Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Tremella fuciformis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1755 KB  
Article
Natural Tremella Polysaccharide Mitigates DEHP-Induced Oxidative Stress and Apoptosis via Dual Regulation of Survival and Antioxidant Pathways
by Xinyang Zhang, Siyuan Luo, Chengwu Cao, Tianjie Zhou, Qian He, Zhuoran Tang, Zhipeng Xie, Fengxian Liu, Dandan Wen, Hui Zou and Junnan Li
Foods 2025, 14(21), 3765; https://doi.org/10.3390/foods14213765 - 3 Nov 2025
Viewed by 314
Abstract
Diethylhexyl phthalate (DEHP), a common environmental plasticizer, induces oxidative damage and cell apoptosis without efficient treatment. Tremella fuciformis polysaccharides (TFPs) are known natural antioxidants, yet their protection against DEHP toxicity remains unclear. This study aimed to investigate the protective effects of TFP against [...] Read more.
Diethylhexyl phthalate (DEHP), a common environmental plasticizer, induces oxidative damage and cell apoptosis without efficient treatment. Tremella fuciformis polysaccharides (TFPs) are known natural antioxidants, yet their protection against DEHP toxicity remains unclear. This study aimed to investigate the protective effects of TFP against DEHP-induced toxicity using both human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans models. The results demonstrate that TFPs significantly alleviated DEHP-induced cytotoxicity in HUVECs by reducing reactive oxygen species (ROS) generation and inhibiting mitochondrial apoptosis pathways, which may contribute to the activation of antioxidant systems mediating via Nrf-2. In C. elegans, TFP improved survival rates under DEHP stress and reduced ROS accumulation. This protection was associated with the modulation of the insulin-like pathway and skn-1 gene to increase the expressions of antioxidant genes. Our findings reveal that TFP exhibits protection against DEHP-induced oxidative stress and apoptosis through the synergistic regulation of survival and antioxidant pathways, highlighting its potential as a natural dietary intervention for environmental toxicant-induced health risks. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

26 pages, 2221 KB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Cited by 1 | Viewed by 587
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 2328 KB  
Article
Non-Animal Hyaluronic Acid from Tremella fuciformis: A New Source with a Structure and Chemical Profile Comparable to Hyaluronic Acid
by Rebecca Galla, Simone Mulè, Sara Ferrari, Francesca Parini, Annalisa Givonetti, Maria Cavaletto, Ivana Miletto, Geo Paul, Giovanni Battista Giovenzana, Leonardo Marchese, Claudio Molinari and Francesca Uberti
Foods 2025, 14(8), 1362; https://doi.org/10.3390/foods14081362 - 15 Apr 2025
Viewed by 3914
Abstract
Tremella fuciformis is high in polysaccharides, which have a structure made up of a straight chain of (1→3) α-D-mannan and side chains of glucuronic acid, xylose, and fucose. This study aimed to evaluate whether the non-animal hyaluronic acid extracted from Tremella fuciformis can [...] Read more.
Tremella fuciformis is high in polysaccharides, which have a structure made up of a straight chain of (1→3) α-D-mannan and side chains of glucuronic acid, xylose, and fucose. This study aimed to evaluate whether the non-animal hyaluronic acid extracted from Tremella fuciformis can maintain the chemical and physical characteristics of hyaluronic acid that ensure its biological functionality. Chemical and physical analyses such as hyaluronic content, screening of metals, purity, pH, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (ATR/FTIR), and MALDI-TOF were performed. Chemical characterisation revealed that the most abundant polysaccharide in the extract was hyaluronic acid, accounting for ca. 87.76%, with a molecular weight above 2000 kDa. In addition, ATR/FTIR and NMR spectroscopy and MALDI-TOF analysis confirmed that Tremella fuciformis extract is a source of non-animal hyaluronic acid. In summary, every molecular attribute examined played a significant role in determining the functional qualities of the extract, indicating that a thoughtful choice of extraction technique can enhance its advantages. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

