Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Ts65Dn mouse model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5118 KB  
Article
Cardiopulmonary and Immune Alterations in the Ts65Dn Mouse Model of Down Syndrome and Modulation by Epigallocatechin-3-Gallate-Enriched Green Tea Extract
by Birger Tielemans, Sergi Llambrich, Laura Seldeslachts, Jonathan Cremer, Hung Chang Tsui, Anne-Charlotte Jonckheere, Nora Fopke Marain, Mirko Riedel, Jens Wouters, Julia Herzen, Bartosz Leszczyński, Erik Verbeken, Jeroen Vanoirbeek and Greetje Vande Velde
Pharmaceutics 2025, 17(11), 1366; https://doi.org/10.3390/pharmaceutics17111366 - 22 Oct 2025
Viewed by 611
Abstract
Background/Objectives: Cardiovascular and pulmonary diseases are leading comorbidities n individuals with Down syndrome (DS). Although clinically well described, preclinical models fully characterizing these cardiopulmonary alterations are lacking. Our objective is to characterize the cardiopulmonary and immunological phenotype in a commonly used DS [...] Read more.
Background/Objectives: Cardiovascular and pulmonary diseases are leading comorbidities n individuals with Down syndrome (DS). Although clinically well described, preclinical models fully characterizing these cardiopulmonary alterations are lacking. Our objective is to characterize the cardiopulmonary and immunological phenotype in a commonly used DS mouse model, the Ts65Dn mice, and investigate the modulatory effects of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG); Methods: Treatment started at embryonic day 9 and continued until postnatal day (PD) 180. Mice were longitudinally monitored using micro-computed tomography, and structural, functional, and immunological alterations were evaluated at PD210 to determine the persistent effects of GTE-EGCG administration; Results: Ts65Dn mice displayed normal structural lung development and presented with right ventricular hypertrophy and reduced B-cell lymphocytes, indicating that this model may find applications in immunological respiratory research specific to the context of DS. GTE-EGCG administration induced transient lung immaturity, persistent decreases in lung function, and airway hyperreactivity, while normalizing arterial and right ventricular morphology and partially restoring B-cell lymphocyte numbers; Conclusions: These findings underscore the dual nature of EGCG modulation, both beneficial and adverse, and highlight the importance of a multiorgan, holistic approach when evaluating therapeutic interventions in DS models. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

22 pages, 9552 KB  
Article
Benefits of Maternal Choline Supplementation on Aged Basal Forebrain Cholinergic Neurons (BFCNs) in a Mouse Model of Down Syndrome and Alzheimer’s Disease
by Melissa J. Alldred, Harshitha Pidikiti, Kyrillos W. Ibrahim, Sang Han Lee, Adriana Heguy, Gabriela Chiosis, Elliott J. Mufson, Grace E. Stutzmann and Stephen D. Ginsberg
Biomolecules 2025, 15(8), 1131; https://doi.org/10.3390/biom15081131 - 5 Aug 2025
Viewed by 1421
Abstract
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial [...] Read more.
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial effects on behavior and gene expression in neurodevelopmental and neurodegenerative disorders, including trisomic mice. Loss of basal forebrain cholinergic neurons (BFCNs) and other DS/AD relevant hallmarks were observed in a well-established trisomic model (Ts65Dn, Ts). MCS attenuates these endophenotypes with beneficial behavioral effects in trisomic offspring. We postulate MCS ameliorates dysregulated cellular mechanisms within vulnerable BFCNs, with attenuation driven by novel gene expression. Here, choline acetyltransferase immunohistochemical labeling identified BFCNs in the medial septal/ventral diagonal band nuclei of the basal forebrain in Ts and normal disomic (2N) offspring at ~11 months of age from dams exposed to MCS or normal choline during the perinatal period. BFCNs (~500 per mouse) were microisolated and processed for RNA-sequencing. Bioinformatic assessment elucidated differentially expressed genes (DEGs) and pathway alterations in the context of genotype (Ts, 2N) and maternal diet (MCS, normal choline). MCS attenuated select dysregulated DEGs and relevant pathways in aged BFCNs. Trisomic MCS-responsive improvements included pathways such as cognitive impairment and nicotinamide adenine dinucleotide signaling, among others, indicative of increased behavioral and bioenergetic fitness. Although MCS does not eliminate the DS/AD phenotype, early choline delivery provides long-lasting benefits to aged trisomic BFCNs, indicating that MCS prolongs neuronal health in the context of DS/AD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 833 KB  
Review
Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations
by Carl E. Stafstrom and Li-Rong Shao
Children 2024, 11(12), 1513; https://doi.org/10.3390/children11121513 - 13 Dec 2024
Cited by 2 | Viewed by 2031
Abstract
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks [...] Read more.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches. Ts65Dn mice have been the most widely used animal model of DS. In this model, there is evidence for both abnormal cerebral excitation and inhibition: infantile spasms-like clinical and electrographic activity can be elicited by the administration of gamma-aminobutyric acid (GABA)-B receptor agonist, gamma-butyrolactone (GBL), and depolarizing GABA-A responses persist beyond the age of their usual switch to hyperpolarized responses. But despite its widespread use, the Ts65Dn model may be suboptimal because of the absence of numerous genes that are triplicated in human DS and the presence of numerous genes that are not triplicated in human DS. Recently, a transchromosomic mouse artificial chromosome 21 (TcMAC21) mouse model has been developed, which carries a copy of human chromosome 21 and therefore has a genetic composition more similar to human DS. As in Ts65Dn mice, exposure of TcMAC21 mice to GBL results in epileptic spasms, and aberrant excitation has also been demonstrated. This review summarizes excitatory and inhibitory dysfunction in models of DS that may play a role in the generation of seizures and infantile spasms, providing a perspective on past studies and a prelude for future ones. Further elucidation will hopefully lead to rational therapeutic options for DS children with infantile spasms. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

