, A. A Bibliometric Analysis of Key Drivers, Trends, and Research Collaboration on Environmental Degradation. Discov. Sustain. 2025, 6, 350. [Google Scholar] [CrossRef]
- Dalky, A.; Altawalbih, M.; Alshanik, F.; Khasawneh, R.A.; Tawalbeh, R.; Al-Dekah, A.M.; Alrawashdeh, A.; Quran, T.O.; ALBashtawy, M. Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis. Healthcare 2025, 13, 892. [Google Scholar] [CrossRef]
- Hyun, J.C.; Kirui, P.; Natarajan, H. Test of Multi-Spectral Vegetation Index for Floating and Canopy-Forming Submerged Vegetation. Int. J. Environ. Res. Public Health 2008, 5, 477–483. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) Data Processing for Aquatic Science Applications: Demonstrations and Validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Lian, Z.; Zhan, Y.; Zhang, W.; Wang, Z.; Liu, W.; Huang, X. Recent Advances in Deep Learning-Based Spatiotemporal Fusion Methods for Remote Sensing Images. Sensors 2025, 25, 1093. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, X.; Deng, H.; Lei, Z.; Deng, L.-J. FusionMamba: Efficient Image Fusion with State Space Model. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Ying, H.; Xia, K.; Huang, X.; Feng, H.; Yang, Y.; Du, X.; Huang, L. Evaluation of Water Quality Based on UAV Images and the IMP-MPP Algorithm. Ecol. Inf. 2021, 61, 101239. [Google Scholar] [CrossRef]
- Song, F.; Zhang, W.; Yuan, T.; Ji, Z.; Cao, Z.; Xu, B.; Lu, L.; Zou, S. UAV Quantitative Remote Sensing of Riparian Zone Vegetation for River and Lake Health Assessment: A Review. Remote Sens. 2024, 16, 3560. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Ayana, E.K.; Dile, Y.T.; Moges, M.A.; Dersseh, M.G.; Tegegne, G.; Kibret, S. Spatiotemporal Dynamics and Environmental Controlling Factors of the Lake Tana Water Hyacinth in Ethiopia. Remote Sens. 2020, 12, 2706. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Winton, R.S.; Calamita, E.; Niggemann, F.; Botter, M.; Wehrli, B.; Ghazoul, J. Living with Floating Vegetation Invasions. Ambio 2021, 50, 125–137. [Google Scholar] [CrossRef]
- Yitbarek, M.; Belay, M.; Bazezew, A. Determinants of Manual Control of Water Hyacinth Expansion over the Lake Tana, Ethiopia. AFRREV STECH 2019, 8, 1. [Google Scholar] [CrossRef]
- Abebe, T.; Awoke, B.G.; Nega, W. Spatiotemporal Patterns of Water Hyacinth Dynamics as a Response to Seasonal Climate Variability in Lake Tana, Ethiopia. Appl. Water Sci. 2023, 13, 170. [Google Scholar] [CrossRef]
- Asmare, T.; Demissie, B.; Nigusse, A.G.; GebreKidan, A. Detecting Spatiotemporal Expansion of Water Hyacinth (Eichhornia Crassipes) in Lake Tana, Northern Ethiopia. J. Indian Soc. Remote Sens. 2020, 48, 751–764. [Google Scholar] [CrossRef]
- Damtie, Y.A.; Berlie, A.B.; Gessese, G.M.; Ayalew, T.K. Characterization of Water Hyacinth (Eichhornia Crassipes (Mart.) Solms) Biomass in Lake Tana, Ethiopia. All. Life 2022, 15, 1126–1140. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Abebe, W.B.; Mhiret, D.A.; Melesse, A.M. Spatial and Temporal Dynamics of Water Hyacinth and Its Linkage with Lake-Level Fluctuation: Lake Tana, a Sub-Humid Region of the Ethiopian Highlands. Water 2020, 12, 1435. [Google Scholar] [CrossRef]
- Janssens, N.; Schreyers, L.; Biermann, L.; Van Der Ploeg, M.; Bui, T.K.L.; Van Emmerik, T. Rivers Running Green: Water Hyacinth Invasion Monitored from Space. Environ. Res. Lett. 2022, 17, 044069. [Google Scholar] [CrossRef]
