Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Evaluation of Production Performance and Agronomic Traits
2.3. Observation of the Morphological Characteristics of Fruiting Bodies and Ear Pieces
2.4. Determination of Nutrient Composition
2.5. Measurement of Texture Characteristics
2.6. Determination of Volatile Flavor Substances
2.6.1. Sample Pretreatment and Headspace Solid Phase Microextraction Gas Chromatography (HS-SPME-GC-MS) Conditions
2.6.2. Characterization and Quantification of Volatile Compounds
2.6.3. Screening of Flavor Compounds and Analysis of Variance
2.7. Data Statistics and Analysis
3. Results
3.1. Analysis of Agronomic Traits and Production Performance of New Varieties of T. fuciformis
3.2. Microscopic Observation of TYH-SD1 and TWH-SD2 Ear Pieces
3.3. Nutrient Composition Determination
3.4. Analysis of Textural Characteristics of Two New Varieties of T. fuciformis Ear Pieces
3.5. Analysis of Flavor Compositions of Two New Varieties
3.5.1. Analysis of Volatile Compounds Composition and Relative Contents
3.5.2. Principal Component Analysis
3.5.3. Orthogonal Partial Least Squares Discriminant Analysis
3.5.4. Screening and Analysis of Differential Flavor Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, L.; Gao, Q.; Ma, C.-W.; Ge, Y.; You, L.; Liu, R.H.; Fu, X.; Liu, D. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J. Funct. Foods 2016, 20, 400–410. [Google Scholar] [CrossRef]
- Xiao, H.; Li, H.; Wen, Y.; Jiang, D.; Zhu, S.; He, X.; Xiong, Q.; Gao, J.; Hou, S.; Huang, S.; et al. Tremella fuciformis polysaccharides ameliorated ulcerative colitis via inhibiting inflammation and enhancing intestinal epithelial barrier function. Int. J. Biol. Macromol. 2021, 180, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Zhao, M.; Qi, H. Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr. Polym. 2014, 112, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, D.; Xu, J.; Tu, D.; Zhuang, W.; Tian, Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int. J. Biol. Macromol. 2024, 262, 129782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, M. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus). Food Bioprod. Process. 2016, 100, 464–468. [Google Scholar] [CrossRef]
- Huang, S.; Zou, Y.; Ye, Z.; Chen, J.; Luo, J.; Lan, Y.; Guo, L.; Lin, J.; Zheng, Q. A comparative study on the physio-chemical properties, antioxidant and immuno-stimulating activities of two national geographical indication products of Tremella fuciformis in China. Int. J. Food Sci. Technol. 2021, 56, 2904–2914. [Google Scholar] [CrossRef]
- Chen, B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro. Carbohydr. Polym. 2010, 81, 420–424. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, G.; Tu, M.; Wang, Y.; Cao, J.; Sun, S. A chromosome-scale genome and proteome draft of Tremella fuciformis. Int. J. Biol. Macromol. 2023, 247, 125749. [Google Scholar] [CrossRef]
- Yuan, H.; Dong, L.; Zhang, Z.; He, Y.; Ma, X. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis. Food Sci. Hum. Well. 2022, 11, 1010–1017. [Google Scholar] [CrossRef]
- Iijima, M.; Ma, S.; Asano-Oritani, M.; Hatakeyama, T. Thermal studies on Tremella fuciformis polysaccharide-water interaction. Thermochim. Acta 2024, 732, 179657. [Google Scholar] [CrossRef]
- Wang, C.; Lin, M.; Li, Y.; Guo, Z. Improvement of soluble dietary fiber quality in Tremella fuciformis stem by steam explosion technology: An evaluation of structure and function. Food Chem. 2024, 437, 137867. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Xu, F.; Han, R.; Quan, M.; Wang, L. Effect of Tremella fuciformis on dough structure and rheology, noodle flavor, and quality characteristics. LWT-Food Sci. Technol. 2022, 172, 114180. [Google Scholar] [CrossRef]
- Fu, L.; Tian, J.; Liu, L.; Ma, Y.; Zhang, X.; Ma, C.; Kang, W.; Sun, Y. Analysis of volatile components in Tremella fuciformis by electronic nose combined with GC-MS. J. Food Qual. 2022, 2022, 9904213. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Fan, L. Effects of combined drying methods on physicochemical and rheological properties of instant Tremella fuciformis soup. Food Chem. 2022, 396, 133644. [Google Scholar] [CrossRef]
- Kong, X.; Liu, T.; LIU, Y.; Xu, X.; Chen, J.; Liu, Y.; Sun, S. Comparison on physiological and agronomic traits of Tremella fuciformis strains Tr01 and Tr21 in Gutian. Acta Edulis Fungi 2019, 26, 39–49. [Google Scholar]
- GB 5009.4-2016; National Food Safety Standard—Determination of Ash in Foods. Standardization Administration of China: Beijing, China, 2016.
- GB 5009.5-2016; National Food Safety Standard—Determination of Protein in Foods. Standardization Administration of China: Beijing, China, 2016.
- GB 5009.6-2016; National Food Safety Standard—Determination of Fat in Foods. Standardization Administration of China: Beijing, China, 2016.
- GB/T 5009.10-2003; Determination of Crude Fiber in Vegetable Foods. Standardization Administration of China: Beijing, China, 2003.
- NY/T 1676-2008; Determination of Crude Mushroom Polysaccharides. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008.
- GB 5009.82-2016; National Food Safety Standard—Determination of Vitamins A, D and E in Foods. Standardization Administration of China: Beijing, China, 2016.
- GB 5009.85-2016; National Food Safety Standard—Determination of Vitamin B2 in Foods. Standardization Administration of China: Beijing, China, 2016.
- GB 5009.86-2016; National Food Safety Standard—Determination of Ascorbic Acid in Foods. Standardization Administration of China: Beijing, China, 2016.
- Tu, K.; Zhao, Y.; Hong, Y.; Pan, L. Evaluation of properties of different cheeses with texture profile analysis. China Dairy Ind. 2004, 32, 16–18. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Boston, MA, USA, 1981; ISBN 978-1-4613-3275-6. [Google Scholar]
- Yao, Q.; Yan, S.; Chen, M.; Huang, M.; Lin, Q. Basic nutrition analysis and evaluation of major cultivars of Tremella fuciformis in Gutian. J. Food Saf. Qual. 2019, 10, 1896–1902. [Google Scholar]
- Li, X.; Xu, H.; Deng, J.; Wang, Q.; Ling, Y.; Wang, J.; Wu, D.; Tang, Y.; Liu, D. HS-SPME/GC-MS analysis on volatile components of Tilia Tremella with different cultivation methods. Edible Fungi China 2019, 38, 45–50+63. [Google Scholar]
- Yang, W.; Bai, Z.; Zou, M.; Wang, X.; Xie, J.; Zhang, F. The full-length transcriptome sequencing and identification of related genes involved in secondary metabolism biosynthesis for Monochasma savatieri. J. Jiangxi Norm. Univ. 2023, 1, 99–110. [Google Scholar]
- Liu, H.; Wang, J.; Xu, J.; Guo, S.; Chen, Y.; Zhu, Y.; Li, H. Review on volatile flavor components of oil-tea Camellia seed oil. China Oils Fats 2023, 48, 42–47. [Google Scholar]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Gao, H. Analysis of volatile flavor compounds in different Pleurotus species using HS-SPME-GC-MS. Food Sci. 2018, 39, 240–246. [Google Scholar]
- Harnkarnsujarit, N.; Charoenrein, S.; Roos, Y.H. Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydr. Polym. 2012, 88, 734–742. [Google Scholar] [CrossRef]
- Ramasamy, I. Vitamin D metabolism and guidelines for Vitamin D supplementation. Clin. Biochem. Rev. 2020, 41, 103–126. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO/WHO Ad Hoc Expert Committee on Energy & Protein Requirements. Energy and Protein Requirements: Report of a Joint FAO-WHO Ad Hoc Expert Committee, Rome, 22 March–2 April 1971; World Health Organization Technical Report Series; Food and Agriculture Organization: Rome, Italy, 1973; Volume 522, pp. 1–118. [Google Scholar]
- Chen, W.; Chen, J. Food texture and properties. J. Chin. Inst. Food Sci. Technol. 2021, 01, 377–384. [Google Scholar]
- Yu, C.; Li, Z.; Zha, L.; Zhao, Y.; Chen, M.; Hou, L.; Guo, Q. Effects of light quality on mycelial growth and fruiting body characteristics of Volvariella volvacea. Acta Edulis Fungi 2021, 37, 72–77. [Google Scholar]
- Van Gemert, L.J. Compendium of Olfactory Thresholds for Compounds; Science Press: Beijing, China, 2018; ISBN 978-7-03-058320-8. [Google Scholar]
- Jové, P.; Pareras, A.; De Nadal, R.; Verdum, M. Development and optimization of a quantitative analysis of main odorants causing off flavours in cork stoppers using headspace solid-phase microextraction gas chromatography tandem mass spectrometry. J. Mass Spectrom. 2021, 56, e4728. [Google Scholar] [CrossRef]
- Sun, B.; Chen, H. Food Flavoring Technique; Chemical Industry Press: Beijing, China, 2020; ISBN 978-7-122-30764-4. [Google Scholar]
- Wu, L.; Chen, X.; Lin, J.; Lin, H.; Liao, N.; Li, C.; Hu, Y.; Sun, Y. Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production. Food Chem. Mol. Sci. 2024, 9, 100227. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, S.; Li, T.; Wei, Y.; Gu, Z.; Su, Z.; Ning, J.; Wang, Y.; Hou, Z. Characterization of the key volatile compounds in longjing tea (Camellia sinensis) with different aroma types at different steeping temperatures by GC-MS and GC-IMS. LWT-Food Sci. Technol. 2024, 200, 116183. [Google Scholar] [CrossRef]
- Meng, X.; Wang, F.; Fu, C.-H.; Zeng, L.; Chen, Z.-H.; Du, Q.; Feng, Z.-H.; Yin, J.-F.; Xu, Y.-Q. Effect of osmanthus hydrolat on the aroma quality and volatile components of osmanthus black tea. Food Chem. X 2024, 23, 101564. [Google Scholar] [CrossRef]
- Yin, C.; Li, Y.; Fan, X.; Shi, D.; Yao, F.; Cheng, W.; Gao, H. Effect of different culture substrates on flavor compounds in fruiting body of six Pleurotus edible mushrooms. J. Nucl. Agric. Sci. China 2022, 36, 1984–1995. [Google Scholar]
- Li, R.; Yang, Y.; Liu, X.; Chen, W.; Li, W. Research progress on influential factorsand evaluation of edible fungi flavor. Acta Edulis Fungi China 2020, 27, 202–214. [Google Scholar]
Samples | Main Agronomic Traits and Production Performances | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fresh Weight (g) | Dry Weight (g) | Rehydration Efficiency (%) | Rehydration Rate (g/min) | Remove Pedicle Weight (g) | Pedicle Weight (g) | Fruiting Body Elevation (cm) | Biological Efficiency (%) | Contamination Rate (%) | |
TYH-SD1 | 134 ± 14.1 | 34.1 ± 2.1 ** | 829 ± 17.9 * | 29.77 ± 1.93 | 128 ± 14 | 6.0 ± 1.3 | 6.4 ± 0.6 ** | 54.15 | 13.33 |
Tr21 | 130 ± 17.0 | 29.3 ± 3.2 | 808 ± 20.8 | 27.91 ± 3.67 | 123 ± 17 | 8.0 ± 2.0 | 6.1 ± 0.6 | 52.61 | 31.11 |
TWH-SD2 | 125.2 ± 14.9 * | 17.86 ± 1.69 | 1042 ± 38.1 ** | 24.87 ± 3.00 ** | 122 ± 12 ** | 3.2 ± 1.4 | 6.0 ± 0.6 | 47.0 | 11 |
Tr01 | 118.5 ± 10.2 | 15.65 ± 2.14 | 960 ± 8.9 | 19.27 ± 2.45 | 107 ± 10 | 11.5 ± 2.9 ** | 5.7 ± 0.5 | 44.4 | 27 |
Samples | Main Nutrient Compositions | ||||||
---|---|---|---|---|---|---|---|
Ash Content (g/100 g) | Crude Protein (g/100 g) | Crude Fat (g/100 g) | Crude Fiber (%) | Crude Polysaccharide (g/100 g) | Vitamin D3 (μg/100 g) | Vitamin B2 (mg/100 g) | |
TYH-SD1 | 6.3 ± 0.18 | 8.88 ± 0.26 | 1.6 ± 0.05 | 1.3 ± 0.01 | 12.9 ± 0.39 | 7.16 ± 0.21 | 0.1 ± 0.003 |
TWH-SD2 | 6.9 ± 0.20 | 8.5 ± 0.25 | 1.6 ± 0.04 | 1.5 ± 0.01 | 19.7 ± 0.60 | 46.1 ± 1.38 | 0.08 ± 0.002 |
Tr21 | 6.9 ± 0.20 | 8.77 ± 0.26 | 1.6 ± 0.05 | 1.7 ± 0.01 | 14.2 ± 0.43 | 10.6 ± 0.32 | 0.15 ± 0.004 |
Tr01 | 7.1 ± 0.21 | 8.96 ± 0.27 | 1.6 ± 0.04 | 1.6 ± 0.01 | 21.2 ± 0.64 | 21.6 ± 0.65 | 0.1 ± 0.003 |
Samples | Hardness (gf) | Springiness | Chewiness (gf) | Cohesiveness | Resilience |
---|---|---|---|---|---|
TYH-SD1 | 198.20 ± 15.32 b | 0.83 ± 0.02 a | 143.28 ± 1.22 a | 0.87 ± 0.01 a | 0.45 |
Tr21 | 240.10 ± 18.34 a | 0.69 ± 0.01 c | 129.41 ± 0.22 b | 0.78 ± 0.01 b | 0.33 |
TWH-SD2 | 125.10 ± 15.42 d | 0.77 ± 0.01 b | 77.13 ± 0.13 c | 0.80 ± 0.02 b | 0.31 |
Tr01 | 163.00 ± 14.57 c | 0.64 ± 0.01 d | 76.89 ± 0.08 d | 0.74 ± 0.01 c | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wei, L.; Xie, J.; Zhang, Y.; Jia, J.; Chen, L.; Sun, S. Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis. Horticulturae 2025, 11, 273. https://doi.org/10.3390/horticulturae11030273
Chen J, Wei L, Xie J, Zhang Y, Jia J, Chen L, Sun S. Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis. Horticulturae. 2025; 11(3):273. https://doi.org/10.3390/horticulturae11030273
Chicago/Turabian StyleChen, Jianqiu, Lingli Wei, Jiacheng Xie, Yuanyuan Zhang, Jiahui Jia, Liding Chen, and Shujing Sun. 2025. "Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis" Horticulturae 11, no. 3: 273. https://doi.org/10.3390/horticulturae11030273
APA StyleChen, J., Wei, L., Xie, J., Zhang, Y., Jia, J., Chen, L., & Sun, S. (2025). Quality Characteristics and Metabolomics Analysis of Two New Varieties of Tremella fuciformis. Horticulturae, 11(3), 273. https://doi.org/10.3390/horticulturae11030273