Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,430)

Search Parameters:
Keywords = Triple negative breast cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1258 KiB  
Article
Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug
by Sofia Teixeira, Débora Ferreira, Ana Rita O. Rodrigues, Ligia R. Rodrigues, Elisabete M. S. Castanheira and Maria Alice Carvalho
Pharmaceuticals 2025, 18(8), 1210; https://doi.org/10.3390/ph18081210 - 15 Aug 2025
Abstract
Background/Objectives: Cancer is one of the deadliest diseases worldwide. Despite the existing treatments, the adverse side effects and the increasing drug resistance to the current therapies lead to a reduced quality of life for patients and poor prognosis. The pyrimido[5,4-d]pyrimidine compound [...] Read more.
Background/Objectives: Cancer is one of the deadliest diseases worldwide. Despite the existing treatments, the adverse side effects and the increasing drug resistance to the current therapies lead to a reduced quality of life for patients and poor prognosis. The pyrimido[5,4-d]pyrimidine compound (PP) was identified as a promising new anticancer drug due to its potent activity against colorectal and triple-negative breast cancers; however it showed poor aqueous solubility and safety profile. This study aimed the synthesis of compound PP, its encapsulation in liposomal formulations based on phosphatidylcholines (PC), the characterization of liposomal formulations and its biological evaluation. Methods: A new synthesis method for PP was developed. The compound was incorporated into different liposomal formulations. The hydrodynamic size, polydispersity, and zeta potential of loaded and non-loaded formulations were measured by DLS. The cytotoxic effects of compound PP, placebo nanoformulations, and PP-loaded nanoformulations were assessed in colorectal (HCT 116) and triple-negative breast cancer (MDA-MB-231) cell lines, as well as in non-tumor BJ-5ta cells. Results: The PP compound was efficiently synthesized. The PP-loaded liposomal formulations exhibit sizes below 150 nm, low polydispersity, and long-time stability upon storage at 4 °C. The antitumor compound was encapsulated with excellent efficiency, and sustained release profiles were obtained. The PP compound showed high activity against HCT 116 (IC50 = 2.04 ± 0.45 µM) and MDA-MB-231 (IC50 = 5.24 ± 0.24 µM) cell lines. DPPC-containing formulations were effective against cancer cells, but showed toxicity comparable to free PP in BJ-5ta normal cells. Conversely, PP-EggPC-Chol-L formulation displayed strong anticancer activity with residual toxicity to normal cells. Conclusions: The PP-loaded liposomal formulation, composed of 70% PC from egg yolk (EggPC) and 30% cholesterol (Chol), designated as PP-EggPC-Chol-L, was the most promising formulation, showing effective anticancer activity in both cancer cell lines and a significant improvement in the safety profile which is of utmost importance to progress to the next phase of drug development. Full article
(This article belongs to the Special Issue Drug Formulation: Solubilization and Controlled-Release Strategies)
Show Figures