30 pages, 5120 KB  
Article
Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome
by Savannah Tallino, Rachel Etebari, Ian McDonough, Hector Leon, Isabella Sepulveda, Wendy Winslow, Samantha K. Bartholomew, Sylvia E. Perez, Elliott J. Mufson and Ramon Velazquez
Nutrients 2024, 16(23), 4167; https://doi.org/10.3390/nu16234167 - 30 Nov 2024
Viewed by 2458
Abstract
Background/Objectives: Down syndrome (DS) is the most common cause of early-onset Alzheimer’s disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake [...] Read more.
Background/Objectives: Down syndrome (DS) is the most common cause of early-onset Alzheimer’s disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. Methods: We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. Results: We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. Conclusions: Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

23 pages, 3682 KB  
Article
Early Chronic Fluoxetine Treatment of Ts65Dn Mice Rescues Synaptic Vesicular Deficits and Prevents Aberrant Proteomic Alterations
by S. Hossein Fatemi, Elysabeth D. Otte, Timothy D. Folsom, Arthur C. Eschenlauer, Randall J. Roper, Justin W. Aman and Paul D. Thuras
Genes 2024, 15(4), 452; https://doi.org/10.3390/genes15040452 - 3 Apr 2024
Cited by 3 | Viewed by 3078
Abstract
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of [...] Read more.
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders)
Show Figures

Figure 1

16 pages, 3206 KB  
Article
Beyond Quiescent and Active: Intermediate Microglial Transcriptomic States in a Mouse Model of Down Syndrome
by Álvaro Fernández-Blanco, Cèsar Sierra, Clara Tejido and Mara Dierssen
Int. J. Mol. Sci. 2024, 25(6), 3289; https://doi.org/10.3390/ijms25063289 - 14 Mar 2024
Cited by 2 | Viewed by 2687
Abstract
Research on microglia in Down syndrome (DS) has shown that microglial activation, increased inflammatory gene expression, and oxidative stress occur at different ages in DS brains. However, most studies resulted in simplistic definitions of microglia as quiescent or active, ignoring potential intermediate states. [...] Read more.
Research on microglia in Down syndrome (DS) has shown that microglial activation, increased inflammatory gene expression, and oxidative stress occur at different ages in DS brains. However, most studies resulted in simplistic definitions of microglia as quiescent or active, ignoring potential intermediate states. Indeed, recent work on microglial cells in young DS brains indicated that those evolve through different intermediate activation phenotypes before reaching a fully activated state. Here we used single nucleus RNA sequencing, to examine how trisomy affects microglial states in the Ts65Dn mouse model of DS. Despite no substantial changes in the proportion of glial populations, differential expression analysis revealed cell type-specific gene expression changes, most notably in astroglia, microglia, and oligodendroglia. Focusing on microglia, we identified differential expression of genes associated with different microglial states, including disease-associated microglia (DAMs), activated response microglia (ARMs), and human Alzheimer’s disease microglia (HAMs), in trisomic microglia. Furthermore, pseudotime analysis reveals a unique reactivity profile in Ts65Dn microglia, with fewer in a homeostatic state and more in an intermediate aberrantly reactive state than in euploid microglia. This comprehensive understanding of microglial transcriptional dynamics sheds light on potential pathogenetic mechanisms but also possible avenues for therapy for neurodevelopmental disorders. Full article
(This article belongs to the Special Issue The Role of Microglia in Neurological Disorders)
Show Figures

Graphical abstract

14 pages, 5320 KB  
Article
Physical Training Chronically Stimulates the Motor Neuron Cell Nucleus in the Ts65Dn Mouse, a Model of Down Syndrome
by Chiara Rita Inguscio, Maria Assunta Lacavalla, Barbara Cisterna, Carlo Zancanaro and Manuela Malatesta
Cells 2023, 12(11), 1488; https://doi.org/10.3390/cells12111488 - 27 May 2023
Viewed by 1972
Abstract
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were [...] Read more.
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were found to be useful in counteracting motor impairment in DS subjects. In this study we used the Ts65Dn mouse, a widely accepted animal model of DS, to investigate the ultrastructural architecture of the medullary motor neuron cell nucleus taken as marker of the cell functional state. Using transmission electron microscopy, ultrastructural morphometry, and immunocytochemistry we carried out a detailed investigation of possible trisomy-related alteration(s) of nuclear constituents, which are known to vary their amount and distribution as a function of nuclear activity, as well as the effect of adapted physical training upon them. Results demonstrated that trisomy per se affects nuclear constituents to a limited extent; however, adapted physical training is able to chronically stimulate pre-mRNA transcription and processing activity in motor neuron nuclei of trisomic mice, although to a lesser extent than in their euploid mates. These findings are a step towards understanding the mechanisms underlying the positive effect of physical activity in DS. Full article
(This article belongs to the Collection Feature Papers in Cell Nuclei: Function, Transport and Receptors)
Show Figures

Figure 1

16 pages, 2319 KB  
Article
Emergence of Treadmill Running Ability and Quantitative Assessment of Gait Dynamics in Young Ts65Dn Mice: A Mouse Model for Down Syndrome
by Jonah J. Scott-McKean, Ryan Jones, Mark W. Johnson, Joyce Mier, Ines A. Basten, Melissa R. Stasko and Alberto C. S. Costa
Brain Sci. 2023, 13(5), 743; https://doi.org/10.3390/brainsci13050743 - 29 Apr 2023
Cited by 6 | Viewed by 2100
Abstract
Down syndrome (DS), which results from the complete or partial trisomy of chromosome 21 (trisomy-21), is the most common genetically defined cause of intellectual disability. Trisomy-21 also produces, or is associated with, many neurodevelopmental phenotypes and neurological comorbidities, including delays and deficits in [...] Read more.
Down syndrome (DS), which results from the complete or partial trisomy of chromosome 21 (trisomy-21), is the most common genetically defined cause of intellectual disability. Trisomy-21 also produces, or is associated with, many neurodevelopmental phenotypes and neurological comorbidities, including delays and deficits in fine and gross motor development. The Ts65Dn mouse is the most studied animal model for DS and displays the largest known subset of DS-like phenotypes. To date, however, only a small number of developmental phenotypes have been quantitatively defined in these animals. Here, we used a commercially available high-speed, video-based system to record and analyze the gait of Ts65Dn and euploid control mice. Longitudinal treadmill recordings were performed from p17 to p35. One of the main findings was the detection of genotype- and sex-dependent developmental delays in the emergence of consistent, progressive-intensity gait in Ts65Dn mice when compared to control mice. Gait dynamic analysis showed wider normalized front and hind stances in Ts65Dn mice compared to control mice, which may reflect deficits in dynamic postural balance. Ts65Dn mice also displayed statistically significant differences in the variability in several normalized gait measures, which were indicative of deficits in precise motor control in generating gait. Full article
(This article belongs to the Section Developmental Neuroscience)
Show Figures

Figure 1

20 pages, 5732 KB  
Article
A Multimodal Imaging-Supported Down Syndrome Mouse Model of RSV Infection
by Birger Tielemans, Lander De Herdt, Emilie Pollenus, Emiel Vanhulle, Laura Seldeslachts, Fopke Marain, Flore Belmans, Kaveh Ahookhosh, Jeroen Vanoirbeek, Kurt Vermeire, Philippe E. Van den Steen and Greetje Vande Velde
Viruses 2023, 15(4), 993; https://doi.org/10.3390/v15040993 - 18 Apr 2023
Cited by 2 | Viewed by 3488
Abstract
Individuals with Down syndrome (DS) are more prone to develop severe respiratory tract infections. Although a RSV infection has a high clinical impact and severe outcome in individuals with DS, no vaccine nor effective therapeutics are available. Any research into infection pathophysiology or [...] Read more.
Individuals with Down syndrome (DS) are more prone to develop severe respiratory tract infections. Although a RSV infection has a high clinical impact and severe outcome in individuals with DS, no vaccine nor effective therapeutics are available. Any research into infection pathophysiology or prophylactic and therapeutic antiviral strategies in the specific context of DS would greatly benefit this patient population, but currently such relevant animal models are lacking. This study aimed to develop and characterize the first mouse model of RSV infection in a DS-specific context. Ts65Dn mice and wild type littermates were inoculated with a bioluminescence imaging-enabled recombinant human RSV to longitudinally track viral replication in host cells throughout infection progression. This resulted in an active infection in the upper airways and lungs with similar viral load in Ts65Dn mice and euploid mice. Flow cytometric analysis of leukocytes in lungs and spleen demonstrated immune alterations with lower CD8+ T cells and B-cells in Ts65Dn mice. Overall, our study presents a novel DS-specific mouse model of hRSV infection and shows that potential in using the Ts65Dn preclinical model to study immune-specific responses of RSV in the context of DS and supports the need for models representing the pathological development. Full article
(This article belongs to the Special Issue Respiratory Syncytial Virus 2.0)
Show Figures

Figure 1

23 pages, 4248 KB  
Article
Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model
by Sergi Llambrich, Rubèn González-Colom, Jens Wouters, Jorge Roldán, Sara Salassa, Kaat Wouters, Vicky Van Bulck, James Sharpe, Zsuzsanna Callaerts-Vegh, Greetje Vande Velde and Neus Martínez-Abadías
Nutrients 2022, 14(19), 4167; https://doi.org/10.3390/nu14194167 - 7 Oct 2022
Cited by 3 | Viewed by 2870
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from [...] Read more.
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

13 pages, 1221 KB  
Article
Evidence of Energy Metabolism Alterations in Cultured Neonatal Astrocytes Derived from the Ts65Dn Mouse Model of Down Syndrome
by Bruna L. Zampieri and Alberto C. S. Costa
Brain Sci. 2022, 12(1), 83; https://doi.org/10.3390/brainsci12010083 - 6 Jan 2022
Cited by 8 | Viewed by 3391
Abstract
For many decades, neurons have been the central focus of studies on the mechanisms underlying the neurodevelopmental and neurodegenerative aspects of Down syndrome (DS). Astrocytes, which were once thought to have only a passive role, are now recognized as active participants of a [...] Read more.
For many decades, neurons have been the central focus of studies on the mechanisms underlying the neurodevelopmental and neurodegenerative aspects of Down syndrome (DS). Astrocytes, which were once thought to have only a passive role, are now recognized as active participants of a variety of essential physiological processes in the brain. Alterations in their physiological function have, thus, been increasingly acknowledged as likely initiators of or contributors to the pathogenesis of many nervous system disorders and diseases. In this study, we carried out a series of real-time measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in hippocampal astrocytes derived from neonatal Ts65Dn and euploid control mice using a Seahorse XFp Flux Analyzer. Our results revealed a significant basal OCR increase in neonatal Ts65Dn astrocytes compared with those from control mice, indicating increased oxidative phosphorylation. ECAR did not differ between the groups. Given the importance of astrocytes in brain metabolic function and the linkage between astrocytic and neuronal energy metabolism, these data provide evidence against a pure “neurocentric” vision of DS pathophysiology and support further investigations on the potential contribution of disturbances in astrocytic energy metabolism to cognitive deficits and neurodegeneration associated with DS. Full article
(This article belongs to the Topic Mechanisms and Treatments of Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 1720 KB  
Article
Impaired Brain Mitochondrial Bioenergetics in the Ts65Dn Mouse Model of Down Syndrome Is Restored by Neonatal Treatment with the Polyphenol 7,8-Dihydroxyflavone
by Daniela Valenti, Fiorenza Stagni, Marco Emili, Sandra Guidi, Renata Bartesaghi and Rosa Anna Vacca
Antioxidants 2022, 11(1), 62; https://doi.org/10.3390/antiox11010062 - 28 Dec 2021
Cited by 18 | Viewed by 4151
Abstract
Down syndrome (DS), a major genetic cause of intellectual disability, is characterized by numerous neurodevelopmental defects. Previous in vitro studies highlighted a relationship between bioenergetic dysfunction and reduced neurogenesis in progenitor cells from the Ts65Dn mouse model of DS, suggesting a critical role [...] Read more.
Down syndrome (DS), a major genetic cause of intellectual disability, is characterized by numerous neurodevelopmental defects. Previous in vitro studies highlighted a relationship between bioenergetic dysfunction and reduced neurogenesis in progenitor cells from the Ts65Dn mouse model of DS, suggesting a critical role of mitochondrial dysfunction in neurodevelopmental alterations in DS. Recent in vivo studies in Ts65Dn mice showed that neonatal supplementation (Days P3–P15) with the polyphenol 7,8-dihydroxyflavone (7,8-DHF) fully restored hippocampal neurogenesis. The current study was aimed to establish whether brain mitochondrial bioenergetic defects are already present in Ts65Dn pups and whether early treatment with 7,8-DHF positively impacts on mitochondrial function. In the brain and cerebellum of P3 and P15 Ts65Dn pups we found a strong impairment in the oxidative phosphorylation apparatus, resulting in a deficit in mitochondrial ATP production and ATP content. Administration of 7,8-DHF (dose: 5 mg/kg/day) during Days P3–P15 fully restored bioenergetic dysfunction in Ts65Dn mice, reduced the levels of oxygen radicals and reinstated the hippocampal levels of PGC-1α. No pharmacotherapy is available for DS. From current findings, 7,8-DHF emerges as a treatment with a good translational potential for improving mitochondrial bioenergetics and, thus, mitochondria-linked neurodevelopmental alterations in DS. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Disorders II)
Show Figures

Figure 1

18 pages, 2842 KB  
Article
Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts
by Jared R. Thomas, Kourtney Sloan, Kelsey Cave, Joseph M. Wallace and Randall J. Roper
Genes 2021, 12(11), 1729; https://doi.org/10.3390/genes12111729 - 28 Oct 2021
Cited by 13 | Viewed by 3248
Abstract
Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits [...] Read more.
Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1afl/wt) were mated with male Osx-Cre+ (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a+/+/Osx-Cre P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a+/+/+ (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a+/+/Osx-Cre (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS. Full article
(This article belongs to the Special Issue Models and Advances in Genetics of Down Syndrome)
Show Figures

Graphical abstract

14 pages, 2491 KB  
Article
Adiponectin Modulation by Genotype and Maternal Choline Supplementation in a Mouse Model of Down Syndrome and Alzheimer’s Disease
by Melissa J. Alldred, Sang Han Lee and Stephen D. Ginsberg
J. Clin. Med. 2021, 10(13), 2994; https://doi.org/10.3390/jcm10132994 - 5 Jul 2021
Cited by 10 | Viewed by 3327
Abstract
Down syndrome (DS) is a genetic disorder caused by the triplication of human chromosome 21, which results in neurological and physiological pathologies. These deficits increase during aging and are exacerbated by cognitive decline and increase of Alzheimer’s disease (AD) neuropathology. A nontoxic, noninvasive [...] Read more.
Down syndrome (DS) is a genetic disorder caused by the triplication of human chromosome 21, which results in neurological and physiological pathologies. These deficits increase during aging and are exacerbated by cognitive decline and increase of Alzheimer’s disease (AD) neuropathology. A nontoxic, noninvasive treatment, maternal choline supplementation (MCS) attenuates cognitive decline in mouse models of DS and AD. To evaluate potential underlying mechanisms, laser capture microdissection of individual neuronal populations of MCS offspring was performed, followed by RNA sequencing and bioinformatic inquiry. Results at ~6 months of age (MO) revealed DS mice (the well-established Ts65Dn model) have significant dysregulation of select genes within the Type 2 Diabetes Mellitus (T2DM) signaling pathway relative to normal disomic (2N) littermates. Accordingly, we interrogated key T2DM protein hormones by ELISA assay in addition to gene and encoded protein levels in the brain. We found dysregulation of adiponectin (APN) protein levels in the frontal cortex of ~6 MO trisomic mice, which was attenuated by MCS. APN receptors also displayed expression level changes in response to MCS. APN is a potential biomarker for AD pathology and may be relevant in DS. We posit that changes in APN signaling may be an early marker of cognitive decline and neurodegeneration. Full article
(This article belongs to the Special Issue Aging in Down Syndrome: Latest Clinical Advances and Prospects)
Show Figures

Figure 1

20 pages, 3685 KB  
Article
Nuclear Reorganization in Hippocampal Granule Cell Neurons from a Mouse Model of Down Syndrome: Changes in Chromatin Configuration, Nucleoli and Cajal Bodies
by Alba Puente-Bedia, María T. Berciano, Olga Tapia, Carmen Martínez-Cué, Miguel Lafarga and Noemí Rueda
Int. J. Mol. Sci. 2021, 22(3), 1259; https://doi.org/10.3390/ijms22031259 - 27 Jan 2021
Cited by 10 | Viewed by 3975
Abstract
Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed [...] Read more.
Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Neurodegeneration Disease)
Show Figures

Figure 1

Back to TopTop