Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Keywords = Ti6Al4V powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8446 KB  
Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
by Trung Van Trinh, Trang Huyen Dang, Anh Hoang Pham, Gia Khanh Pham and Ulrich E. Klotz
Metals 2026, 16(1), 121; https://doi.org/10.3390/met16010121 - 20 Jan 2026
Viewed by 105
Abstract
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by [...] Read more.
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components. Full article
Show Figures

Graphical abstract

24 pages, 15635 KB  
Article
Effect of Post-Printing Methods on the Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy Samples Fabricated Using Laser Powder Bed Fusion
by Krzysztof Żaba, Stanislav Rusz, Alicja Haslik-Sopata, Łukasz Kuczek, Ilona Różycka, Maciej Balcerzak and Tomasz Trzepieciński
Materials 2026, 19(2), 401; https://doi.org/10.3390/ma19020401 - 19 Jan 2026
Viewed by 198
Abstract
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods [...] Read more.
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods are crucial, as they reduce porosity, reduce residual stresses, and stabilize the microstructure. The aim of this paper was to determine the effect of post-printing methods on the microhardness and microstructure of Ti6Al4V titanium alloy samples fabricated using the LPBF process in different orientations. Hot isostatic pressing (HIP) at various temperatures (910 °C, 1150 °C, 1250 °C), annealing at 1020 °C, and twist channel angular pressing using a 90° channel ending with a helical exit were considered postprocessing methods for LPBF-produced samples. Printing orientation significantly determined the effectiveness of HIP and the heat treatment processes. Higher microhardness was observed on the cross-section oriented perpendicular to the 3D printing direction. Annealing under appropriately selected conditions favors the precipitation of fine particles of the α phase in the β phase, leading to a strengthening effect by precipitation. Based on the microhardness measurements, clear differences were observed in the mean values, statistical ranges, and result distributions depending on the printing plane, HIP process parameters, and the use of an additional heat treatment. The HIP process leads to a more pronounced homogenization of microstructure and defect reduction, with the morphology of the microstructure and microhardness distribution dependent on the HIP process temperature. Full article
Show Figures

Graphical abstract

30 pages, 2447 KB  
Review
A Review of the Parameters Controlling Crack Growth in AM Steels and Its Implications for Limited-Life AM and CSAM Parts
by Rhys Jones, Andrew Ang, Nam Phan, Michael R. Brindza, Michael B. Nicholas, Chris Timbrell, Daren Peng and Ramesh Chandwani
Materials 2026, 19(2), 372; https://doi.org/10.3390/ma19020372 - 16 Jan 2026
Viewed by 199
Abstract
This paper reviews the fracture mechanics parameters associated with the variability in the crack growth curves associated with forty-two different tests that range from additively manufactured (AM) steels to cold spray additively manufactured (CSAM) 316L steel. As a result of this review, it [...] Read more.
This paper reviews the fracture mechanics parameters associated with the variability in the crack growth curves associated with forty-two different tests that range from additively manufactured (AM) steels to cold spray additively manufactured (CSAM) 316L steel. As a result of this review, it is found that, to a first approximation, the effects of different building processes and R-ratios on the relationship between ΔK and the crack growth rate (da/dN) can be captured by allowing for changes in the fatigue threshold and the apparent cyclic toughness in the Schwalbe crack driving force (Δκ). Whilst this observation, when taken in conjunction with similar findings for AM Ti-6Al-4V, Inconel 718, Inconel 625, and Boeing Space Intelligence and Weapon Systems (BSI&WS) laser powder bed (LPBF)-built Scalmalloy®, as well as for a range of CSAM pure metals, go a long way in making a point; it is NOT a mathematical proof. It is merely empirical evidence. As a result, this review highlights that for AM and CSAM materials, it is advisable to plot the crack growth rate (da/dN) against both ΔK and Δκ. The observation that, for the AM and CSAM steels examined in this study, the da/dN versus Δκ curves are similar, when coupled with similar observation for a range of other AM materials, supports a prior study that suggested using fracture toughness measurements in conjunction with the flight load spectrum and the operational life requirement to guide the choice of the building process for AM Ti-6Al-4V parts. The observations outlined in this study, when taken together with related findings given in the open literature for AM Ti-6Al-4V, AM Inconel 718, AM Inconel 625, and BSI&WS LPFB-built Scalmalloy®, as well as for a range of CSAM-built pure metals, have implications for the implementation and certification of limited-life AM parts. Full article
Show Figures