Graphical abstract

19 pages, 2367 KiB  
Article
Integrative High-Throughput RNAi Screening Identifies BRSK1, STK32C and STK40 as Novel Activators of YAP/TAZ
by Mandeep K. Gill, Siyuan Song, Tania Christova and Liliana Attisano
Int. J. Mol. Sci. 2025, 26(16), 7810; https://doi.org/10.3390/ijms26167810 - 13 Aug 2025
Viewed by 177
Abstract
Disruption of the Hippo pathway leads to activation of the YAP/TAZ transcriptional program which promotes tumor initiation, progression and metastasis in diverse cancers. Aggressive triple-negative breast cancers (TNBC) lack an effective therapy; thus, inactivating YAP and TAZ has emerged as an attractive approach [...] Read more.
Disruption of the Hippo pathway leads to activation of the YAP/TAZ transcriptional program which promotes tumor initiation, progression and metastasis in diverse cancers. Aggressive triple-negative breast cancers (TNBC) lack an effective therapy; thus, inactivating YAP and TAZ has emerged as an attractive approach and a new treatment modality. Thus, we performed two complementary high-throughput RNAi-based kinome screens to uncover cancer-associated activators of YAP/TAZ in two TNBC cell lines, MDA-MB231 and MDA-MB468. Integrated analysis that combined a YAP/TAZ localization screen with a TEAD-luciferase reporter screen, identified novel regulators including BRSK1, STK32C and STK40. The AMPK family members NUAKs, MARKs and SIKs are known to inhibit the Hippo kinase cassette; here, we uncover BRSK1, another AMPK family member as a regulator of YAP/TAZ. We also reveal that two poorly studied kinases, STK32C, a member of the AGC family, and STK40, a pseudokinase, can also inhibit the activity of YAP/TAZ. Thus, our studies expand the repertoire of known AMPK family members and reveal two new kinases that modulate the Hippo pathway and may play a role in YAP/TAZ driven breast cancers. Further analysis of other screen hits may similarly uncover new regulators that could be targeted for therapeutic interventions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 2186 KiB  
Article
Drug Metabolism and Pharmacokinetic Evaluation of a Novel RNase H2 Inhibitor for the Treatment of Triple-Negative Breast Cancer
by Yang Wang, Huan Xie, Jing Ma, Ting Du, Song Gao, Yuan Chen, Shiaw-Yih Lin and Dong Liang
Pharmaceutics 2025, 17(8), 1052; https://doi.org/10.3390/pharmaceutics17081052 - 13 Aug 2025
Viewed by 247
Abstract
Objectives: A thorough understanding of pharmacokinetics and metabolism is critical during early drug development. This study investigates the absorption, distribution, metabolism, and excretion (ADME) profile of R14, a novel compound, using a combination of in vitro and in vivo approaches. Methods: In vitro [...] Read more.
Objectives: A thorough understanding of pharmacokinetics and metabolism is critical during early drug development. This study investigates the absorption, distribution, metabolism, and excretion (ADME) profile of R14, a novel compound, using a combination of in vitro and in vivo approaches. Methods: In vitro studies included Caco-2 permeability assays, metabolic stability evaluations in liver microsomes and hepatocytes, and identification of CYP isoforms responsible for R14 metabolism. In vivo pharmacokinetic and metabolic profiling was conducted in rats following oral administration. R14 was quantified using UHPLC-MS/MS. Metabolites were identified using high-resolution UHPLC- QTOF MS/MS, and relative exposure was estimated using peak area-derived AUCs. Results: R14 exhibited low oral bioavailability (13.4%) and high systemic clearance (2.63 L/h/kg), indicating high hepatic extraction. A total of 21 plasma and 38 urine metabolites were identified. Major metabolic pathways included initial hydroxylation and hydrogenation, followed by sequential methylation and Phase II conjugations (glucuronidation and sulfation). Key metabolites (M3, M4, M22, M38) accounted for the majority of systemic exposure. Less than 1% of the unchanged drug was excreted in urine, confirming extensive metabolism. Notably, discrepancies between in vitro and in vivo metabolite profiles suggested rapid further transformation of initial metabolites in vivo, which were not fully captured in vitro. Conclusions: This study demonstrates an efficient and integrated strategy for early-phase ADME characterization. The combined use of in vitro assays and in vivo studies, guided by advanced analytical techniques, provides a robust framework for understanding drug metabolism. These findings can inform drug optimization and help minimize risks in later stages of development. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