14 pages, 1860 KB  
Article
Anti-Stress Effects of Tremella fuciformis Berk. Enzymatic Extracts: A Preclinical Study
by Gahye Moon, Nodir Rustamov, Junhang Park, Hanseul Park, Kumju Park, Eun Hye Choi and Yoon-Seok Roh
Nutrients 2025, 17(5), 914; https://doi.org/10.3390/nu17050914 - 6 Mar 2025
Cited by 2 | Viewed by 2981
Abstract
Background/Objectives: Chronic stress disrupts neurochemical balance, triggers inflammation, and compromises neuronal integrity, contributing to the development of stress-related disorders. This study aimed to evaluate the preventative effects of Tremella fuciformis Berk (TF) enzymatic extracts on chronic restraint stress (CRS)-induced behavioral, neurochemical, and inflammatory [...] Read more.
Background/Objectives: Chronic stress disrupts neurochemical balance, triggers inflammation, and compromises neuronal integrity, contributing to the development of stress-related disorders. This study aimed to evaluate the preventative effects of Tremella fuciformis Berk (TF) enzymatic extracts on chronic restraint stress (CRS)-induced behavioral, neurochemical, and inflammatory dysfunctions in mice. Methods: Male C57BL/6N mice were administered TF at doses of 50 mg/kg and 100 mg/kg daily via oral gavage for 21 days during CRS exposure. Behavioral assessments, including anxiety and depression-like behavior tests, were conducted. Neurochemical and inflammatory markers were analyzed using PCR and ELISA, while histological examinations of hippocampal regions were performed to assess neuronal integrity. In vitro assays evaluated neuronal cell viability, protection against corticosterone (CORT)-induced cytotoxicity, and inhibition of monoamine oxidase (MAO) activity. Results: TF supplementation alleviated CRS-induced weight loss, normalized serum CORT levels, increased locomotor activity, reduced immobility time, and decreased anxiety-like behaviors. TF upregulated brain-derived neurotrophic factor (BDNF) mRNA, downregulated pro-inflammatory markers (CXCL2, iNOS, IFNG), and mitigated neuronal apoptosis in the hippocampus. In vitro, TF improved neuronal cell viability, protected against CORT-induced cytotoxicity, and significantly inhibited MAO activity, particularly MAO-A. Conclusions: These findings demonstrate the neuroprotective and anti-stress effects of Tremella fuciformis Berk enzymatic extracts, supporting its potential as a natural therapeutic intervention for stress-related disorders. Full article
Show Figures

Figure 1

15 pages, 3777 KB  
Article
Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis
by Jianqiu Chen, Lingli Wei, Jiacheng Xie, Yuanyuan Zhang, Jiahui Jia, Liding Chen and Shujing Sun
Horticulturae 2025, 11(3), 273; https://doi.org/10.3390/horticulturae11030273 - 3 Mar 2025
Cited by 2 | Viewed by 1811
Abstract
Tremella fuciformis Berk., also known as white fungus and snow fungus, is one of the important edible and medicinal mushrooms in China. The quality characteristics and metabolites of different T. fuciformis varieties directly affect the stability of their processed products. In this study, [...] Read more.
Tremella fuciformis Berk., also known as white fungus and snow fungus, is one of the important edible and medicinal mushrooms in China. The quality characteristics and metabolites of different T. fuciformis varieties directly affect the stability of their processed products. In this study, two new varieties of Tremella fuciformis, namely ’TYH-SD1’ (yellow) and ’TWH-SD2’ (white), which were obtained by the team through single-spore crossbreeding and its control varieties Tr21 (yellow) and Tr01 (white), were used as test materials. The characteristics and nutritional quality of the four varieties of substrates were comparatively analyzed, while metabolomics was employed to investigate the differences in flavor substances. The results demonstrate that TYH-SD1 and TWH-SD2 had a higher rehydration rate and faster rehydration speed compared with the control strains Tr21 and Tr01, with a smaller stem and higher yield. Notably, TWH-SD2 had a 29.06% increase in its rehydration rate and it had higher contents of crude polysaccharide and vitamin D3. The surface of TYH-SD1 ear pieces exhibited a porous structure with a larger pore size and the surface of TWH-SD2 ear pieces displayed a surface characterized by connected gully-like protrusions and fewer indentations, which were significantly different from that of Tr21 and Tr01 ear pieces. The textural analysis shows that TYH-SD1 and TWH-SD2 ear pieces were softer and more elastic, with greater cohesion and recovery, indicating that they had high tensile and deformation recovery ability. Metabolomics analysis revealed that the relative content of aldehydes in the volatile flavor substances TYH-SD1 and TWH-SD2 was high in n-alpha-aldehyde, nonanaldehyde, and n-pentanal. The relative content of alkanes in TYH-SD1 was second only to that of aldehydes, with decane having the highest content, contributing to its more almond aroma, fruity aroma, and fat aroma. TWH-SD2 exhibited the highest concentration of alcohols, accounting for 43.57%, which may result in a clear, mushroom, and lipid odor. The above results will provide theoretical basis for the further production, processing, and application of the new varieties. Full article
(This article belongs to the Special Issue Edible Mushrooms: Genetics, Genomics, and Breeding)
Show Figures