Figure 1

20 pages, 4943 KB  
Article
Polishing of EB-PBF Ti6Al4V Vertical Surfaces with Semi-Melted Particle Characteristics Realized by Continuous Laser
by Xiaozhu Chen, Congyi Wu, Youmin Rong, Guojun Zhang and Yu Huang
Micromachines 2026, 17(1), 46; https://doi.org/10.3390/mi17010046 - 30 Dec 2025
Viewed by 219
Abstract
Electron beam powder bed fusion (EB-PBF) Ti6Al4V often exhibits high vertical surface roughness, limiting its use in high-end applications. In this study, an infrared continuous-wave laser was applied to precisely polish the vertical surface. An orthogonal design identified the optimal condition as 10,400 [...] Read more.
Electron beam powder bed fusion (EB-PBF) Ti6Al4V often exhibits high vertical surface roughness, limiting its use in high-end applications. In this study, an infrared continuous-wave laser was applied to precisely polish the vertical surface. An orthogonal design identified the optimal condition as 10,400 kW/cm2 power density, 800 mm/s scanning speed, and one pass, achieving a minimum Sa of 0.24 μm and a 98.03% reduction compared with the as-built surface. To address the adhered semi-molten particle characteristics of EB-PBF sidewalls, a molten-pool-dynamics-based polishing model was developed and validated, yielding an error as low as 1.24%. Simulations indicate that power density governs the final morphology by controlling molten pool coverage, scanning speed affects polishing efficiency via thermocapillary force, and polishing time influences surface quality by triggering or avoiding melt splashing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

20 pages, 6158 KB  
Article
Improving Surface Roughness and Printability of LPBF Ti6246 Components Without Affecting Their Structure, Mechanical Properties and Building Rate
by Thibault Mouret, Aurore Leclercq, Patrick K. Dubois and Vladimir Brailovski
Metals 2026, 16(1), 32; https://doi.org/10.3390/met16010032 - 27 Dec 2025
Viewed by 277
Abstract
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. [...] Read more.
Laser powder bed fusion (LPBF) is the best suited technology to manufacture temperature-resistant Ti-6Al-2Sn-4Zr-6Mo parts with complex geometrical features for high-end applications. Improving printing accuracy by reducing the layer thickness (t) generally requires repeating a tedious and time-consuming process optimization routine. To simplify this endeavour, the present work proposes three process equivalence criteria allowing to transfer optimized process conditions from one printing parameter set to another. This approach recommends keeping the volumetric laser energy density (VED) and hatching space-to-layer thickness ratio (h/t) constant, while adjusting the scanning speed (v) and hatching space (h) accordingly. To validate this approach, Ti6246 parts were printed with 50 µm and 25 µm layer thicknesses, while keeping VED = 100 J/mm3 and h/t = 3 constant for both cases. The printed samples were analyzed in terms of their density, microstructure and mechanical properties, as well as the geometric compliance of wall-, gap- and channel-containing artefacts. Highly dense samples exhibiting comparable microstructures and mechanical properties were obtained with both parameters sets investigated. However, they induced markedly differing geometric characteristics. Notably, using 25 µm layers allowed printing walls as thin as 0.2 mm as compared to 1.0 mm for 50 µm layers. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
Show Figures

Figure 1

40 pages, 4728 KB  
Review
Crystallographic Texture and Phase Transformation in Titanium Alloys Fabricated via Powder Bed Fusion Processes: A Comprehensive Review
by Rajesh Kannan Arasappan, Hafiz Muhammad Rehan Tariq, Ha-Seong Baek, Minki Kim and Tea-Sung Jun
Metals 2026, 16(1), 25; https://doi.org/10.3390/met16010025 - 26 Dec 2025
Viewed by 405
Abstract
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions [...] Read more.
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions influence grain morphology, texture intensity, and solid-state transformations in key alloys such as Ti-6Al-4V (Ti64), Ti-6Al-2Sn-4Zr-2Mo (Ti6242), Ti-5Al-5Mo-5V-3Cr (Ti5553), and metastable β-Ti systems processed by powder bed fusion-based processes (PBF) such as laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF/EBM). Emphasis is placed on mechanisms governing epitaxial columnar β-grain growth, α′ martensite formation, and the development of heterogeneous α/β distributions. The impact of processing variables on texture development and transformation kinetics is critically examined, alongside phase fractions. Across studies, AM-induced textures are consistently linked to mechanical anisotropy, with performance strongly dependent on build direction and alloy chemistry. Post-processing strategies, including tailored heat treatments and hot isostatic pressing (HIP), show clear potential to modify grain structure, reduce texture intensity, and stabilize desirable phase balances in titanium alloys. These insights highlight the emerging ability to deliberately engineer microstructures for reliable, application-specific properties in powder-based AM titanium alloys. Full article
Show Figures

Figure 1

20 pages, 7702 KB  
Article
Vibration Behaviour of Topologically Optimised Sacrificial Geometries for Precision Machining of Thin-Walled Components
by Evren Yasa, Ozgur Poyraz, Finlay P. C. Parson, Anthony Molyneux, Marie E. Baxter and James Hughes
Materials 2026, 19(1), 70; https://doi.org/10.3390/ma19010070 - 24 Dec 2025
Viewed by 535
Abstract
Additive manufacturing (AM) enables the consolidation of components and the integration of new functionalities in metallic parts, but layered fabrication often results in poor surface quality and geometric deviations. Among various surface treatment techniques, machining is often favoured for its capability to enhance [...] Read more.
Additive manufacturing (AM) enables the consolidation of components and the integration of new functionalities in metallic parts, but layered fabrication often results in poor surface quality and geometric deviations. Among various surface treatment techniques, machining is often favoured for its capability to enhance not only surface finish but also critical geometric tolerances such as flatness and circularity, in addition to dimensional accuracy. However, machining AM components, particularly thin-walled structures, poses challenges related to unconventional material properties, complex fixturing, and heightened susceptibility to chatter. This study investigates the vibrational behaviour of thin-walled Ti6Al4V components produced via laser powder bed fusion, using a jet-engine compressor blade demonstrator. Four stock envelope designs were evaluated: constant, tapered, and two topologically optimised variants. After fabrication by Laser Powder Bed Fusion, the blades underwent tap testing and subsequent machining to assess changes in modal characteristics. The results show that optimised geometries can enhance modal performance without increasing the volume of the stock material. However, these designs exhibit more pronounced in situ modal changes during machining, due to greater variability in material removal and chip load, which amplifies vibration sensitivity compared to constant or tapered stock designs. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

20 pages, 11502 KB  
Article
Laser Remelting of Biocompatible Ti-Based Glass-Forming Alloys: Microstructure, Mechanical Properties, and Cytotoxicity
by Aleksandra Małachowska, Wiktoria Drej, Agnieszka Rusak, Tomasz Kozieł, Denis Pikulski and Wojciech Stopyra
Materials 2025, 18(24), 5687; https://doi.org/10.3390/ma18245687 - 18 Dec 2025
Viewed by 431
Abstract
Titanium-based bulk metallic glasses (BMGs) offer high strength, lower stiffness than Ti-6Al-4V, and superior corrosion resistance, but conventional Ti glass-forming systems often contain toxic Ni, Be, or Cu. This work investigates five novel Ti-based alloys free of these elements—Ti42Zr35Si [...] Read more.
Titanium-based bulk metallic glasses (BMGs) offer high strength, lower stiffness than Ti-6Al-4V, and superior corrosion resistance, but conventional Ti glass-forming systems often contain toxic Ni, Be, or Cu. This work investigates five novel Ti-based alloys free of these elements—Ti42Zr35Si5Co12.5Sn2.5Ta3, Ti42Zr40Ta3Si15, Ti60Nb15Zr10Si15, Ti39Zr32Si29, and Ti65.5Fe22.5Si12—synthesized by arc melting and suction casting. Single-track laser remelting using a selective laser melting (SLM) system was performed to simulate additive manufacturing and examine microstructural evolution, cracking behavior, mechanical properties, and cytocompatibility. All alloys solidified into fully crystalline α/β-Ti matrices with Ti/Zr silicides; no amorphous structures were obtained. Laser remelting refined the microstructure but did not induce glass formation, consistent with the known limited glass-forming ability of Cu/Ni/Be-free Ti systems. Cracking was observed at low laser energies but crack density decreased as laser energy increased. Cracks were eliminated above ~0.4 J/mm for most alloys. Ti42Zr35Si5Co12.5Sn2.5Ta3 exhibited the lowest stiffness (~125 GPa), while Ti60Nb15Zr10Si15 showed the highest due to silicide precipitation. Cytotoxicity tests (ISO 10993-5) confirmed all alloys to be non-toxic, with some extracts even enhancing fibroblast proliferation. This rapid laser-remelting approach enables cost-effective screening of Ti-based glass-forming alloys for additive manufacturing. Ti–Zr–Ta–Si systems demonstrated the most promising properties for further testing using the powder bed method. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 6329 KB  
Article
Study on Fatigue Behavior and Life Prediction of Laser Powder Bed Fused Ti6Al4V Alloy at 400 °C
by Liangliang Wu, Ruida Xu, Jiaming Zhang, Huichen Yu and Zehui Jiao
Materials 2025, 18(24), 5678; https://doi.org/10.3390/ma18245678 - 18 Dec 2025
Viewed by 424
Abstract
Additive manufacturing has huge development potential in the aerospace field. The hot-end components of aeroengines work in harsh environments, facing high temperatures and a demand for long service life. In this paper, high-cycle fatigue (HCF) tests of Ti6Al4V alloy at 400 °C by [...] Read more.
Additive manufacturing has huge development potential in the aerospace field. The hot-end components of aeroengines work in harsh environments, facing high temperatures and a demand for long service life. In this paper, high-cycle fatigue (HCF) tests of Ti6Al4V alloy at 400 °C by selective laser melting (SLM) under different stress ratios (−1, 0.1, 0.3, 0.5, and 0.8) were carried out, and the fracture surfaces were observed. The results show that the defects existing on the surface or subsurface are prone to become the origin of fatigue cracks. There is a large dispersion of the high-cycle fatigue life of the samples, especially at a low stress ratio. With the increase in the stress ratio, the fatigue failure area on the fracture surface gradually decreases, and the fracture surface gradually presents a mixed pattern of tensile endurance fracture and fatigue failure. Considering the influence of creep damage due to mean stress, models were established, respectively, for the fatigue behavior and time-related rupture behavior to predict fatigue life and conduct an assessment. Then, the two models were combined and the composite models were proposed using the linear damage law. Finally, the single fatigue model and rupture models, as well as the composite models, were evaluated, respectively, and compared with the actual fatigue life, and the best model was obtained for the high-cycle fatigue prediction of SLM Ti6Al4V at 400 °C. Full article
Show Figures

Figure 1

18 pages, 6809 KB  
Article
Laser Directed Energy Deposition of Inconel625 to Ti6Al4V Heterostructure via Nonlinear Gradient Transition Interlayers
by Wenbo Wang, Guojian Xu, Yaqing Hou, Chenyi Zhang, Guohao Cui, Pengyu Qin, Juncheng Shang and Xiuru Fan
Materials 2025, 18(24), 5598; https://doi.org/10.3390/ma18245598 - 12 Dec 2025
Viewed by 512
Abstract
Heterostructure (HS) refers to a class of structural materials composed of two or more different chemical components or crystal structures. Integration of Inconel 625 (IN625) nickel-based superalloy and Ti6Al4V (TC4) titanium alloy to a HS material offers a promising strategy to achieve graded [...] Read more.
Heterostructure (HS) refers to a class of structural materials composed of two or more different chemical components or crystal structures. Integration of Inconel 625 (IN625) nickel-based superalloy and Ti6Al4V (TC4) titanium alloy to a HS material offers a promising strategy to achieve graded thermo-mechanical properties, extended service temperature ranges, and significant weight reduction, which are highly desirable in aerospace applications. However, obtaining a better metallurgical bonding between the two alloys remains a critical challenge. In this study, laser directed energy deposition (L-DED) technology was employed to fabricate IN625/TC4 HS materials with a nonlinear gradient transition, following systematic investigations into the phase composition and crack sensitivity of IN625/TC4 gradient layers prepared from mixed powders of varying compositions. In addition, microstructure, phase distribution, and mechanical properties of HS materials at room temperature were characterized. The metallurgical defect-free IN625/TC4 HS material was successfully prepared, featuring a smooth transition of microstructure, reduced cracking sensitivity, and reliable metallurgical bonding. Furthermore, a novel design concept and illustrative reference for the L-DED fabrication of N625/TC4 HS material with excellent comprehensive performance was presented, while providing a theoretical metallurgical basis and data support for the potential applications of IN625/TC4 HS materials in the field of aerospace. Full article
Show Figures