25 pages, 3899 KiB  
Article
Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer
by Anna Ilyina, Anastasia Leonteva, Ekaterina Berezutskaya, Maria Abdurakhmanova, Mikhail Ermakov, Sergey Mishinov, Elena Kuligina, Sergey Vladimirov, Maria Bogachek, Vladimir Richter and Anna Nushtaeva
Int. J. Mol. Sci. 2025, 26(16), 7789; https://doi.org/10.3390/ijms26167789 - 12 Aug 2025
Viewed by 277
Abstract
Cancer-associated fibroblasts (CAFs) constitute a heterogeneous population of cells within the tumor microenvironment and are associated with cancer development and drug resistance. The absence of a universal classification for CAFs hinders their research and therapeutic targeting. To define CAF phenotypes, we developed patient-derived [...] Read more.
Cancer-associated fibroblasts (CAFs) constitute a heterogeneous population of cells within the tumor microenvironment and are associated with cancer development and drug resistance. The absence of a universal classification for CAFs hinders their research and therapeutic targeting. To define CAF phenotypes, we developed patient-derived cell cultures of breast cancer (BC) and validated and characterized four distinct CAF subtypes (S1–S4) by Costa’s classification. Three out of five primary cell cultures of BC demonstrated different functional features rather than fixed cellular states due to the plasticity of the CAF phenotype. CAF crosstalk with cancer cells supported their survival in the presence of anticancer drugs. Based on the analysis of the cytotoxic effect of doxorubicin, cisplatin and tamoxifen, it was demonstrated that CAF-S4 and CAF-S1 cells were sensitive to the action of all drugs investigated, despite the fact that they possessed different mechanisms of action. CAF-S2 cells exhibited the highest level of resistance to the antitumour agents. Homotypic and heterotypic spheroids with CAFs could be used to model the fibrotic area of BC in vitro. The patient-derived cell cultures of CAFs formed spheroids. Hypoxia-activated CAF-S4 have been shown to stimulate the metastatic potential of triple-negative BC cells in a heterotypic spheroid model. Consequently, this study could be a starting point for the development of novel therapeutic strategies that target CAFs and their interactions with cancer cells. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

27 pages, 5035 KiB  
Article
Mycn Is Essential for Pubertal Mammary Gland Development and Promotes the Activation of Bcl11b-Maintained Quiescent Stem Cells
by Zuobao Lin, Chunhui Wang, Huiru Bai, Yue Zhang, Meizhen Lin, Xiaoqin Liu, Tian’en Hu and Yuan Meng
Cells 2025, 14(16), 1239; https://doi.org/10.3390/cells14161239 - 12 Aug 2025
Viewed by 265
Abstract
This investigation examines the function of the mouse Mycn gene in regulating and activating quiescent mammary stem cells, which are vital for mammary gland development. The mammary gland, consisting of luminal and basal cells, progresses through complex developmental stages from embryonic development through [...] Read more.
This investigation examines the function of the mouse Mycn gene in regulating and activating quiescent mammary stem cells, which are vital for mammary gland development. The mammary gland, consisting of luminal and basal cells, progresses through complex developmental stages from embryonic development through puberty, adulthood, pregnancy, lactation, and involution. Quiescent stem cells, existing in a reversible non-proliferative state, are essential for gland maintenance, yet their activation mechanisms remain poorly understood. Mycn, a member of the Myc/MYC oncogene family, is recognized for its roles in embryonic development and cancer, notably aggressive neuroblastoma and triple-negative breast cancer. Through single-cell RNA sequencing (scRNA-seq), CRISPR knockout, and overexpression experiments, this study demonstrates that Mycn is highly enriched in the terminal end buds (TEBs) of the pubertal mammary gland, particularly in basal cells, and is critical for ductal development. Both deletion and overexpression of Mycn diminish the stemness and regenerative capacity of mammary stem cells. Mycn enhances cell proliferation while downregulating quiescent stem cell markers and regulators, including Bcl11b and Tspan8, affecting stem cell maintenance and differentiation. This research clarifies the regulatory role of Bcl11b in controlling Tspan8 expression and demonstrates that Mycn indirectly targets both under normal conditions. Maintaining appropriate levels of Mycn expression is essential for normal development and cancer prevention. These insights contribute to understanding diseases and aggressive cancers, including triple-negative breast cancer (TNBC), and suggest potential therapeutic approaches. Full article
(This article belongs to the Special Issue Regulation of Cell Division)
Show Figures