Figure 1

14 pages, 3008 KB  
Article
Microbiota Involved in the Degradation of Tremella fuciformis Polysaccharide and Microbial Enzymatic Potential Revealed by Microbiome and Metagenome
by Xiao Song, Guangning Chen, Long Zheng, Jingjing Shen, Changhu Xue and Yaoguang Chang
Microorganisms 2025, 13(2), 263; https://doi.org/10.3390/microorganisms13020263 - 25 Jan 2025
Cited by 1 | Viewed by 1549
Abstract
Tremella fuciformis, as a traditional edible fungus in Asian countries, is rich in polysaccharides with a variety of bioactivities. Nevertheless, its high molecular weight and complex structure have caused limitations in its application and structural analysis. In this study, we successfully screened [...] Read more.
Tremella fuciformis, as a traditional edible fungus in Asian countries, is rich in polysaccharides with a variety of bioactivities. Nevertheless, its high molecular weight and complex structure have caused limitations in its application and structural analysis. In this study, we successfully screened a Tremella fuciformis polysaccharide-degrading bacterium from the soil by enriching and screening. The mixed bacterium consisted mainly of Verrucomicrobium (55.4%) and Lysobacter (43.8%), which released extracellular enzymes that enabled the degradation of Tremella fuciformis polysaccharides. The functional annotation using microbiome and metagenome combined with bioinformatics revealed its active carbohydrate metabolism, binding, and catalysis. It exposed the enzymatic potential of the bacterium and provided a basis for the exploration of hydrolytic enzymes for hardly degradable polysaccharides in fungi. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

16 pages, 17385 KB  
Article
Tremella fuciformis Berk Alleviated Atherosclerosis Symptoms via Nuclear Factor-Kappa B-Mediated Inflammatory Response in ApoE−/− Mice
by Yihao Dong, Qinchun Zhang, Rui Xie, Jundi Zhao, Zhihua Han, Yu Li, Han Yu and Yongfeng Zhang
Nutrients 2025, 17(1), 160; https://doi.org/10.3390/nu17010160 - 31 Dec 2024
Cited by 8 | Viewed by 1759
Abstract
Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Tremella fuciformis Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. [...] Read more.
Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Tremella fuciformis Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. Nevertheless, the potential effects of T. fuciformis on atherosclerosis have not been systematically reported. Method: In this study, ApoE−/− mice were employed as models of atherosclerosis caused by a high-fat diet (HFD) to investigate the effect of T. fuciformis. Gut microbiota and serum metabolism analysis were performed to elucidate the potential mechanism of T. fuciformis for its anti-atherosclerosis effects. Results: T. fuciformis significantly decreased the aortic root wall thickness and the area of lipid droplets, regulated lipid levels, and inhibited fat accumulation to improve aortic root lesions. Furthermore, T. fuciformis significantly altered serum metabolite (including diethyl phthalate and succinate) levels, regulated the abundance of microbiota, such as Coriobacteriaceae_UCG-002 and Alistipes, and suppressed the inflammatory response to ameliorate atherosclerosis via the nuclear factor-kappa B (NF-κB)-mediated inflammatory response in HFD-induced ApoE−/− mice. Conclusions: These results offer a theoretical basis and data to support T. fuciformis as a potential strategy for treating atherosclerosis. Full article
(This article belongs to the Special Issue Functional Evaluation of Edible Mushrooms and Their Active Materials)
Show Figures

Figure 1

13 pages, 670 KB  
Article
Functionalities of Tremella fuciformis Polysaccharides Modified with Gallic Acid
by Tai-Ti Liu, Kai-Siang Hong and Tsung-Shi Yang
Molecules 2024, 29(24), 5890; https://doi.org/10.3390/molecules29245890 - 13 Dec 2024
Cited by 3 | Viewed by 1776
Abstract
This research aimed to modify polysaccharides extracted from the edible mushroom Tremella fuciformis with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified Tremella fuciformis polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity [...] Read more.
This research aimed to modify polysaccharides extracted from the edible mushroom Tremella fuciformis with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified Tremella fuciformis polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity against DPPH radicals, nitric oxide, and hydrogen peroxide. Additionally, TFP-GA exhibited superior reducing ability toward Fe3+ and enhanced chelating activity toward Fe2+ compared to unmodified TFP. Notably, the TFP-GA conjugate outperformed GA in Fe2+-chelating activity. In terms of antimicrobial activity, the TFP-GA-Zn complex showed significantly improved antimicrobial effectiveness against S. aureus and E. coli compared to TFP-GA. Full article
Show Figures

Figure 1

23 pages, 8659 KB  
Article
iTRAQ-Based Proteomic Profiling of Skin Aging Protective Effects of Tremella fuciformis-Derived Polysaccharides on D-Galactose-Induced Aging Mice
by Yuanyuan Xu, Xiaofei Liu, Jingjing Guan, Jin Chen and Xiaofei Xu
Molecules 2024, 29(21), 5191; https://doi.org/10.3390/molecules29215191 - 2 Nov 2024
Cited by 4 | Viewed by 3456
Abstract
In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 106 Da, named NTP, was prepared from [...] Read more.
In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 106 Da, named NTP, was prepared from the fruiting body of Tremella fuciformis. The anti-skin-aging effects of NTP on d-Galactose-induced aging mice and the biological mechanisms were investigated by an iTRAQ-based proteomics approach. NTP substantially mitigated skin aging characterized by a decreased loss of hydroxyproline and hyaluronic acid and reduced oxidative stress in the skin. Moreover, 43 differentially expressed proteins (DEPs) were identified in response to NTP, of which 23 were up-regulated and 20 were down-regulated. Bioinformatics analysis revealed that these DEPs were mainly involved in the biological functions of cellular and metabolic regulations, immune system responses, and structural components. The findings provided new insights into the biological mechanisms underlying the anti-skin-aging actions of T. fuciformis-derived polysaccharides and facilitated NTP applications in naturally functional foods. Full article
(This article belongs to the Special Issue Discovery, Isolation, and Mechanisms of Bioactive Natural Products)
Show Figures

Figure 1

27 pages, 2040 KB  
Review
Macrofungal Extracts as a Source of Bioactive Compounds for Cosmetical Anti-Aging Therapy: A Comprehensive Review
by Maja Paterska, Bogusław Czerny and Judyta Cielecka-Piontek
Nutrients 2024, 16(16), 2810; https://doi.org/10.3390/nu16162810 - 22 Aug 2024
Cited by 15 | Viewed by 5719
Abstract
For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about [...] Read more.
For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about the effects of chemical compounds extracted from the fruiting bodies of macrofungi on skin cells were selected. The effects of extracts from nine species that are tested for anti-aging effects have been described. According to available literature data, macrofungi contain many polysaccharides, phenolic compounds, polysaccharide peptides, free amino acids, sterols, proteins, glycosides, triterpenes, alkaloids, which can have an anti-aging effect on the skin by acting as antioxidants, photoprotective, skin whitening, moisturizing, anti-inflammatory and stabilizing collagen, elastin and hyaluronic acid levels in the skin. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