Figure 1

16 pages, 4138 KB  
Article
Turning Data Optimization of Titanium Alloy Produced by Casting and DMLS
by Ksenia Latosińska and Wojciech Zębala
Materials 2025, 18(24), 5583; https://doi.org/10.3390/ma18245583 - 12 Dec 2025
Viewed by 389
Abstract
In manufacturing processes, both material processing methods and the resulting microstructure play a fundamental role in determining material behavior during component fabrication and subsequent service conditions. Materials produced by additive manufacturing exhibit a unique microstructure due to the rapid heating and solidification cycles [...] Read more.
In manufacturing processes, both material processing methods and the resulting microstructure play a fundamental role in determining material behavior during component fabrication and subsequent service conditions. Materials produced by additive manufacturing exhibit a unique microstructure due to the rapid heating and solidification cycles inherent to the process, distinguishing them from conventionally cast counterparts and leading to differences in mechanical and functional properties. This article presents problems related to the longitudinal turning of Ti6Al4V titanium alloy elements produced by the casting and powder laser sintering (DMLS) methods. The authors made an attempt to establish a procedure for determining the optimal parameters of finishing cutting while minimizing the specific cutting force, taking into account the criterion of machined surface quality. In the course of the experiments, the influence of the cutting data on the cutting force values, surface roughness parameters, and chip shape was examined. The material hardening state during machining and the variability of the specific cutting force as a function of the cross-sectional shape of the cutting layer were also tested. The authors presented a practical application of the proposed optimization algorithm. It was found that by changing the shape of the cross-section of the cutting layer, it was possible to carry out the turning process with significantly reduced specific cutting force (from 2300 N/mm2 to 1950 N/mm2) without deteriorating the surface roughness. Full article
Show Figures

Figure 1

14 pages, 7195 KB  
Article
Using Plasma Electrolytic Polishing for Post-Processing of Additively Manufactured Ti6Al4V Alloy Products
by Sergey N. Grigoriev, Ivan V. Tambovskiy, Tatiana L. Mukhacheva, Ivan R. Palenov, Vladislav A. Gaponov, Irina A. Kusmanova, Artem O. Komarov, Artem P. Mitrofanov, Igor V. Suminov and Sergei A. Kusmanov
Technologies 2025, 13(12), 553; https://doi.org/10.3390/technologies13120553 - 27 Nov 2025
Viewed by 478
Abstract
One of the limitations of additive manufacturing technology is the high surface roughness of finished products caused by the layered structure of the deposition and the effect of adhesion of unfused powder particles. This worsens the fatigue characteristics, wear resistance, and functional properties [...] Read more.
One of the limitations of additive manufacturing technology is the high surface roughness of finished products caused by the layered structure of the deposition and the effect of adhesion of unfused powder particles. This worsens the fatigue characteristics, wear resistance, and functional properties of the parts, which are especially important for critical applications in medicine, aviation, and mechanical engineering. The paper presents the results of a study on the possibility of using plasma electrolytic polishing for post-processing of products made of additively manufactured Ti6Al4V alloy to form a homogeneous surface with reduced roughness. The morphology, roughness, and tribotechnical characteristics of the surface after processing in a fluoride electrolyte were studied with varying voltage and polishing time. A 90% reduction in surface roughness is achieved by polishing at 300 V for 20 min. The results of tribological tests revealed that after the polishing of the oxidative wear mechanism is maintained, the temperature in the tribological contact zone decreases, and the load-bearing capacity of the surface increases (the Kragelsky–Kombalov criterion decreases). The greatest decrease in the friction coefficient by 2.1 times was observed with minimal surface roughness, when the largest average radius of rounding of the microprotrusions of the friction track microtopology is formed with a low value of the Kragelsky–Kombalov criterion. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