- Aviraj; Maharaj, S.; Prabhu, G.N.; Bhowmik, D. Monitoring the Spread of Water Hyacinth (Pontederia Crassipes): Challenges and Future Developments. Remote Sens. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Bayable, G.; Cai, J.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Imamura, H.; Kuwahara, V.S. Detection of Water Hyacinth ( Eichhornia Crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water 2023, 15, 880. [Google Scholar] [CrossRef]
- Nyamekye, C.; Ofosu, S.A.; Arthur, R.; Osei, G.; Appiah, L.B.; Kwofie, S.; Ghansah, B.; Bryniok, D. Evaluating the Spatial and Temporal Variations of Aquatic Weeds (Biomass) on Lower Volta River Using Multi-Sensor Landsat Images and Machine Learning. Heliyon 2021, 7, e07080. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Testing Two Methods for Mapping Water Hyacinth (Eichhornia Crassipes) in the Greater Letaba River System, South Africa: Discrimination and Mapping Potential of the Polar-Orbiting Sentinel-2 MSI and Landsat 8 OLI Sensors. Int. J. Remote Sens. 2018, 39, 8041–8059. [Google Scholar] [CrossRef]
- Clark, J.S. Model Assessment and Selection. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2001; ISBN 9780387848570. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; ISBN 9781461471370. [Google Scholar]
- Pirbasti, M.A.; Akbari, V.; Bhowmik, D.; Savitri, M.; Marino, A. Detection and Mapping of Water Hyacinth Growth Cycle in Anzali International Wetland Using Sentinel-2 Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13346–13357. [Google Scholar] [CrossRef]
- Gao, H.; Li, R.; Shen, Q.; Yao, Y.; Shao, Y.; Zhou, Y.; Li, W.; Li, J.; Zhang, Y.; Liu, M. Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu. Remote Sens. 2024, 16, 867. [Google Scholar] [CrossRef]
- Brown, C.A.; Huot, Y.; Werdell, P.J.; Gentili, B.; Claustre, H. The Origin and Global Distribution of Second Order Variability in Satellite Ocean Color and Its Potential Applications to Algorithm Development. Remote Sens. Environ. 2008, 112, 4186–4203. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 27–31. [Google Scholar] [CrossRef]
- Cordeiro, P.F.; Goulart, F.F.; Macedo, D.R.; Castro, S.R. Modeling of the Potential Distribution of Eichhornia Crassipes on a Global Scale: Risks and Threats to Water Ecosystems Modelagem de Distribuição Potencial Da Eichhornia Crassipes Em Escala Global: Riscos e Ameaças Para Os Ecossistemas Aquáticos. J. Appl. Sci. 2020, 15, 1. [Google Scholar] [CrossRef]
- Deng, J.; Chen, F.; Hu, W.; Lu, X.; Xu, B.; Hamilton, D.P. Variations in the Distribution of Chl-a and Simulation Using a Multiple Regression Model. Int. J. Environ. Res. Public Health 2019, 16, 4553. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Muthivhi, F.F.; Dondofema, F.; Munyai, L.F.; Dalu, T. Chlorophyll-a Unveiled: Unlocking Reservoir Insights through Remote Sensing in a Subtropical Reservoir. Environ. Monit. Assess. 2024, 196, 401. [Google Scholar] [CrossRef]
- Lins, R.C.; Martinez, J.M.; Marques, D.D.M.; Cirilo, J.A.; Fragoso, C.R. Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef]
- Laili, N.; Arafah, F.; Jaelani, L.M.; Subehi, L.; Pamungkas, A.; Koenhardono, E.S.; Sulisetyono, A. Development of Water Quality Parameter Retrieval Algorithms for Estimating Total Suspended Solids and Chlorophyll-A Concentration Using Landsat-8 Imagery at Poteran Island Water. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 55–62. [Google Scholar] [CrossRef]
- Saberioon, M.; Brom, J.; Nedbal, V.; Souček, P.; Císař, P. Chlorophyll-a and Total Suspended Solids Retrieval and Mapping Using Sentinel-2A and Machine Learning for Inland Waters. Ecol. Indic. 2020, 113, 106236. [Google Scholar] [CrossRef]
- Zhang, Y.; Hallikainen, M.; Zhang, H.; Duan, H.; Li, Y.; Liang, X.S. Chlorophyll-A Estimation in Turbid Waters Using Combined SAR Data with Hyperspectral Reflectance Data: A Case Study in Lake Taihu, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1325–1336. [Google Scholar] [CrossRef]
- Baltodano, A.; Agramont, A.; Lekarkar, K.; Spyrakos, E.; Reusen, I.; van Griensven, A. Exploring Global Remote Sensing Products for Water Quality Assessment: Lake Nicaragua Case Study. Remote Sens. Appl. 2024, 36, 101331. [Google Scholar] [CrossRef]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data. ISPRS Int. J. Geoinf. 2019, 8, 553. [Google Scholar] [CrossRef]
- Hansen, C.H.; Burian, S.J.; Dennison, P.E.; Williams, G.P. Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models. Remote Sens. 2017, 9, 409. [Google Scholar] [CrossRef]
- Fendereski, F.; Creed, I.F.; Trick, C.G. Remote Sensing of Chlorophyll-A in Clear vs. Turbid Waters in Lakes Remote Sensing of Chlorophyll- a in Clear vs. Turbid Waters in Lakes. Remote Sens. 2024, 16, 3553. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, F.; Wan, W.; Yu, H.; Sun, J.; Del Ser, J.; Elyan, E.; Hussain, A. Panchromatic and Multispectral Image Fusion for Remote Sensing and Earth Observation: Concepts, Taxonomy, Literature Review, Evaluation Methodologies and Challenges Ahead. Inf. Fusion 2023, 93, 227–242. [Google Scholar] [CrossRef]
- Bhargava, D.S.; Mariam, D.W. Spectral Reflectance Relationships to Turbidity Generated by Different Clay Materials. Photogramm. Eng. Remote Sens. 1990, 56, 225–229. [Google Scholar]
- Garg, V.; Senthil Kumar, A.; Aggarwal, S.P.; Kumar, V.; Dhote, P.R.; Thakur, P.K.; Nikam, B.R.; Sambare, R.S.; Siddiqui, A.; Muduli, P.R.; et al. Spectral Similarity Approach for Mapping Turbidity of an Inland Waterbody. J. Hydrol. 2017, 550, 527–537. [Google Scholar] [CrossRef]
- Wu, J.L.; Ho, C.R.; Huang, C.C.; Srivastav, A.L.; Tzeng, J.H.; Lin, Y.T. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids. Sensors 2014, 14, 22670–22688. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.; Yu, C.; Zhang, Z. Multispectral Remote Sensing for Estimating Water Quality Parameters: A Comparative Study of Inversion Methods Using Unmanned Aerial Vehicles (UAVs). Sustainability 2023, 15, 10298. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Y.; Jiang, M.; Cao, Z.; Li, X.; Ma, R.; Xu, L.; Xiong, J. Estimation of Total Phosphorus Concentration in Lakes in the Yangtze-Huaihe Region Based on Sentinel-3/OLCI Images. Remote Sens. 2023, 15, 4487. [Google Scholar] [CrossRef]
- Dong, L.; Gong, C.; Huai, H.; Wu, E.; Lu, Z.; Hu, Y.; Li, L.; Yang, Z. Retrieval of Water Quality Parameters in Dianshan Lake Based on Sentinel-2 MSI Imagery and Machine Learning: Algorithm Evaluation and Spatiotemporal Change Research. Remote Sens. 2023, 15, 5001. [Google Scholar] [CrossRef]
- Dorji, P.; Fearns, P.; Broomhall, M. A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data. Remote Sens. 2016, 8, 556. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, G.; Qiao, Z. Application and Recent Progress of Inland Water Monitoring Using Remote Sensing Techniques. Environ. Monit. Assess. 2023, 195, 125. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust Algorithm for Estimating Total Suspended Solids (TSS) in Inland and Nearshore Coastal Waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Jiang, D.; Matsushita, B.; Pahlevan, N.; Gurlin, D.; Lehmann, M.K.; Fichot, C.G.; Schalles, J.; Loisel, H.; Binding, C.; Zhang, Y.; et al. Remotely Estimating Total Suspended Solids Concentration in Clear to Extremely Turbid Waters Using a Novel Semi-Analytical Method. Remote Sens. Environ. 2021, 258, 112386. [Google Scholar] [CrossRef]
- Abegaz, N.T.; Tsidu, G.M.; Arsiso, B.K. Spatiotemporal Variability of the Lake Tana Water Quality Derived from the MODIS-Based Forel–Ule Index: The Roles of Hydrometeorological and Surface Processes. Atmosphere 2023, 14, 289. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, S.; Yang, L.; Ren, Y.; Xia, J. Spatiotemporal Characteristics of the Water Quality and Its Multiscale Relationship with Land Use in the Yangtze River Basin. Remote Sens. 2021, 13, 3309. [Google Scholar] [CrossRef]
- Prasad, S.; Wei, Y.; Chaminda, T.; Ritigala, T.; Yu, L.; Jinadasa, K.B.S.N.; Wasana, H.M.S.; Indika, S.; Yapabandara, I.; Hu, D.; et al. Spatiotemporal Assessment of Water Pollution for Beira Lake, Sri Lanka. Water 2024, 16, 1616. [Google Scholar] [CrossRef]
- Tuygun, G.T.; Salgut, S.; Elçi, A. Long-Term Spatial-Temporal Monitoring of Eutrophication in Lake Burdur Using Remote Sensing Data. Water Sci. Technol. 2023, 87, 2184–2194. [Google Scholar] [CrossRef]
- Yépez, S.; Velásquez, G.; Torres, D.; Saavedra-Passache, R.; Pincheira, M.; Cid, H.; Rodríguez-López, L.; Contreras, A.; Frappart, F.; Cristóbal, J.; et al. Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sens. 2024, 16, 427. [Google Scholar] [CrossRef]
- Assegide, E.; Shiferaw, H.; Tibebe, D.; Peppa, M.V.; Walsh, C.L.; Alamirew, T.; Zeleke, G. Spatiotemporal Dynamics of Water Quality Indicators in Koka Reservoir, Ethiopia. Remote Sens. 2023, 15, 1155. [Google Scholar] [CrossRef]
- Anjana, E.N.S.S.; Naveena, A. Review IoT Sensors Classification and Applications in Weather Monitoring. Int. J. Recent Technol. Eng. (IJRTE) 2021, 10, 132–136. [Google Scholar] [CrossRef]
- Nossin, J.J. Remote Sensing Geology; Springer: New York, NY, USA, 2004; Volume 5, ISBN 9783662558744. [Google Scholar]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS Albedo Product (MCD43A) over Grassland, Agriculture and Forest Surface Types during Dormant and Snow-Covered Periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A Global Analysis of the Temporal Availability of PlanetScope High Spatial Resolution Multi-Spectral Imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sens. 2018, 10, 1657. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information. Eur. J. Remote Sens. 2017, 47, 389–411. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Griffin, R.; Dix, M.; Romero-Oliva, C.S.; Ochaeta, G.; Skinner-Alvarado, J.; Ramirez Moran, M.V.; Hernandez, B.; Cherrington, E.; Page, B.; et al. Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Front. Environ. Sci. 2020, 8, 7. [Google Scholar] [CrossRef]
- Japitana, M.V.; Burce, M.E.C. A Satellite-Based Remote Sensing Technique for Surface Water Quality Estimation. Eng. Technol. Appl. Sci. Res. 2019, 9, 3965–3970. [Google Scholar] [CrossRef]
- Yang, W.; Fu, B.; Li, S.; Lao, Z.; Deng, T.; He, W.; He, H.; Chen, Z. Monitoring Multi-Water Quality of Internationally Important Karst Wetland through Deep Learning, Multi-Sensor and Multi-Platform Remote Sensing Images: A Case Study of Guilin, China. Ecol. Indic. 2023, 154, 110755. [Google Scholar] [CrossRef]
- Arango, J.G.; Nairn, R.W. Prediction of Optical and Non-Optical Water Quality Parameters in Oligotrophic and Eutrophic Aquatic Systems Using a Small Unmanned Aerial System. Drones 2020, 4, 1. [Google Scholar] [CrossRef]
Category | Keywords Used |
---|---|
Remote Sensing Technologies | “Remote sensing”, “satellite imagery”, “UAV”, “Drone” |
Target Species | “Water hyacinth”, “Eichhornia crassipes” |
Water Quality Parameters | “Chlorophyll-a”, “Turbidity”, “Total suspended solids” |
Functional/application-oriented terms | “Monitoring”, “Detection”, “Mapping” |
Geographical/Ecosystem type | “Global water bodies”, “Lakes”, “Rivers”, “Wetlands” |
Journal | Publisher | Impact Factor (2023/2024) | 5-Year IF | Quartile | SJR | CiteScore |
---|---|---|---|---|---|---|
Remote Sensing | MDPI | 4.2 | 4.8 | Q1 | 1.091 | 5.1 |
Ecological Indicators | Elsevier | 7.4 | 7.2 | Q1 | 1.633 | 8.6 |
Water | MDPI | 3.0 | 3.3 | Q2 | 0.724 | 5.0 |
Environmental Science & Technology | ACS | 11.3 | 11.6 | Q1 | 2.625 | 14.8 |
Environmental Monitoring and Assessment | Springer | 2.5 | - | Q3 | 0.502 | 3.4 |
Sensors | MDPI | 3.5 | 3.7 | Q2 | 0.856 | 6.1 |
Ecological Informatics | Elsevier | 5.0 | - | Q1 | 1.348 | 6.7 |
Drones | MDPI | 4.8 | 5.0 | Q1 | 1.114 | 5.5 |
ISPRS Archives | ISPRS | 0.5 | - | Unranked | 0.198 | 0.7 |
Physics and Chemistry of the Earth | Elsevier | 3.3 | 3.2 | Q2 | 0.719 | 3.9 |
Nature | Springer Nature | 69.0 | - | Q1 | 18.786 | 95.0 |
Heliyon | Elsevier | 3.6 | 3.9 | Q2 | 0.711 | 4.9 |
Desalination and Water Treatment | Elsevier | 1.0 | - | Q4 | 0.298 | 2.2 |
Journal of Applied Water Science | Springer | 5.7 | 6.2 | Q1 | 0.892 | 6.0 |
Egyptian Journal of Remote Sensing and Space Sciences | Elsevier | 4.1 | 4.8 | Q2 | 0.745 | 4.5 |
International Journal of Geo-Information | MDPI | 3.4 | - | Q2 | 0.892 | 5.3 |
Earth Observation and Remote Sensing | Harwood Academic | 0.1 | - | Unranked | 0.103 | 0.2 |
Plants | MDPI | 4.1 | - | Q1 | 1.012 | 5.7 |
Invasive Plant Science & Management | CUP | 1.5 | - | Q2 | 0.523 | 2.6 |
Sustainability | MDPI | 2.6 | - | Q2 | 0.661 | 4.0 |
Journal of Hydrology | Elsevier | 5.9 | - | Q1 | 1.993 | 7.9 |
GIS and Remote Sensing | Taylor & Francis | 2.0 | - | Q2 | 0.692 | 3.8 |
Marine Pollution Bulletin | Elsevier | 8.0 | - | Q1 | 1.748 | 9.1 |
Method Type | Techniques | Accuracy Range | References |
---|---|---|---|
Statistical Models | LR, MLR, LDA | 74–95% | [38,40,41,42,43] |
Machine Learning | RF, SVM, CART, KNN, NB | 65–98% | [43,44,45] |
Deep Learning | U-Net, Res-U-Net, DeepLabV3+ | 90–97% | [46,47,48,49,50] |
Hybrid/Index-Based | DA+PDA, Band Combinations | 82–95% | [49,50] |
Water Quality Parameters | Satellite Sensors Used | Key Studies (Citations) |
---|---|---|
Chlorophyll-a | Landsat-8 OLI, Sentinel-2 MSI | [32,51,52,53,54,55] |
Turbidity | MODIS Terra, Sentinel-2 MSI, Landsat-8 OLI | [18,25,56,57] |
Total suspended solids | MODIS Terra, Sentinel-2 MSI, Landsat-8 OLI | [18,22,56,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemneh, L.Y.; Aklog, D.; Griensven, A.v.; Goshu, G.; Yalew, S.; Abebe, W.B.; Dersseh, M.G.; Mhiret, D.A.; Michailovsky, C.I.; Amare, S.; et al. Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications. Water 2025, 17, 2573. https://doi.org/10.3390/w17172573
Alemneh LY, Aklog D, Griensven Av, Goshu G, Yalew S, Abebe WB, Dersseh MG, Mhiret DA, Michailovsky CI, Amare S, et al. Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications. Water. 2025; 17(17):2573. https://doi.org/10.3390/w17172573
Chicago/Turabian StyleAlemneh, Lakachew Y., Daganchew Aklog, Ann van Griensven, Goraw Goshu, Seleshi Yalew, Wubneh B. Abebe, Minychl G. Dersseh, Demesew A. Mhiret, Claire I. Michailovsky, Selamawit Amare, and et al. 2025. "Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications" Water 17, no. 17: 2573. https://doi.org/10.3390/w17172573
APA StyleAlemneh, L. Y., Aklog, D., Griensven, A. v., Goshu, G., Yalew, S., Abebe, W. B., Dersseh, M. G., Mhiret, D. A., Michailovsky, C. I., Amare, S., & Asress, S. (2025). Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications. Water, 17(17), 2573. https://doi.org/10.3390/w17172573