14 pages, 4955 KB  
Article
Fruiting Body Heterogeneity, Dimorphism and Haustorium-like Structure of Naematelia aurantialba (Jin Er Mushroom)
by Ying Yang and Caihong Dong
J. Fungi 2024, 10(8), 557; https://doi.org/10.3390/jof10080557 - 7 Aug 2024
Cited by 7 | Viewed by 1876
Abstract
Mushroom Jin Er has attracted widespread attention in Asia over the past two decades due to its medicinal properties and nutritional values. In the present study, Jin Er basidiocarps were often found to be surrounded by Stereum hirsutum fruiting bodies in their natural [...] Read more.
Mushroom Jin Er has attracted widespread attention in Asia over the past two decades due to its medicinal properties and nutritional values. In the present study, Jin Er basidiocarps were often found to be surrounded by Stereum hirsutum fruiting bodies in their natural habitat and occasionally in artificial cultivation. The observation of two different kinds of mycelia within the hymenium and analyses of ITS sequences confirmed that Jin Er basidiocarps were composed of two fungal species, Naematelia aurantialba and S. hirsutum. This heterogeneity of Jin Er fruiting bodies is indeed distinct from the homogeneous hypha of Tremella fuciformis found in Yin Er mushroom, although its development also requires the presence of another fungus Annulohypoxylon stygium. Basidiospores can germinate on the surface of basidiocarps and produce mycelia. However, basidiospores in PDA medium can only bud into yeast-like conidia. The yeast-like conidia of N. aurantialba can transform into pseudohyphae with a change in temperature from 20 °C to 28 °C or switch into filamentous cells on an induction medium (IDM) at 20 °C, 25 °C and 28 °C. This dimorphic was reported for the first time in N. aurantialba. Haustorium-like structures were abundantly observed both within the hymenium and in the aerial mycelia cultured on the IDM. The developmental process was documented firstly in this study, involving the formation of protuberances with basal clamp connections, elongation at the protuberances, branch production, and eventual maturation. However, further observation is required to determine whether the haustorium-like structures can penetrate S. hirsutum hyphae. These findings are expected to provide valuable insights into the relationship and interaction between these two fungi, thereby advancing the cultivation of fruiting bodies. Full article
Show Figures

Figure 1

21 pages, 6956 KB  
Article
The Effects of Tremella fuciformis Polysaccharide on the Physicochemical, Multiscale Structure and Digestive Properties of Cyperus esculentus Starch
by Shanshan Zhang, Yingxu Liu, Tong Sun, Hongcheng Liu and Dawei Wang
Foods 2024, 13(9), 1425; https://doi.org/10.3390/foods13091425 - 6 May 2024
Cited by 3 | Viewed by 3644
Abstract
In this study, we have investigated the effects of Tremella fuciformis polysaccharide (TP) on the pasting, rheological, structural and in vitro digestive properties of Cyperus esculentus starch (CS). The results showed that the addition of TP significantly changed the pasting characteristics of CS, [...] Read more.
In this study, we have investigated the effects of Tremella fuciformis polysaccharide (TP) on the pasting, rheological, structural and in vitro digestive properties of Cyperus esculentus starch (CS). The results showed that the addition of TP significantly changed the pasting characteristics of CS, increased the pasting temperature and pasting viscosity, inhibited pasting, reduced the exudation of straight-chain starch and was positively correlated with the amount of TP added. The addition of the appropriate amount of TP could increase its apparent viscosity and enhance its viscoelasticity. The composite system of CS/TP exhibited higher short-range ordered structure and solid dense structure, which protected the crystal structure of CS, but was related to the amount of TP added. In addition, the introduction of TP not only decreased the in vitro digestion rate of CS and increased the content of slow-digestible starch (SDS) and resistant starch (RS), but also reduced the degree of digestion. Correlation studies established that TP could improve the viscoelasticity, relative crystallinity and short-range order of the CS/TP composite gel, maintain the integrity of the starch granule and crystalline structure, reduce the degree of starch pasting and strengthen the gel network structure of CS, which could help to lower the digestibility of CS. Full article
(This article belongs to the Special Issue Starch and Food Processing: Structure, Functionality and Nutrition)
Show Figures

Figure 1

15 pages, 2110 KB  
Article
Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides
by Furong Hou, Shasha Song, Shuhui Yang, Yansheng Wang, Fengjuan Jia and Wenliang Wang
Foods 2024, 13(9), 1408; https://doi.org/10.3390/foods13091408 - 3 May 2024
Cited by 17 | Viewed by 2836
Abstract
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using [...] Read more.
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using response surface methodology, with the optimal ultrasonic power of 700 W, temperature of 45 °C and time of 50 min. The kinetic analysis revealed that UAE significantly promoted the dissolution, diffusion and migration with the maximum yield of 26.39%, which was enhanced by 40.45% and 156.96% compared with individual ultrasonic extraction (UE) and enzymatic extraction (EE). According to the modified Fick’s second law of diffusion, the extraction process of TFPs illustrated a good linear correlation (R2 ≥ 0.9), and the rate constant gradually elevated as the temperature increased from 25 to 45 °C, while the presence of ultrasound exerted a vital role in extracting TFPs. Regarding to the thermodynamic results, the positive values of ΔH and ΔG demonstrated that UAE, UE and EE were endothermic and unspontaneous processes. This study provides a theoretical basis for polysaccharide extraction processing. Full article
(This article belongs to the Special Issue Ultrasound Processing and Modification of Food Systems)
Show Figures

Figure 1

13 pages, 1917 KB  
Article
Investigating the Respiratory and Energy Metabolism Mechanisms behind ε-Poly-L-lysine Chitosan Coating’s Improved Preservation Effectiveness on Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Baosha Tang, Yanrong Yang, Zheng Xiao, Junchen Chen and Pufu Lai
Foods 2024, 13(5), 707; https://doi.org/10.3390/foods13050707 - 26 Feb 2024
Cited by 4 | Viewed by 2157
Abstract
Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating [...] Read more.
Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis. Full article
Show Figures

Figure 1

14 pages, 9826 KB  
Article
Structural Characterization and Anti-Inflammatory Activity of Polysaccharides from Tremella fuciformis on Monosodium Urate-Stimulated RAW264.7 Macrophages
by Wei Deng, Li Wu, Zheng Xiao, Yibin Li, Zhipeng Zheng and Shouhui Chen
Foods 2023, 12(24), 4398; https://doi.org/10.3390/foods12244398 - 7 Dec 2023
Cited by 9 | Viewed by 3916
Abstract
The structural characteristics and anti-inflammatory activity of Tremella fuciformis polysaccharides (TFPs) were investigated. The study showed that TFPs were mainly composed of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose. TFPs significantly inhibited monosodium urate (MSU)-induced inflammation of RAW264.7 cells, as well [...] Read more.
The structural characteristics and anti-inflammatory activity of Tremella fuciformis polysaccharides (TFPs) were investigated. The study showed that TFPs were mainly composed of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose. TFPs significantly inhibited monosodium urate (MSU)-induced inflammation of RAW264.7 cells, as well as the secretion levels of TNF-α, IL-1β, and IL-18 cytokines. The concentrations of malondialdehyde and reactive oxygen species in RAW264.7 macrophages were reduced, but superoxide dismutase activity was increased. RNA-Seq technology was applied to explore the mechanisms of TFPs ameliorating MSU-induced inflammation of RAW264.7 macrophages. Results revealed that TFPs significantly reduce MSU-stimulated inflammatory damage in RAW 264.7 cells by inhibiting signaling pathways like the hypoxia inducible factor-1 (HIF-1) signaling pathway and erythroblastic oncogene B (ErbB) signaling pathway. This study provides a foundation for TFPs to be developed as novel anti-inflammatory drugs. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

Back to TopTop