Graphical abstract

17 pages, 408 KiB  
Article
Differential miRNA Expressions Linking Environmental Risk Factors to Triple-Negative Breast Cancer Stages at Diagnosis
by Amjila Bam, Yawen Hu, Xiaocheng Wu, Meng Luo, Nubaira Rizvi, Luis Del Valle, Arnold H. Zea, Fokhrul Hossain, Denise Moore Danos, Jovanny Zabaleta, Augusto Ochoa, Lucio Miele, Edward Trapido and Qingzhao Yu
Cancers 2025, 17(16), 2618; https://doi.org/10.3390/cancers17162618 - 11 Aug 2025
Viewed by 283
Abstract
Background/Objectives: Triple negative breast cancer (TNBC) is an aggressive, molecularly heterogeneous subtype of breast cancer, accounting for approximately 10–15% of all cases. While reproductive and metabolic factors contribute to breast cancer development, growing concerns about environmental exposures, alongside biological and socio-cultural influences, underscore [...] Read more.
Background/Objectives: Triple negative breast cancer (TNBC) is an aggressive, molecularly heterogeneous subtype of breast cancer, accounting for approximately 10–15% of all cases. While reproductive and metabolic factors contribute to breast cancer development, growing concerns about environmental exposures, alongside biological and socio-cultural influences, underscore the need for targeted prevention strategies across diverse populations. Despite increasing evidence linking biological, socioeconomic, and environmental factors to TNBC outcomes, the molecular mechanisms underlying these relationships remain poorly understood. Micro-RNAs (miRNAs), which regulate gene expression and play critical roles in cancer development, have emerged as potential mediators between environmental exposures and TNBC progression. The goal of this research is to identify environmental risk factors that directly relate to TNBC stages and enhance understanding of the mechanisms underlying how miRNAs link environmental exposures to TNBC stages. Methods: In this study, we analyzed 434 Formalin-Fixed, Paraffin-Embedded (FFPE) tumor samples from 434 women diagnosed with TNBC between 2009 and 2019, encompassing diverse cancer stages (184 cases from early stage and 250 cases from advanced stage), racial backgrounds, and socioeconomic statuses. The sequencing data were linked with the Louisiana Tumor Registry data and the Environmental Justice index. Results: A total of 348 unique miRNAs were identified as differentially expressed across environmental risk factors statistically associated with TNBC stage, adjusting for plate effects. An UpSet plot revealed 44 miRNAs commonly differentially expressed across TNBC stages and multiple environmental exposures. At least one differentially expressed (DE) miRNA was shared between the TNBC stage and each environmental factor, with many associated with receptor-negative and aggressive breast cancer subtypes. Conclusions: These findings highlight potential biological pathways through which exposures may drive the TNBC progression and contribute to disparities in outcomes. Full article
(This article belongs to the Special Issue New Perspectives in the Management of Breast Cancer)
Show Figures

Figure 1

19 pages, 1488 KiB  
Article
In Vitro Evaluation of Annona muricata Leaf Infusion as a Modulator of Antineoplastic Drug-Induced Cytotoxicity in Cancer Cell Lines
by Ariana Cabrera-Licona, Gustavo A. Hernández-Fuentes, Kayim Pineda-Urbina, Alejandra E. Hernández-Rangel, Mario A. Alcalá-Pérez, Janet Diaz-Martinez, Uriel Díaz-Llerenas, José Guzmán-Esquivel, Osval A. Montesinos-López, Juan C. Casarez-Price, Mario Del-Toro-Equihua, Sergio A. Zaizar-Fregoso, Sergio Gamez-Bayardo, Oscar F. Beas-Guzmán and Iván Delgado-Enciso
Pharmaceuticals 2025, 18(8), 1177; https://doi.org/10.3390/ph18081177 - 9 Aug 2025
Viewed by 608
Abstract
Background/Objectives: Annona muricata (AM), commonly known as soursop or guanabana, has long been used in traditional medicine for its purported anticancer properties. However, scientific studies evaluating its potential enhancing or additive effects with conventional antineoplastic drugs (ADs) remain limited. This study aimed [...] Read more.
Background/Objectives: Annona muricata (AM), commonly known as soursop or guanabana, has long been used in traditional medicine for its purported anticancer properties. However, scientific studies evaluating its potential enhancing or additive effects with conventional antineoplastic drugs (ADs) remain limited. This study aimed to assess the cytotoxic effects of an aqueous AM infusion alone and in combination with standard ADs in cancer cell lines, while also evaluating its safety in healthy cells. Additionally, we explored the potential molecular interactions of AM metabolites with therapeutic targets using silico modeling. Methods: An AM infusion (125 and 250 µg/mL) was tested on two cancer cell lines—MDA-MB-231 (human triple-negative breast cancer) and TC-1 (murine HPV16-positive cancer)—as well as healthy human leukocytes and a non-tumorigenic mouse lung cell line. Cell viability was assessed using the Alamar Blue™ assay. The combined effects of AM with multiple first-line ADs were evaluated. In silico molecular docking was performed with Molegro Virtual Docker to assess the interaction of AM metabolites (quercetin and hyperoside) with the A2B adenosine receptor. Additionally, the physicochemical properties of 13 AD were analyzed to explore correlations with cytotoxic outcomes. Results: AM infusion alone exhibited low cytotoxicity in both cancer and healthy cell types. However, when combined with ADs, it enhanced cytotoxic effects in cancer cells while sparing healthy cells at the evaluated concentrations. Docking studies revealed strong interactions between quercetin and hyperoside (major metabolites in the AM infusion) and the A2B receptor, supporting a possible mechanistic explanation for the observed effects. Conclusions: AM infusion may act as a chemical modulator, potentiating the effects of conventional ADs in cancer cells while preserving normal cell viability. These findings encourage further preclinical exploration of AM as a complementary agent in integrative oncology. Full article
Show Figures

Graphical abstract

45 pages, 861 KiB  
Review
Cytokine Networks in Triple-Negative Breast Cancer: Mechanisms, Therapeutic Targets, and Emerging Strategies
by María Rosado-Sanz, Nuria Martínez-Alarcón, Adrián Abellán-Soriano, Raúl Golfe, Eva M. Trinidad and Jaime Font de Mora
Biomedicines 2025, 13(8), 1945; https://doi.org/10.3390/biomedicines13081945 - 8 Aug 2025
Viewed by 389
Abstract
Triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer due to its aggressive nature and lack of targeted therapies. Cytokines play a pivotal role in shaping the tumor microenvironment, modulating tumor progression, immune evasion, and therapy resistance. In this review, we [...] Read more.
Triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer due to its aggressive nature and lack of targeted therapies. Cytokines play a pivotal role in shaping the tumor microenvironment, modulating tumor progression, immune evasion, and therapy resistance. In this review, we discuss the complex cytokine networks involved in TNBC biology, highlighting their contribution to key oncogenic processes, including proliferation, angiogenesis, epithelial–mesenchymal transition, and immunomodulation. We also summarize current and emerging cytokine-targeted therapeutic strategies, including monoclonal antibodies, bispecific antibodies, cell-based therapies, and cytokine-armed CAR-T and CAR-NK cell approaches, with a focus on clinical implications and future directions. Full article
Show Figures

Figure 1

36 pages, 543 KiB  
Review
Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment
by Bhaumik Shah, Muhammad Hussain and Anjali Seth
Curr. Issues Mol. Biol. 2025, 47(8), 638; https://doi.org/10.3390/cimb47080638 - 8 Aug 2025
Viewed by 964
Abstract
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing [...] Read more.
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing on high-grade serous ovarian carcinoma (HGSOC; ~50% HRD prevalence) and triple-negative breast cancer (TNBC; 50–70% prevalence). HRD arises from genetic (BRCA1/2, RAD51C/D, PALB2) and epigenetic alterations (e.g., BRCA1 methylation), leading to genomic instability detectable via scars (LOH, TAI, LST) and mutational signatures (e.g., COSMIC SBS3). Advanced detection integrates genomic assays (Myriad myChoice CDx, Caris HRD, FoundationOne CDx), functional assays (RAD51 foci), and epigenetic profiling, with tools like HRProfiler and GIScar achieving >90% sensitivity. HRD predicts robust responses to PARP inhibitors (PARPi) and platinum therapies, extending progression-free survival by 12–36 months in HGSOC. However, resistance mechanisms (BRCA reversion, SETD1A/EME1, SOX5) and assay variability (60–70% non-BRCA concordance) pose challenges. We propose a conceptual framework in Section 10, integrating multi-omics, methylation analysis, and biallelic reporting to enhance detection and therapeutic stratification. Regional variations (e.g., Asian cohorts) and disparities in access underscore the need for standardized, cost-effective diagnostics. Future priorities include validating novel biomarkers (SBS39, miR-622) and combination therapies (PARPi with ATR inhibitors) to overcome resistance and broaden HRD’s applicability across cancers. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
18 pages, 17950 KiB  
Article
From Structure to Function: The Impact of EGFR and IGF-IR in 3D Breast Cancer Spheroids
by Chrisavgi Gourdoupi, Spyros Kremmydas, Sylvia Mangani, Paraskevi Ioannou, Nikolaos A. Afratis, Zoi Piperigkou and Nikos K. Karamanos
Cancers 2025, 17(16), 2606; https://doi.org/10.3390/cancers17162606 - 8 Aug 2025
Viewed by 607
Abstract
Background: Breast cancer, one of the most researched cancers in oncology, remains the primary cause of cancer-related mortality in women. Its biological complexity, which includes phenotypic, genetic, and microenvironmental aspects, makes modeling and treatment quite difficult. The need for more physiologically realistic [...] Read more.
Background: Breast cancer, one of the most researched cancers in oncology, remains the primary cause of cancer-related mortality in women. Its biological complexity, which includes phenotypic, genetic, and microenvironmental aspects, makes modeling and treatment quite difficult. The need for more physiologically realistic models is highlighted by the comparison of two-dimensional (2D) cell cultures with 3D breast-cancer-derived spheroids, which discloses how important pathways such as epidermal growth factor receptor (EGFR) and insulin-like growth factor I receptor (IGF-IR) influence cell behavior and extracellular matrix (ECM) macromolecular expression. Methods: The purpose of this study was to utilize novel 3D cell platforms to assess the effect of inhibiting the EGFR and IGF-IR pathways, alone or in combination, on the functional properties and the expression levels of certain matrix metalloproteinases (MMPs) which are implicated in breast cancer progression (i.e., triple-negative and luminal A breast cancer subtypes) and related with the EGFR and IGF-ΙR molecular network, as also demonstrated through STRING analysis. Results: Our results demonstrated potential crosstalk between EGFR and IGF-IR signaling, which influences cell proliferation and spheroid growth, dissemination, and migration. Significant phenotypic changes proposed between 2D and 3D cell cultures, and alterations in the expression of MMPs, were also recorded. Conclusions: Both breast cancer cell lines retained acknowledged characteristics across the tested models while also exhibiting new, condition-dependent properties. Overall, our findings enhance our understanding on the interplay between the EGFR and IGF-IR pathways and underscore the value of 3D models in revealing key biological processes underlying distinct breast cancer phenotypes. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Graphical abstract

26 pages, 4060 KiB  
Article
A Validated Proteomic Signature of Basal-like Triple-Negative Breast Cancer Subtypes Obtained from Publicly Available Data
by Cristina Furlan, Maria Suarez-Diez and Edoardo Saccenti
Cancers 2025, 17(16), 2601; https://doi.org/10.3390/cancers17162601 - 8 Aug 2025
Viewed by 272
Abstract
Background: Basal-like breast cancer (BLBC) is a highly aggressive molecular subtype characterized by the strong expression of a gene cluster found in the basal or outer epithelial layer of the adult mammary gland. Patients with BLBC typically face a poor prognosis, with a [...] Read more.
Background: Basal-like breast cancer (BLBC) is a highly aggressive molecular subtype characterized by the strong expression of a gene cluster found in the basal or outer epithelial layer of the adult mammary gland. Patients with BLBC typically face a poor prognosis, with a shorter disease-free period and overall survival. Methods: In this study, we explored the proteomic profiles of BLBC patients using publicly available data from two large cohorts of breast cancer patients. By integrating cluster analysis, predictive modeling, protein differential abundance expression, and network analysis, we identified and validated the presence of two distinct subgroups, characterized by 256 upregulated and 99 downregulated proteins. Results: We report the upregulation of spliceosome components, especially SNRPG and its partners (BUD13, CWC15, SNRNP70, ZMAT12), indicating altered splicing activity between TNBC subgroups. Collagen proteins (COL1A1, COL1A2, COL3A1, COL11A1) were associated with tumor progression and metastasis. Proteins in the CCT complex and microtubule-associated proteins (TUBA1C, TUBB) were linked to cytoskeletal structure and chemotherapy resistance. Aminoacyl-tRNA synthetases (DARS1, IARS1, KARS1) may also play a role in TNBC development. Conclusions: These findings suggest the existence of novel molecular signatures that could improve TNBC classification, prognosis, and potential therapeutic targeting. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Gynecological Cancer)
Show Figures

Figure 1

12 pages, 486 KiB  
Article
Efficacy and Safety of Dose-Dense Chemotherapy in Breast Cancer: Real Clinical Data and Literature Review
by Keiko Yanagihara, Masato Yoshida, Tamami Yamakawa, Sena Kato, Miki Tamura and Koji Nagata
Curr. Oncol. 2025, 32(8), 441; https://doi.org/10.3390/curroncol32080441 - 6 Aug 2025
Viewed by 423
Abstract
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen [...] Read more.
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen included epirubicin and cyclophosphamide followed by paclitaxel or docetaxel, with pegfilgrastim support. The overall treatment completion rate was 82.5%. Of the 80 patients, 55 underwent neoadjuvant chemotherapy, and the pathological complete response rate was significantly higher in triple-negative breast cancer (59.1%) compared to that in luminal-type cancer (9.1%). Common adverse events included anemia, liver dysfunction, myalgia, and peripheral neuropathy. Febrile neutropenia occurred in 8.8% of patients, with some cases linked to pegfilgrastim body pod use, particularly in individuals with low subcutaneous fat. Notably, two patients developed pneumocystis pneumonia, potentially associated with steroid administration. Despite these toxicities, most were manageable and resolved after treatment. Our findings support the efficacy of dose-dense chemotherapy, particularly in triple-negative breast cancer, while highlighting the importance of individualized supportive care and vigilance regarding hematologic and infectious complications. Full article
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Viewed by 335
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Viewed by 279
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
Repurposing a Lipid-Lowering Agent to Inhibit TNBC Growth Through Cell Cycle Arrest
by Yi-Chiang Hsu, Kuan-Ting Lee, Sung-Nan Pei, Kun-Ming Rau and Tai-Hsin Tsai
Curr. Issues Mol. Biol. 2025, 47(8), 622; https://doi.org/10.3390/cimb47080622 - 5 Aug 2025
Viewed by 281
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor for hyperlipidemia—has garnered interest for its potential anticancer effects. This study investigates the therapeutic potential of Simvastatin in triple-negative breast cancer (TNBC). The results demonstrate that Simvastatin significantly inhibits the proliferation of TNBC cells, particularly MDA-MB-231, in a dose- and time-dependent manner. Mechanistically, Simvastatin primarily induces G1 phase cell cycle arrest to exert its antiproliferative effects, with no significant evidence of apoptosis or necrosis. These findings support the potential repositioning of Simvastatin as a therapeutic agent to suppress TNBC cell growth. Further analysis shows that Simvastatin downregulates cyclin-dependent kinase 4 (CDK4), a key regulator of the G1/S cell cycle transition and a known marker of poor prognosis in breast cancer. These findings highlight a novel, apoptosis-independent mechanism of Simvastatin’s anticancer action in TNBC. Importantly, given that many breast cancer patients also suffer from hyperlipidemia, Simvastatin offers dual therapeutic benefits—managing both lipid metabolism and tumor cell proliferation. Thus, Simvastatin holds promise as an adjunctive therapy in the treatment of TNBC and warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop