Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa ‘Dianhong’ Petals with Brown Sugar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.1.1. Materials
2.1.2. Chemicals
2.2. Sample Fermentation and Extraction
2.2.1. Fermentation Sample Preparation
2.2.2. Fermentation Sample Extraction
2.3. Determination of Total Phenolic Content (TPC)
2.4. In Vitro Antioxidant Assays
2.4.1. DPPH Radical Scavenging Assay
2.4.2. ABTS+ Radical Scavenging Assay
2.4.3. Ferric Reducing Antioxidant Potential (FRAP) Assay
2.4.4. Measurement of Superoxide Dismutase (SOD) Activity
2.5. Phenolic Compounds Content Analysis
2.5.1. Targeted Metabolomics Analysis
2.5.2. HPLC–DAD Analysis of Phenolic Compositions
2.6. Statistical Analysis
3. Results and Discussion
3.1. TPC Values of Unfermented and Fermented R. rugosa ‘Dianhong’
3.2. In Vitro Antioxidant Assays
3.2.1. The DPPH, ABTS+, and FRAP Radical Scavenging Assay
3.2.2. SOD Activity
3.3. Compound Detection
3.3.1. The Analysis of Phenolic Compositions
3.3.2. The Analysis of Phenolic Compositions
3.4. Relevance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Miao, M.; Xia, H.; Yang, L.G.; Wang, S.K. Antioxidant activities of aqueous extracts from 12 Chinese edible flowers in vitro and in vivo. Food Nutr. Res. 2017, 61, 1265324. [Google Scholar] [CrossRef]
- Ren, G.X.; Xue, P.; Sun, X.Y.; Zhao, G. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. Var. plena Regal tea. BMC Complement Altern. Med. 2018, 18, 307. [Google Scholar] [CrossRef]
- Liu, L.; Tang, D.; Zhao, H.; Xin, X.; Aisa, H.A. Hypoglycemic effect of the polyphenols rich extract from Rosa rugosa Thunb on high fat diet and STZ induced diabetic rats. J. Ethnopharmacol. 2017, 200, 174–181. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Mrkonjić, Z.O.; Majkić, T.M.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Phytochemical composition and in vitro functional properties of three wild rose hips and their traditional preserves. Food Chem. 2018, 241, 290–300. [Google Scholar] [CrossRef]
- Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodriguez-Yoldi, M.J. Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS ONE 2016, 11, e0159136. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Noreikienė, I.; Zymonė, K.; Juodytė, R.; Žvikas, V.; Janulis, V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants 2021, 10, 545. [Google Scholar] [CrossRef]
- Li, M.X.; Xie, J.; Bai, X.; Du, Z.Z. Anti-aging potential, anti-tyrosinase and antibacterial activities of extracts and compounds isolated from Rosa chinensis cv. ‘JinBian’. Ind. Crop. Prod. 2021, 159, 113059. [Google Scholar] [CrossRef]
- Shameh, S.; Hosseini, B.; Alirezalu, A.; Maleki, R.A. Rosa Phytochemical Composition and Antioxidant Activity of Petals of Six Species from Iran. J. AOAC Int. 2018, 101, 1788–1793. [Google Scholar] [CrossRef]
- Xiong, L.N.; Yang, J.J.; Jiang, Y.R. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef]
- Lee, M.H.; Nam, T.G.; Lee, I. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar] [CrossRef]
- Ju, S.E.; Ah-Ram, H.; Lee, M.H. Extraction conditions for Rosa gallica petal extracts with anti-skin aging activities. Food Sci. Biotechnol. 2019, 28, 1439–1446. [Google Scholar]
- Wang, Z.; Wang, Q.; Tang, K.; Zhang, H.; Yang, J.; Qiu, X.; Jian, H.; Du, G.; Yan, H. Analysis of floral scent composition and expression of key floral scent genes of Yunnan main grown edible roses. Plant Physiol. 2019, 55, 1038–1046. (In Chinese) [Google Scholar]
- Wei, L.; Li, J.; Yang, Y.; Zhu, M.; Zhao, M.; Yang, J.; Yang, Z.; Zhou, L.; Zhou, S.; Gong, J.; et al. Characterization and potential bioactivity of polyphenols of Rosa rugosa. Food Biosci. 2022, 50, 102108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Liu, X.; Li, J.; Zhang, J.; Liu, D. Chemical constituents and pharmacological activities of medicinal plants from Rosa genus. Chin. Herb. Med. 2022, 14, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.-N.; Liu, L.-X.; Tang, X.-J.; Lei, S.-M.; Meng, X.-S.; Liu, Y.-G. Dynamics of microbial communities, physicochemical factors and flavor in rose jam during fermentation. LWT 2022, 155, 112920. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Lin, Y.M.; Kuo, J.T. Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.) Merr. Extract before and after fermentation with Aspergillus oryzae. J. Biosci Bioeng. 2019, 127, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, S.; Jesús, M.C.; Paola, M.R.; Alejandro, Z.C.; Juan, A.V.; Cristóbal Noé, A. Solid-state fermentation with Aspergillus niger GH1 to enhance polyphenolic content and antioxidative activity of Castilla Rose (Purshia plicata). Plants 2020, 9, 1518. [Google Scholar]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.Y.; Qin, C.Q. Fermentation of rose residue by Lactiplantibacillus plantarum B7 and Bacillus subtilis natto promotes polyphenol content and beneficial bioactivity. J. Biosci. Bioeng. 2022, 134, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H.B. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, J.; Zhi, Q.; Yuan, T.; Lei, X.; Zeng, K.; Ming, J. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food Func. 2021, 12, 12647–12658. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Merhaba, A.; Gao, L.; Yang, L.X. Analysis of Phenolic Content and its Antioxidant and Anti-inflammatory Activities during the Fermentation Process of Rosa rugosa ‘Dianhong’. Sci. Technol. Food Ind. 2024, 45, 1–9. (In Chinese) [Google Scholar]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.; Yang, Z.; Hou, Y. Antioxidant activity of Momordica charantia polysaccharide and its derivatives. Intl. J. Biol. Macromol. 2019, 138, 673–680. [Google Scholar] [CrossRef]
- Deseo, M.A.; Elkins, A.; Rochfort, S. Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chem. 2020, 314, 126180. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF/MS haracterization of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef]
- Dai, H.; Jiang, B.; Zhao, J.; Li, J.; Sun, Q. Metabolomics and Transcriptomics Analysis of Pollen Germination Response to Low-Temperature in Pitaya (Hylocereus polyrhizus). Front. Plant Sci. 2022, 13, 866588. [Google Scholar] [CrossRef]
- Abdellatif, F.; Begaa, S.; Messaoudi, M.; Benarfa, A.; Ouakouak, H.; Hassani, A.; Sawicka, B.; Simal Gandara, J. HPLC–DAD analysis, antimicrobial and antioxidant properties of aromatic herb Melissa officinalis L.; aerial parts extracts. Food Anal. Methods 2023, 16, 45–54. [Google Scholar] [CrossRef]
- Xiong, R.G.; Wu, S.X.; Cheng, J.; Saimaiti, A.; Liu, Q.; Shang, A.; Zhou, D.D.; Huang, S.Y.; Gan, R.Y.; Li, H.B. Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants 2023, 12, 1573. [Google Scholar] [CrossRef]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef]
- Xia, A.-N.; Meng, X.-S.; Tang, X.-J.; Zhang, Y.-Z.; Lei, S.-M.; Liu, Y.-G. Probiotic and related properties of a novel lactic acid bacteria strain isolated from fermented rose jam. LWT 2022, 136, 110327. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef]
- Espirito-Santo, A.P.; Carlin, F.; Renard, C.M. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth?—A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Res. Int. 2015, 78, 352–360. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef]
- Nguela, J.M.; Vernhet, A.; Julien-Ortiz, A.; Sieczkowski, N.; Mouret, J.R. Effect of grape must polyphenols on yeast metabolism during alcoholic fermentation. Food Res. Int. 2019, 121, 161–175. [Google Scholar] [CrossRef]
- Minnaar, P.P.; Jolly, N.P.; Paulsen, V.; Du Plessis, H.W.; Van Der Rijst, M. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Intl. J. Food Microbiol. 2017, 257, 232–237. [Google Scholar] [CrossRef]
- Sang, S.; Lapsley, K.; Jeong, W.S.; Lachance, P.A.; Ho, C.T.; Rosen, R.T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J. Agric. Food Chem. 2002, 50, 2459–2463. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Yahia, E.M.; González-Aguilar, G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem. 2012, 135, 105–111. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.-Z.; Xu, W.-C.; Chen, W.-J.; Wu, S.; Huang, Y.-Y. Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation. J Agric. Food Chem. 2020, 68, 13751–13759. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Orozco, R.; Frias, J.; Muñoz, R.; Zielinski, H.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Fermentation as a Bio-Process To Obtain Functional Soybean Flours. J. Agric. Food Chem. 2007, 55, 8972–8979. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Park, K.J.; An, H.J.; Choi, Y.H. Phytochemical, antioxidant, and antibacterial activities of fermented Citrus unshiu byproduct. Food Sci. Biotechnol. 2017, 26, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive Compounds and Antioxidant Capacity of Rosa rugosa Depending on Degree of Ripeness. Antioxidants 2018, 7, 134. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Rt. (min) | Ion Mode | MS/MS (m/s) | Contents (μg/mL) | ||
---|---|---|---|---|---|---|---|
UFR (0 d) | NFR (14 d) | YFR (7 d) | |||||
1 | Gallic acid | 0.74 | Negative | 169.0/124.9 | 27.93 ± 0.86 c | 35.56 ± 2.03 b | 48.25 ± 2.53 a |
2 | Protocatechuic acid | 1.07 | Negative | 153.0/108.9 | 10.73 ± 0.56 a | 4.96 ± 0.33 b | 10.11 ± 0.68 a |
3 | P-hydroxybenzoic acid | 1.65 | Positive | 138.9/95.0 | 0.10 ± 0.03 a | 1.06 ± 0.14 b | 1.05 ± 0.10 b |
4 | Vanillic acid | 2.00 | Positive | 169.0/93.0 | 0.84 ± 0.12 c | 1.58 ± 0.18 b | 2.28 ± 0.30 a |
5 | Syringic acid | 2.27 | Positive | 199.1/140.1 | 2.95 ± 0.34 b | 2.62 ± 0.29 b | 3.98 ± 0.47 a |
6 | Rutin | 3.94 | Positive | 611.3/303.0 | 3.45 ± 0.52 a | 3.61 ± 0.36 a | 3.95 ± 0.55 a |
7 | Quercitrin | 4.19 | Positive | 449.1/303.0 | 131.90 ± 7.30 b | 152.90 ± 7.94 ab | 175.02 ± 14.13 a |
8 | Quercetin | 4.59 | Positive | 303.2/229.2 | 13.40 ± 1.30 b | 61.95 ± 1.98 a | 63.58 ± 2.56 a |
9 | Naringenin | 4.68 | Positive | 273.1/153.1 | 0.08 ± 0.01 b | 0.50 ± 0.04 a | 0.56 ± 0.05 a |
10 | Kaempferol | 4.85 | Positive | 287.1/153.1 | 2.46 ± 0.25 b | 17.79 ± 0.97 a | 17.84 ± 1.24 a |
11 | Apigenin | 4.83 | Positive | 271.2/153.1 | 0.02 ± 0.00 c | 0.06 ± 0.00 b | 0.11 ± 0.05 a |
12 | Luteolin | 4.63 | Positive | 287.0/153.0 | 1.21 ± 0.14 b | 0.97 ± 0.05 b | 1.58 ± 0.16 a |
13 | Chlorogenic acid | 1.86 | Positive | 355.4/163.0 | 1.25 ± 0.11 a | 0.43 ± 0.03 c | 0.94 ± 0.12 b |
14 | Ferulic acid | 3.73 | Positive | 195.1/177.0 | 0.13 ± 0.02 b | 0.15 ± 0.01 b | 0.20 ± 0.02 a |
15 | Catechin | 1.37 | Positive | 291.0/139.1 | 0.23 ± 0.03 a | <0 | 0.09 ± 0.01 ab |
16 | In total | - | - | - | 195.70 ± 11.58 c | 284.31 ± 14.34 b | 329.54 ± 18.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Abla, M.; Gao, L.; Wu, J.; Yang, L. Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa ‘Dianhong’ Petals with Brown Sugar. Antioxidants 2024, 13, 607. https://doi.org/10.3390/antiox13050607
Cai Y, Abla M, Gao L, Wu J, Yang L. Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa ‘Dianhong’ Petals with Brown Sugar. Antioxidants. 2024; 13(5):607. https://doi.org/10.3390/antiox13050607
Chicago/Turabian StyleCai, Yueyue, Merhaba Abla, Lu Gao, Jinsong Wu, and Lixin Yang. 2024. "Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa ‘Dianhong’ Petals with Brown Sugar" Antioxidants 13, no. 5: 607. https://doi.org/10.3390/antiox13050607