23 pages, 12603 KB  
Article
Application of Laser and Cryogenic Surface Treatment for the Evolution of Surface Morphology in Additively Manufactured Ti-6Al-4V Alloy Samples
by Dorota Laskowska, Monika Szada-Borzyszkowska, Błażej Bałasz, Wiesław Szada-Borzyszkowski and Izabela Bukała
Materials 2025, 18(23), 5315; https://doi.org/10.3390/ma18235315 - 25 Nov 2025
Viewed by 402
Abstract
This study investigates the effects of laser and cryogenic (dry ice) surface treatments on enhancing surface characteristics of Ti-6Al-4V titanium alloy components produced using the Selective Laser Melting (SLM) technique. Components produced via additive manufacturing often exhibit increased surface irregularities and residual unmelted [...] Read more.
This study investigates the effects of laser and cryogenic (dry ice) surface treatments on enhancing surface characteristics of Ti-6Al-4V titanium alloy components produced using the Selective Laser Melting (SLM) technique. Components produced via additive manufacturing often exhibit increased surface irregularities and residual unmelted powder, which can deteriorate their mechanical strength and resistance to corrosion. In this study, SLM samples manufactured with two laser powers (176 W and 220 W) were subjected to laser cleaning and dry ice blasting under various process parameters. Surface topography and morphology analyses were performed. The obtained results showed that both methods improved surface uniformity and removed contaminants. Dry ice treatment effectively removed loose powder particles and impurities without causing structural changes—the best results were obtained at a pressure of 10 bar. Laser treatment, depending on the focal length, produced varying degrees of surface remelting—from gentle smoothing (500 mm) to intensive thermal effects and microcracks (250 mm). The research confirmed that cryogenic cleaning is an environmentally friendly and safe post-processing method, while laser cleaning enables deeper surface structure modification, requiring further optimization. Full article
Show Figures

Figure 1

14 pages, 5951 KB  
Article
The Low-Cycle Fatigue Performance of Emerging Titanium Alloys for Aeroengine Applications
by Peter Davies, Sean John, Helen Davies, Martin Bache, Kate Fox, Christopher Collins, Nigel Martin and Rebecca Sandala
Metals 2025, 15(11), 1274; https://doi.org/10.3390/met15111274 - 20 Nov 2025
Viewed by 556
Abstract
The low-cycle fatigue behavior of three titanium alloys (including two wrought alloys that are commercially available and one under development via a powder sintering technique) is described in order to assess the relative capabilities of a fourth, novel proprietary alloy, designated as RR11. [...] Read more.
The low-cycle fatigue behavior of three titanium alloys (including two wrought alloys that are commercially available and one under development via a powder sintering technique) is described in order to assess the relative capabilities of a fourth, novel proprietary alloy, designated as RR11. Despite relatively increased levels of beta stabilization, each alloy remains within the general alpha–beta microstructural category and could be considered as an engineering alternative to the well-established Ti-6Al-4V. The relationships between fatigue behavior, microstructure, grain morphology, micro-texture, and alloy chemistry are explored. Emphasis is placed upon the potential cold dwell fatigue sensitivity of the four alternative alloys, which is particularly pertinent since it was recognized that Ti-6Al-4V can suffer from cold dwell-related behavior subject to selected thermo-mechanical processing. Full article
Show Figures

Figure 1

20 pages, 2261 KB  
Article
Stress-Based Optimization of Components and Supports for Sinter-Based Additive Manufacturing
by David Stachg, Jaco Beckmann and Jens Telgkamp
Appl. Sci. 2025, 15(22), 12198; https://doi.org/10.3390/app152212198 - 17 Nov 2025
Viewed by 579
Abstract
Sinter-based additive manufacturing (SBAM) processes, such as Cold Metal Fusion (CMF), combine the geometric freedom of additive manufacturing with the scalability of powder metallurgy, but part distortion and collapse during debinding and sintering remain critical design challenges. This study presents a revised stress-based [...] Read more.
Sinter-based additive manufacturing (SBAM) processes, such as Cold Metal Fusion (CMF), combine the geometric freedom of additive manufacturing with the scalability of powder metallurgy, but part distortion and collapse during debinding and sintering remain critical design challenges. This study presents a revised stress-based optimization framework to address these issues by integrating sintering-specific load cases into topology optimization. In contrast to earlier approaches, the revised workflow applies all load cases to the upscaled green-part geometry. This adjustment mitigates the non-linear scaling effects of dead load-induced stresses. A Case study, including a steering bracket for a Formula Student racing car, demonstrates that the revised method improves not only sinterability but also application-related performance compared to earlier approaches. In addition, a semi-automated procedure for generating sinter supports is introduced, allowing stable processing of geometries without planar bearing surfaces. Experimental validation confirms that optimized supports effectively prevent part failure during post-processing, though challenges remain in separating complex freeform geometries. Finally, the influence of stiffness on sintering-induced deformations is investigated, showing that higher stiffness configurations significantly reduce dimensional errors. Together, these results highlight stress- and stiffness-based optimization as tools to enhance the reliability, efficiency, and design freedom of SBAM. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop