Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = Trolox equivalent antioxidant capacity (TEAC) assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4393 KiB  
Article
Development and Preclinical Evaluation of Fixed-Dose Capsules Containing Nicergoline, Piracetam, and Hawthorn Extract for Sensorineural Hearing Loss
by Lucia Maria Rus, Andrei Uncu, Sergiu Parii, Alina Uifălean, Simona Codruța Hegheș, Cristina Adela Iuga, Ioan Tomuță, Ecaterina Mazur, Diana Șepeli, Irina Kacso, Fliur Macaev, Vladimir Valica and Livia Uncu
Pharmaceutics 2025, 17(8), 1017; https://doi.org/10.3390/pharmaceutics17081017 - 5 Aug 2025
Abstract
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural [...] Read more.
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural hearing loss. Methods: The first phase methodology comprised preformulation studies (DSC, FTIR, and PXRD) to assess compatibility among active substances and excipients. Subsequently, four formulations were prepared and tested for flowability, dissolution behavior in acidic and neutral media, and stability under oxidative, thermal, and photolytic stress. Quantification of the active substances and flavonoids was performed using validated spectrophotometric and HPLC-UV methods. Results: Among the tested variants, the F1 formulation (4.5 mg NIC, 200 mg PIR, 50 mg HE, 2.5 mg magnesium stearate, 2.5 mg sodium starch glycolate, and 240.5 mg monohydrate lactose per capsule) displayed optimal technological properties, superior dissolution in acidic media, and was further selected for evaluation. The antioxidant activity of the formulation was confirmed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Trolox Equivalent Antioxidant Capacity (TEAC), and iron chelation tests, and was primarily attributed to the flavonoid content of the HE. Acute toxicity tests in mice and rats indicated a high safety margin (LD50 > 2500 mg/kg), while ototoxicity assessments showed no adverse effects on auditory function. Conclusions: The developed formulation displayed good stability, safety, and therapeutic potential, while the applied workflow could represent a model for the development of future fixed-dose combinations. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals, 2nd Edition)
Show Figures

Figure 1

21 pages, 4434 KiB  
Article
Inhibitory Efficacy of Arthrospira platensis Extracts on Skin Pathogenic Bacteria and Skin Cancer Cells
by Ranchana Rungjiraphirat, Nitsanat Cheepchirasuk, Sureeporn Suriyaprom and Yingmanee Tragoolpua
Biology 2025, 14(5), 502; https://doi.org/10.3390/biology14050502 - 5 May 2025
Cited by 1 | Viewed by 880
Abstract
Arthrospira platensis (spirulina) is a cyanobacterium containing various phytochemical compounds associated with various antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, and immune-promoting properties. The efficacy of ethanolic and methanolic crude extracts of A. platensis regarding antibacterial, antioxidant, and anticancer effects was determined in this study. [...] Read more.
Arthrospira platensis (spirulina) is a cyanobacterium containing various phytochemical compounds associated with various antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, and immune-promoting properties. The efficacy of ethanolic and methanolic crude extracts of A. platensis regarding antibacterial, antioxidant, and anticancer effects was determined in this study. The ethanolic extract showed the highest antioxidant activity by 8.96 ± 0.84 mg gallic acid equivalent per gram of extract (mg GAE/g extract), 53.03 ± 4.21 mg trolox equivalent antioxidant capacity per gram of extract (mg TEAC/g extract), and 48.06 ± 0.78 mg TEAC/g extract as determined by DPPH, ABTS, FRAP assays, respectively. Moreover, the ethanolic extract showed the highest total phenolic and flavonoid compound contents by 38.79 ± 1.61 mg GAE/g extract and 27.50 ± 0.53 mg of quercetin equivalent per gram of extract (mg QE/g extract). Gallic acid and quercetin in the extracts were also determined by HPLC. The antibacterial activity was evaluated by agar well diffusion and broth dilution methods on skin pathogenic bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, methicillin-resistant S. aureus (MRSA), Micrococcus luteus, Pseudomonas aeruginosa, and Cutibacterium acnes. The inhibition zone of A. platensis extracts ranges from 9.67 ± 0.58 to 12.50 ± 0.50 mm. In addition, MIC and MBC values ranged from 31.25 to 125 mg/mL. The inhibition of biofilm formation and biofilm eradication by A. platensis ethanolic extract was 87.18% and 99.77%, as determined by the crystal violet staining assay. Furthermore, the anticancer activity of A. platensis on A375 human melanoma cells was examined. The ethanolic and methanolic extracts induced DNA apoptosis through both intrinsic and extrinsic pathways by upregulating the expression of caspase-3, caspase-8, and caspase-9. These findings suggested that A. platensis demonstrated promising antioxidant, antibacterial, and anticancer activities, emphasizing its potential as a natural therapeutic agent for the management of pathological conditions. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

34 pages, 4688 KiB  
Article
Optimized Sambucus nigra L., Epilobium hirsutum L., and Lythrum salicaria L. Extracts: Biological Effects Supporting Their Potential in Wound Care
by Diana Antonia Safta, Ana-Maria Vlase, Anca Pop, Julien Cherfan, Rahela Carpa, Sonia Iurian, Cătălina Bogdan, Laurian Vlase and Mirela-Liliana Moldovan
Antioxidants 2025, 14(5), 521; https://doi.org/10.3390/antiox14050521 - 27 Apr 2025
Cited by 3 | Viewed by 843
Abstract
This study aimed to optimize the extraction of phytocompounds intended for wound care applications from three plant species, Sambucus nigra L. flowers and Epilobium hirsutum L. and Lythrum salicaria L. aerial parts, by using a Quality by Design approach. The effects of different [...] Read more.
This study aimed to optimize the extraction of phytocompounds intended for wound care applications from three plant species, Sambucus nigra L. flowers and Epilobium hirsutum L. and Lythrum salicaria L. aerial parts, by using a Quality by Design approach. The effects of different extraction methods (ultra-turrax and ultrasonic-assisted extraction), ethanol concentrations (30%, 50%, 70%), and extraction times (3, 5, 10 min) were studied, and during the optimization step, the polyphenol and flavonoid contents were maximized. The phytochemical profiles of the optimized HEs (herbal extracts) were assessed using LC-MS/MS methods. The antioxidant capacity of the optimized HEs was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity) TEAC (Trolox equivalent antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, while the antibacterial activity was evaluated against Escherichia coli, Pseudomonas aeruginosa, and MSSA—methicillin-sensitive Staphylococcus aureus and MRSA—methicillin-resistant Staphylococcus aureus). Cell viability and antioxidant and wound healing potential were assessed on keratinocytes and fibroblasts. The anti-inflammatory effect was assessed on fibroblasts by measuring levels of interleukins IL-6 and IL-8 and the production of nitric oxide from RAW 264.7 cells. The major compounds of the optimized HEs were rutin and chlorogenic acid. The Lythrum salicaria optimized HE showed the strongest antibacterial activity, while the Sambucus nigra optimized HE demonstrated high cell viability. Lythrum salicaria and Epilobium hirsutum optimized HEs showed increased antioxidant capacities. All extracts displayed anti-inflammatory effects, and the Epilobium hirsutum optimized HE exhibited the best in vitro wound-healing effect. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Graphical abstract

22 pages, 2738 KiB  
Article
Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Opuntia ficus-indica Cladodes
by Amira Oufighou, Fatiha Brahmi, Sabiha Achat, Sofiane Yekene, Sara Slimani, Younes Arroul, Lila Boulekbache-Makhlouf and Federica Blando
Processes 2025, 13(3), 724; https://doi.org/10.3390/pr13030724 - 3 Mar 2025
Cited by 3 | Viewed by 1582
Abstract
Background: Opuntia ficus-indica (OFI) cladodes are valuable and underestimated by-products that provide significant amounts of biologically active compounds. In this paper, microwave-assisted extraction (MAE) was performed for the recovery of phenolic compounds from OFI cladodes using two approaches: response surface methodology (RSM) and [...] Read more.
Background: Opuntia ficus-indica (OFI) cladodes are valuable and underestimated by-products that provide significant amounts of biologically active compounds. In this paper, microwave-assisted extraction (MAE) was performed for the recovery of phenolic compounds from OFI cladodes using two approaches: response surface methodology (RSM) and artificial neural network–genetic algorithm (ANN-GA), which were then compared following statistical indicators. Materials and Methods: Four independent factors were employed in the optimization process (solvent concentration, microwave power, irradiation time, and solid-to-liquid ratio) by selecting the total phenolic content (TPC), estimated by the Folin–Ciocalteu method, as a response. The optimized extract was tested for antioxidant capacity using the Folin–Ciocalteu reagent, Trolox Equivalent Antioxidant Capacity (TEAC), and oxygen radical absorbance capacity (ORAC) assays and for antimicrobial activity against 16 pathogenic strains using the agar well diffusion method. Results: The maximum TPC values predicted with maximizing desirability function for RSM were 2177.01 mg GAE/100 g DW and 1827.38 mg GAE/100 g DW for the ANN. Both models presented certain advantages and could be considered reliable tools for predictability and accuracy purposes. Using these conditions, the extract presented high antioxidant capacity for FCR assay (13.43 ± 0.62 mg GAE/g DW), TEAC (10.18 ± 0.47 µmol TE/g DW), and ORAC (205.47 ± 19.23 µmol TE/g DW). The antimicrobial activity of the optimized extract was pronounced only with respect to S. aureus alimentarius, Streptococcus, E. coli, P. aeruginosa, and A. flavus. Conclusions: This study underlines the high effectiveness of the optimization approaches in providing a maximum recovery of bioactive compounds from OFI cladodes to formulate food and pharmaceutical products with functional qualities. Full article
Show Figures

Figure 1

16 pages, 2108 KiB  
Article
Influence of Freeze Drying and Spray Drying on the Physical and Chemical Properties of Powders from Cistus creticus L. Extract
by Alicja Kucharska-Guzik, Łukasz Guzik, Anna Charzyńska and Anna Michalska-Ciechanowska
Foods 2025, 14(5), 849; https://doi.org/10.3390/foods14050849 - 1 Mar 2025
Viewed by 1989
Abstract
This study aimed to evaluate the feasibility of producing and characterizing Cistus creticus L. powders obtained through spray drying and freeze drying using maltodextrin and inulin as carriers. Quantitative and qualitative analysis of polyphenols by high-performance liquid chromatography with diode-array detection (HPLC-DAD) and [...] Read more.
This study aimed to evaluate the feasibility of producing and characterizing Cistus creticus L. powders obtained through spray drying and freeze drying using maltodextrin and inulin as carriers. Quantitative and qualitative analysis of polyphenols by high-performance liquid chromatography with diode-array detection (HPLC-DAD) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) identified key bioactive compounds, including punicalagin isomers and their galloyl esters, as well as flavonoids (myricetin-3-galactoside, myricetin-3-rhamnoside, quercetin-3-galactoside, and tiliroside). Phenolics in powders produced by both drying techniques ranged from 73.2 mg to 78.5 mg per g of dry matter. Inulin proved to be as effective as maltodextrin in spray drying, offering a promising alternative for plant-based powder formulation. Antioxidant capacity measured by Trolox equivalent antioxidant capacity assay with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (TEAC ABTS) and ferric reducing antioxidant power (FRAP) assay indicated that spray-dried powders with inulin exhibited antioxidant properties comparable to those with maltodextrin. The results demonstrated that Cistus creticus L. powders obtained with inulin can serve as valuable sources of bioactive compounds with potential health benefits similar to those obtained with maltodextrin. Moreover, from a technological perspective, inulin proved to be an equally efficient carrier in terms of production-process parameters such as moisture content and water activity, making it a viable alternative to maltodextrin in plant-based powder formulations. Full article
Show Figures

Figure 1

19 pages, 2349 KiB  
Article
HRMS Characterization and Antioxidant Evaluation of Costa Rican Spent Coffee Grounds as a Source of Bioactive Polyphenolic Extracts
by Mirtha Navarro-Hoyos, Luis Felipe Vargas-Huertas, Juan Diego Chacón-Vargas, Valeria Leandro-Aguilar, Diego Alvarado-Corella, Jose Roberto Vega-Baudrit, Luis Guillermo Romero-Esquivel, Andrés Sánchez-Kopper, Andrea Monge-Navarro and Andrea Mariela Araya-Sibaja
Foods 2025, 14(3), 448; https://doi.org/10.3390/foods14030448 - 30 Jan 2025
Cited by 1 | Viewed by 1083
Abstract
Spent coffee grounds constitute a waste product that has attracted potential interest as a rich source of secondary metabolites such as polyphenolic compounds with antioxidant properties. In this work, aqueous extracts from samples of different spent coffee grounds from Costa Rica were prepared [...] Read more.
Spent coffee grounds constitute a waste product that has attracted potential interest as a rich source of secondary metabolites such as polyphenolic compounds with antioxidant properties. In this work, aqueous extracts from samples of different spent coffee grounds from Costa Rica were prepared and analyzed using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry using a quadrupole time-of-flight analyzer (UPLC-QTOF-ESI MS). This allowed for the identification of twenty-one compounds, including fourteen phenolic acids, three caffeoylquinic lactones, and four atractyligenin diterpenes. In addition, using UPLC coupled with a diode array detector (UPLC-DAD), we quantified the levels of caffeine (0.55–3.42 mg/g dry weight [DW]) and six caffeoylquinic and feruloylquinic acids (0.47–5.34 mg/g DW). The highest value was found for the fine-grind sample (EXP), both for phenolic acids and for total polyphenols (9.59 mg gallic acid equivalents [GAE]/g DW), compared to 2.13 and 1.70 mg GAE/g DW for the medium-grind (GR) and coarse-grind samples (PCR), respectively. The results obtained from the antioxidant evaluations using the 2,2-diphenyl-1-picrylhydrazyl assay (IC50 0.0964–6.005 g DW/L), the ferric-reducing antioxidant power (PFRAP) analysis (0.0215–0.1385 mmol FeSO4/g DW), the oxygen radical absorbance capacity (ORAC) assessment (45.7–309.7 μmol Trolox/g DW), and the Trolox equivalent antioxidant capacity (TEAC) assay (3.94–23.47 mg Trolox/g DW) also showed the best values for the fine-grind sample, with results similar to or higher than those reported in the literature. Statistical Pearson correlation analysis (p < 0.05) indicated a high correlation (R ≥ 0.842) between all antioxidant analyses, the total polyphenols, and the phenolic acid quantification using UPLC-DAD. These results show the potential for further studies aiming to exploit this waste product’s bioactive properties, constituting the first detailed study of spent coffee grounds from Costa Rica. Full article
Show Figures

Figure 1

17 pages, 2485 KiB  
Article
Impact of Thermal, High-Pressure, and Pulsed Electric Field Treatments on the Stability and Antioxidant Activity of Phenolic-Rich Apple Pomace Extracts
by Diana Plamada, Miriam Arlt, Daniel Güterbock, Robert Sevenich, Clemens Kanzler, Susanne Neugart, Dan C. Vodnar, Helena Kieserling and Sascha Rohn
Molecules 2024, 29(24), 5849; https://doi.org/10.3390/molecules29245849 - 11 Dec 2024
Cited by 1 | Viewed by 1079
Abstract
Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they [...] Read more.
Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods. However, the effects of these processes on the composition, stability, and properties of the PC remain insufficiently understood. The present study aimed at investigating the effects of a thermal treatment (TT), a high-pressure thermal treatment (HPTT), and a pulsed electric field treatment (PEF) on the composition and antioxidant activity of PC-rich apple pomace extracts (APEs). Major PCs, including phloridzin, chlorogenic acid, and epicatechin, as well as minor compounds, were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC). As a stability indicative property, the antioxidant activity was analyzed by a Trolox equivalent antioxidant capacity assay (TEAC), electron paramagnetic resonance spectroscopy, and the Folin–Ciocalteu reagent assay. The results showed that TT at 80 °C increased phloridzin content, likely due to the hydrolysis of bound forms, while higher temperatures and HPTT resulted in a substantial PC conversion. The PEF treatment also caused notable PC conversion, but generally, it had a milder effect compared to TT and HPTT. Hence, low temperatures with and without high pressure and PEF seem to be the most promising treatments for preserving the highest content of major PC in APE. Antioxidant activity varied among the analytical methods, with HPTT showing minor changes despite PC loss compared to the untreated APE. This suggests that other antioxidant compounds in the extracts may contribute to the overall antioxidant activity. This study demonstrates that apple pomace contains valuable PC, highlighting its potential as a health-promoting food additive and the impact of conventional preservation and processing methods on PC stability. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

16 pages, 2696 KiB  
Article
A Paper-Based Assay for the Determination of Total Antioxidant Capacity in Human Serum Samples
by Michelle T. Tran, Sophia V. Gomez, Vera Alenicheva and Vincent T. Remcho
Biosensors 2024, 14(11), 559; https://doi.org/10.3390/bios14110559 - 18 Nov 2024
Cited by 4 | Viewed by 2708
Abstract
Determining the total antioxidant capacity (TAC) of biological samples is a valuable approach to measuring health status under oxidative stress conditions, such as infertility and type 2 diabetes. The Trolox equivalent antioxidant capacity (TEAC) assay is the most common approach to evaluating TAC [...] Read more.
Determining the total antioxidant capacity (TAC) of biological samples is a valuable approach to measuring health status under oxidative stress conditions, such as infertility and type 2 diabetes. The Trolox equivalent antioxidant capacity (TEAC) assay is the most common approach to evaluating TAC in biological matrices. This assay is typically performed in clinical settings on a microtiter plate using a plate reader. However, the instrumentation and expertise requirements, and the resulting delay in the reporting of assay outcomes, make solution-based TEAC assays impractical for point-of-care or at-home testing, where individuals may want to monitor their health status during treatment. This work introduces the first microfluidic paper-based analytical device (µPAD) that measures TAC in human serum using TEAC assay chemistry. TAC was determined through a colorimetric image analysis of the degree of decolorization of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cations (ABTS●+) by serum antioxidants. The µPAD showed a linear response to Trolox, ranging from 0.44 to 2.4 mM, (r  =  0.999). The performance of paper-based TEAC assays was validated through direct comparison to solution-based TEAC assays. There was a 0.04 mM difference in TAC values between the two platforms, well within one standard deviation of a standard solution-based assay conducted on an aliquot of the same serum sample (±0.25 mM). The µPAD had a limit of detection (LOD) of 0.20 mM, well below the TAC of normal human serum. The results suggest that the proposed device can be used for biological TAC determination and expands the field of TAC analysis in point-of-care health monitoring. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Graphical abstract

16 pages, 2278 KiB  
Article
Electrospun Poly-ε-Caprolactone Nanofibers Incorporating Keratin Hydrolysates as Innovative Antioxidant Scaffolds
by Naiara Jacinta Clerici, Aline Aniele Vencato, Rafael Helm Júnior, Daniel Joner Daroit and Adriano Brandelli
Pharmaceuticals 2024, 17(8), 1016; https://doi.org/10.3390/ph17081016 - 1 Aug 2024
Cited by 6 | Viewed by 1864
Abstract
This manuscript describes the development and characterization of electrospun nanofibers incorporating bioactive hydrolysates obtained from the microbial bioconversion of feathers, a highly available agro-industrial byproduct. The electrospun nanofibers were characterized using different instrumental methods, and their antioxidant properties and toxicological potential were evaluated. [...] Read more.
This manuscript describes the development and characterization of electrospun nanofibers incorporating bioactive hydrolysates obtained from the microbial bioconversion of feathers, a highly available agro-industrial byproduct. The electrospun nanofibers were characterized using different instrumental methods, and their antioxidant properties and toxicological potential were evaluated. Keratin hydrolysates (KHs) produced by Bacillus velezensis P45 were incorporated at 1, 2.5, and 5% (w/w) into poly-ε-caprolactone (PCL; 10 and 15%, w/v solutions) before electrospinning. The obtained nanofibers were between 296 and 363 nm in diameter, showing a string-like morphology and adequate structural continuity. Thermogravimetric analysis showed three weight loss events, with 5% of the mass lost up to 330 °C and 90% from 350 to 450 °C. Infrared spectroscopy showed typical peaks of PCL and amide bands corresponding to keratin peptides. The biological activity was preserved after electrospinning and the hemolytic activity was below 1% as expected for biocompatible materials. In addition, the antioxidant capacity released from the nanofibers was confirmed by DPPH and ABTS radical scavenging activities. The DPPH scavenging activity observed for the nanofibers was greater than 30% after 24 h of incubation, ranging from 845 to 1080 µM TEAC (Trolox equivalent antioxidant capacity). The antioxidant activity for the ABTS radical assay was 44.19, 49.61, and 56.21% (corresponding to 972.0, 1153.3, and 1228.7 µM TEAC) for nanofibers made using 15% PCL with 1, 2.5, and 5% KH, respectively. These nanostructures may represent interesting antioxidant biocompatible materials for various pharmaceutical applications, including wound dressings, topical drug delivery, cosmetics, and packaging. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Based Nanostructured Systems)
Show Figures

Figure 1

15 pages, 2949 KiB  
Article
Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa ‘Dianhong’ Petals with Brown Sugar
by Yueyue Cai, Merhaba Abla, Lu Gao, Jinsong Wu and Lixin Yang
Antioxidants 2024, 13(5), 607; https://doi.org/10.3390/antiox13050607 - 15 May 2024
Cited by 3 | Viewed by 1916
Abstract
Fermented Rosa rugosa ‘Dianhong’ petals with brown sugar, a biologically active food popularized in Dali Prefecture, Northwest Yunnan, China, are rich in bioactive compounds, especially polyphenols, exhibiting strong antioxidant activity. This study evaluated their antioxidant activities, total phenolic contents, and concentrations of polyphenols [...] Read more.
Fermented Rosa rugosa ‘Dianhong’ petals with brown sugar, a biologically active food popularized in Dali Prefecture, Northwest Yunnan, China, are rich in bioactive compounds, especially polyphenols, exhibiting strong antioxidant activity. This study evaluated their antioxidant activities, total phenolic contents, and concentrations of polyphenols at different fermentation conditions using different assays: DPPH free-radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), Folin–Ciocalteu assays, and HPLC–MS/MS and HPLC–DAD methods. The results indicated that fermentation significantly increased (p < 0.05) the antioxidant activity and polyphenol concentration of R. rugosa ‘Dianhong’. Furthermore, Saccharomyces rouxii TFR-1 fermentation achieved optimal bioactivity earlier than natural fermentation. Overall, we found that the use of Saccharomyces rouxii (TFR-1) is a more effective strategy for the production of polyphenol-rich fermented R. rugosa ‘Dianhong’ petals with brown sugar compared to natural fermentation. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Graphical abstract

15 pages, 2126 KiB  
Article
Calafate (Berberis microphylla G. Forst) Populations from Chilean Patagonia Exhibit Similar Structuring at the Genetic and Metabolic Levels
by Antonieta Ruiz, Marco Meneses, Benjamín Varas, Juan Araya, Carola Vergara, Dietrich von Baer, Patricio Hinrichsen and Claudia Mardones
Horticulturae 2024, 10(5), 458; https://doi.org/10.3390/horticulturae10050458 - 30 Apr 2024
Viewed by 2390
Abstract
Berberis microphylla, commonly known as calafate, is one of the most promising species of Chilean Patagonia to be domesticated, due to its anthocyanin-rich berries. The main aim of this study was to understand the genetic structure of the wild populations of B. [...] Read more.
Berberis microphylla, commonly known as calafate, is one of the most promising species of Chilean Patagonia to be domesticated, due to its anthocyanin-rich berries. The main aim of this study was to understand the genetic structure of the wild populations of B. microphylla in the main regions where it grows and its relationship with phenolic secondary metabolite profiles. Ripe berry samples and leaves were collected from the Aysén and Magallanes regions. Genetic analyses were carried out using 18 microsatellite markers. Phenolic compounds were extracted from the ripe fruits and were quantified using high-performance liquid chromatography (HPLC). Their antioxidant capacity was determined according to the Trolox equivalent antioxidant capacity (TEAC) assay. Total phenols were measured as their absorbance at a wavelength of 280 nm. Both the genetic and chemometric data were explored using unsupervised and supervised methods. The genetic markers suggest the existence of three groups, two of them corresponding to the Aysén and Magallanes samples, and the third corresponding to Chile Chico (a district in Aysén), which was the most divergent of the three. Similar results were observed in the phenolic profile obtained with chemometric analysis, with the same samples forming a separate third group. The differentiation achieved using the genetic and chemical data may be the result of intrinsic genetic differences, environmental effects on fruit maturity, or the sum of both factors. These are all points to consider in the domestication of this valuable species by selecting individuals with desirable traits and contrasting phenotypes. Full article
Show Figures

Figure 1

14 pages, 6545 KiB  
Article
Exploring the Chemical Profile, In Vitro Antioxidant and Anti-Inflammatory Activities of Santolina rosmarinifolia Extracts
by Janos Schmidt, Kata Juhasz and Agnes Bona
Molecules 2024, 29(7), 1515; https://doi.org/10.3390/molecules29071515 - 28 Mar 2024
Cited by 1 | Viewed by 1573
Abstract
In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and [...] Read more.
In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The total phenolic content (TPC) of the extracts was measured by the Folin–Ciocalteu assay. The anti-inflammatory effect of the extracts was monitored by the Griess assay. The chemical composition of S. rosmarinifolia extracts was analysed using the LC-MS technique. According to our findings, 60% EtOH leaf extracts showed the highest Trolox equivalent antioxidant capacity (TEAC) values in both ABTS (8.39 ± 0.43 µM) and DPPH (6.71 ± 0.03 µM) antioxidant activity assays. The TPC values of the samples were in good correspondence with the antioxidant activity measurements and showed the highest gallic acid equivalent value (130.17 ± 0.01 µg/mL) in 60% EtOH leaf extracts. In addition, the 60% EtOH extracts of the leaves were revealed to possess the highest anti-inflammatory effect. The LC-MS analysis of S. rosmarinifolia extracts proved the presence of ascorbic acid, catalpol, chrysin, epigallocatechin, geraniol, isoquercitrin, and theanine, among others, for the first time. However, additional studies are needed to investigate the direct relationship between the chemical composition and physiological effects of the herb. The 60% EtOH extracts of S. rosmarinifolia leaves are potential new sources of natural antioxidants and anti-inflammatory molecules in the production of novel nutraceutical products. Full article
Show Figures

Graphical abstract

17 pages, 4560 KiB  
Article
Comprehensive Assessment of Coffee Varieties (Coffea arabica L.; Coffea canephora L.) from Coastal, Andean, and Amazonian Regions of Ecuador; A Holistic Evaluation of Metabolism, Antioxidant Capacity and Sensory Attributes
by Raluca A. Mihai, Diana C. Ortiz-Pillajo, Karoline M. Iturralde-Proaño, Mónica Y. Vinueza-Pullotasig, Leonardo A. Sisa-Tolagasí, Mary L. Villares-Ledesma, Erly J. Melo-Heras, Nelson S. Cubi-Insuaste and Rodica D. Catana
Horticulturae 2024, 10(3), 200; https://doi.org/10.3390/horticulturae10030200 - 21 Feb 2024
Cited by 8 | Viewed by 3306
Abstract
In Ecuador, the cultivation of two main coffee species, Coffea arabica L. and Coffea canephora L., holds significant economic, environmental, social, and public health importance. C. arabica displays wide adaptability to diverse growing conditions, while C. canephora exhibits less versatility in adaptation but [...] Read more.
In Ecuador, the cultivation of two main coffee species, Coffea arabica L. and Coffea canephora L., holds significant economic, environmental, social, and public health importance. C. arabica displays wide adaptability to diverse growing conditions, while C. canephora exhibits less versatility in adaptation but is superior in metabolite production in the ripe fruits (with the potential to double caffeine content). Our hypothesis revolves around the differences in the production of secondary metabolites, antioxidant capacity and sensory attributes based on the environmental conditions of the two studies species cultivated in Ecuador. The assessment of the metabolic composition of high-altitude coffee grown in Ecuador involved the determination of secondary metabolites and quantification of the antioxidant capacity through the 2,2-diphenyl-1-picrylhydrazyl assay, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) quenching assay, and ferric reducing antioxidant power assay. In the case of C. arabica, a high positive correlation was observed for total phenolic content (TPC) (4.188 ± 0.029 mg gallic acid equivalent (GAE)/g dry weight (dw)) and total flavonoid content (TFC) (0.442 ± 0.001 mg quercetin (QE)/g dw) with the antioxidant activity determined through ABTS free-radical-scavenging activity (23.179 ± 1.802 µmol Trolox (TEAC)/g dw) (R = 0.68), a medium correlation with DPPH radical-scavenging activity (65.875 ± 1.129 µmol TEAC/g dw) (R = 0.57), and a low correlation with ferric reducing antioxidant power assay ((100.164 ± 0.332 µmol Fe2+/g dw) (R = 0.27). A high correlation (R > 90) was observed for the values evaluated in the case of C. canephora. The caffeine content was high in C. arabica beans from Los Ríos province and in C. canephora beans from Loja. Full article
(This article belongs to the Special Issue Fruits Quality and Sensory Analysis)
Show Figures

Figure 1

15 pages, 1255 KiB  
Article
Yeast Starter Culture Identification to Produce of Red Wines with Enhanced Antioxidant Content
by Giuseppe Romano, Marco Taurino, Carmela Gerardi, Maria Tufariello, Marcello Lenucci and Francesco Grieco
Foods 2024, 13(2), 312; https://doi.org/10.3390/foods13020312 - 18 Jan 2024
Cited by 4 | Viewed by 1717
Abstract
Grape variety, quality, geographic origins and phytopathology can influence the amount of polyphenols that accumulate in grape tissues. Polyphenols in wine not only shape their organoleptic characteristics but also significantly contribute to the positive impact that this beverage has on human health. However, [...] Read more.
Grape variety, quality, geographic origins and phytopathology can influence the amount of polyphenols that accumulate in grape tissues. Polyphenols in wine not only shape their organoleptic characteristics but also significantly contribute to the positive impact that this beverage has on human health. However, during the winemaking process, the total polyphenol content is substantially reduced due to the adsorption onto yeast wall polymers and subsequent lees separation. Despite this, limited information is available regarding the influence of the yeast starter strain on the polyphenolic profile of wine. To address this issue, a population consisting of 136 Saccharomyces cerevisiae strains was analyzed to identify those with a diminished ability to adsorb polyphenols. Firstly, the reduction in concentration of polyphenolic compounds associated to each strain was studied by assaying Total Phenolic Content (TPC) and Trolox Equivalent Antioxidant Capacity (TEAC) in the wines produced by micro-scale must fermentation. A total of 29 strains exhibiting a TPC and TEAC reduction ≤ 50%, when compared to that detected in the utilized grape must were identified and the nine most-promising strains were further validated by larger-scale vinification. Physico-chemical analyses of the resulting wines led to the identification of four strains, namely ITEM6920, ITEM9500, ITEM9507 and ITEM9508 which showed, compared to the control wine, a TPC and TEAC reduction ≤ 20 in the produced wines. They were denoted by a significant (p < 0.05) increased amount of anthocyanin, quercetin and trans-coutaric acid, minimal volatile acidity (<0.2 g/L), absence of undesirable metabolites and a well-balanced volatile profile. As far as we know, this investigation represents the first clonal selection of yeast strains aimed at the identifying “functional” fermentation starters, thereby enabling the production of regional wines with enriched polyphenolic content. Full article
Show Figures

Graphical abstract

22 pages, 1374 KiB  
Article
The Formulation of Dermato-Cosmetic Products Using Sanguisorba minor Scop. Extract with Powerful Antioxidant Capacities
by Alexandra-Cristina Tocai (Moţoc), Adriana Ramona Memete, Mariana Ganea, Laura Graţiela Vicaș, Octavia Dorina Gligor and Simona Ioana Vicas
Cosmetics 2024, 11(1), 8; https://doi.org/10.3390/cosmetics11010008 - 11 Jan 2024
Cited by 1 | Viewed by 6199
Abstract
There has been a significant increase in the use of botanical resources for the formulation of topical products designed for medicinal and cosmetic applications. Sanguisorba minor Scop., a botanical species, exhibits a variety of properties and has significant potential for applications in the [...] Read more.
There has been a significant increase in the use of botanical resources for the formulation of topical products designed for medicinal and cosmetic applications. Sanguisorba minor Scop., a botanical species, exhibits a variety of properties and has significant potential for applications in the field of cosmetics. The aim of this study was to formulate topical preparations, incorporating an extract derived from the plant S. minor Scop. comprising a combination of roots, leaves, and flowers. In the initial phase, a total of seven combinations were prepared using extracts derived from the roots, leaves, and flowers of S. minor Scop. (v/v/v). These combinations were subsequently subjected to evaluation for their antioxidant capacity using four distinct methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), and Trolox equivalent antioxidant capacity (TEAC). An extract of plant organs in a ratio of 1:2:1 (v/v/v), which had a strong antioxidant capacity and demonstrated synergistic effects according to the DPPH, TEAC, and CUPRAC assays (with values of 1.58 ± 0.1, 1.18 ± 0.09, and 1.07 ± 0.07, respectively), was selected for inclusion in three dermato-cosmetic products (hydrogel, emulgel, and cream). All the prepared preparations were evaluated in terms of topical formulation attributes and organoleptic characteristics. The testing of dermato-cosmetic products included assessments of their topical formulation properties and organoleptic characteristics. The hydrogel, emulgel, and cream exhibited varying degrees of stretchability. In addition, a study was carried out to assess the in vitro release of polyphenols from the cosmetic formulations using a Franz diffusion cell system. The results showed that the emulgel containing the extract of S. minor Scop. had the highest and most significant release of polyphenols, with a release rate of 84.39 ± 1.01%. This was followed by the hydrogel and cream, which had release percentages of 80.52 ± 0.89 and 75.88 ± 0.88, respectively, over an 8 h period. Thus, for the first time in the literature, a topical cosmetic product with high antioxidant potential containing S. minor Scop. extract was developed and optimized. Full article
(This article belongs to the Special Issue Natural Sources for Cosmetic Ingredients: Challenges and Innovations)
Show Figures

Figure 1

Back to TopTop