Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Ti(IV) complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5156 KB  
Article
Development of a GIS-Based Methodological Framework for Regional Forest Planning: A Case Study in the Bosco Della Ficuzza Nature Reserve (Sicily, Italy)
by Santo Orlando, Pietro Catania, Massimo Vincenzo Ferro, Carlo Greco, Giuseppe Modica, Michele Massimo Mammano and Mariangela Vallone
Land 2025, 14(9), 1744; https://doi.org/10.3390/land14091744 - 28 Aug 2025
Viewed by 597
Abstract
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco [...] Read more.
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve (western Sicily, Italy). The main objective is to create a multi-layered Territorial Information System (TIS) that integrates high-resolution cartographic data, a Digital Terrain Model (DTM), and GNSS-based field surveys to support adaptive, participatory, and replicable forest management. The methodology combines the following: (i) DTM generation using Kriging interpolation to model slope and aspect with ±1.2 m accuracy; (ii) road infrastructure mapping and classification, adapted from national and regional forestry survey protocols; (iii) spatial analysis of fire-risk zones and accessibility, based on slope, exposure, and road pavement conditions; (iv) the integration of demographic and land use data to assess human–forest interactions. The resulting TIS enables complex spatial queries, infrastructure prioritization, and dynamic scenario modeling. Results demonstrate that the framework overcomes the limitations of many existing GIS-based systems—fragmentation, static orientation, and limited interoperability—by ensuring continuous data integration and adaptability to evolving ecological and governance conditions. Applied to an 8500 ha Mediterranean biodiversity hotspot, the model enhances road maintenance planning, fire-risk mitigation, and stakeholder engagement, offering a scalable methodology for other protected forest areas. This research contributes an innovative approach to Mediterranean forest governance, bridging ecological monitoring with socio-economic dynamics. The framework aligns with the EU INSPIRE Directive and highlights how low-cost, interoperable geospatial tools can support climate-resilient forest management strategies across fragmented Mediterranean landscapes. Full article
Show Figures

Figure 1

20 pages, 2262 KB  
Article
Luminescent Arylalkynyltitanocenes: Effect of Modifying the Electron Density at the Arylalkyne Ligand, or Adding Steric Bulk or Constraint to the Cyclopentadienyl Ligand
by Matilda Barker, Samantha C. Walter, Elizabeth A. McCallum, River S. Golden, John H. Zimmerman, Jackson S. McCarthy, Colin D. McMillen and Paul S. Wagenknecht
Crystals 2025, 15(8), 745; https://doi.org/10.3390/cryst15080745 - 21 Aug 2025
Viewed by 651
Abstract
Photocatalysis using complexes of d0 metals with ligand-to-metal charge-transfer (LMCT) excited states is an active area of research. Because titanium is the second most abundant transition metal in the earth’s crust, d0 complexes of TiIV are an appropriate target for [...] Read more.
Photocatalysis using complexes of d0 metals with ligand-to-metal charge-transfer (LMCT) excited states is an active area of research. Because titanium is the second most abundant transition metal in the earth’s crust, d0 complexes of TiIV are an appropriate target for this research. Recently, our group has demonstrated that the arylethynyltitanocene Cp2Ti(C2Ph)2CuBr is not emissive in room-temperature fluid solution, whereas the corresponding Cp* complex, Cp*2Ti(C2Ph)2CuBr, is emissive. The Cp* ligand is hypothesized to provide steric constraint that inhibits excited-state structural rearrangement. However, modifying the structure also changes the orbital character of the excited state. To investigate the impact of the excited-state orbital character on the photophysics, herein we characterize complexes similar to Cp*2Ti(C2Ph)2CuBr—but one with a more electron-rich arylethynyl ligand, ethynyldimethylaniline (C2DMA), and one with a more electron-poor arylethynyl ligand, ethynyl-α,α,α-trifluorotoluene. We have also prepared complexes with the C2DMA ligand but with different Cp ligands that adjust the steric bulk and constraint around the Ti, by replacing the Cp* ligands with either indenyl ligands or an ansa-cyclopentadienyl ligand where the two Cp ligands are bridged by a dimethylsilylene. All four target complexes have been characterized crystallographically and structure activity relationships are highlighted. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

14 pages, 2314 KB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 619
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

14 pages, 3340 KB  
Article
Synthesis, Molecular Structure, and Computational Studies of Dinuclear d0 Titanium(IV) Complex with P-P-Bonded Diphosphine Ligand
by Tomoyuki Toda, Yuya Toma, Miku Nishiguchi and Katsuhiko Takenaka
Inorganics 2025, 13(5), 169; https://doi.org/10.3390/inorganics13050169 - 16 May 2025
Viewed by 971
Abstract
Diphosphine compounds have been used as ligands for a variety of metals, and studies on their structures and reactivities are still of interest. We investigated the coordination chemistry of P–P-bonded diphosphine by conducting reactions of bis(1,1′-dibenzophospholyl) (Db)2P–P(Db)2 1 with [...] Read more.
Diphosphine compounds have been used as ligands for a variety of metals, and studies on their structures and reactivities are still of interest. We investigated the coordination chemistry of P–P-bonded diphosphine by conducting reactions of bis(1,1′-dibenzophospholyl) (Db)2P–P(Db)2 1 with d0-titanium(IV) reagents. The reaction of 1 with TiCl4 afforded the dinuclear titanium complex Cl3Ti{μ-(Db)2P–P(Db)2}(μ-Cl)2TiCl3 2. The final structure of titanium complex 2 was determined by single-crystal X-ray structural analysis. The molecular structure of the complex was found to be a dinuclear d0-titanium complex coordinated to diphosphine on the same side, and the central titanium atoms were bridged to each other by chlorides. To further elucidate this complex, density functional theory (DFT) calculations were conducted to analyze its structure. Full article
Show Figures

Graphical abstract

23 pages, 3733 KB  
Article
Analysis of Photocatalytic Properties of Poly(Methyl Methacrylate) Composites with Titanium(IV) and Ruthenium(III) Complexes
by Barbara Kubiak, Adrian Topolski, Aleksandra Radtke, Tadeusz Muzioł, Olga Impert, Anna Katafias, Rudi van Eldik and Piotr Piszczek
Appl. Sci. 2025, 15(4), 1679; https://doi.org/10.3390/app15041679 - 7 Feb 2025
Cited by 1 | Viewed by 1237
Abstract
This study explores poly(methyl methacrylate) (PMMA)-based composites as potential alternatives to conventional TiO2-based photocatalysts. Specifically, it examines PMMA composites enriched with oxo–titanium(IV) complexes, [Ti8O2(OiPr)20(man)4] (1), [Ti4O(Oi [...] Read more.
This study explores poly(methyl methacrylate) (PMMA)-based composites as potential alternatives to conventional TiO2-based photocatalysts. Specifically, it examines PMMA composites enriched with oxo–titanium(IV) complexes, [Ti8O2(OiPr)20(man)4] (1), [Ti4O(OiPr)10(O3C14H8)2] (2), and [Ti6O4(OiPr)2(O3C14H8)4(O2CEt)6] (3), alongside ruthenium(III) complexes, K[Ru(Hedta)Cl]∙2H2O (4) and [Ru(pic)3]·H2O (5). We assessed the physicochemical, adsorption, and photocatalytic properties of these composites with structural analyses (Raman spectroscopy, X-ray absorption (XAS), and SEM-EDX), confirming the stability of complexes within the PMMA matrix. Composites containing titanium(IV) compounds demonstrated notably higher photocatalytic efficiency than those with ruthenium(III) complexes. Based on activity profiles, composites were categorized into three types: (i) UV-light active (complexes (1) and (2)), (ii) visible-light active (complexes (4) and (5)), and (iii) dual-range active (complex (3)). The results highlight the strong potential of titanium(IV)–PMMA composites for UV-driven photocatalysis. Moreover, their activity can be extended to the visible range after structural modifications. Ruthenium(III)–PMMA composites, in turn, showed superior performance under visible light. Overall, PMMA composites with titanium(IV) or ruthenium(III) complexes demonstrate promising photocatalytic properties for applications using both UV and visible light ranges. Full article
(This article belongs to the Special Issue Titania Surface Modification: Theory, Methods, and Applications)
Show Figures

Figure 1

18 pages, 3357 KB  
Article
Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries
by Arina V. Kozhevnikova, Nikita A. Milevskii, Dmitriy V. Lobovich, Yulia A. Zakhodyaeva and Andrey A. Voshkin
Metals 2024, 14(12), 1441; https://doi.org/10.3390/met14121441 - 16 Dec 2024
Cited by 3 | Viewed by 2119
Abstract
The recycling of lithium-ion batteries is increasingly important for both resource recovery and environmental protection. However, the complex composition of cathode and anode materials in these batteries makes the efficient separation of metal mixtures challenging. Hydrometallurgical methods, particularly liquid extraction, provide an effective [...] Read more.
The recycling of lithium-ion batteries is increasingly important for both resource recovery and environmental protection. However, the complex composition of cathode and anode materials in these batteries makes the efficient separation of metal mixtures challenging. Hydrometallurgical methods, particularly liquid extraction, provide an effective means of separating metal ions, though they require periodic updates to their extraction systems. This study introduces a hydrophobic deep eutectic solvent composed of trioctylphosphine oxide, di(2-ethylhexyl)phosphoric acid, and menthol, which is effective for separating Ti(IV), Co(II), Mn(II), Ni(II), and Li+ ions from hydrochloric acid leachates of NMC (LiNixMnyCo1−x−yO2) batteries with LTO (Li4Ti5O12) anodes. By optimising the molar composition of the trioctylphosphine oxide/di(2-ethylhexyl)phosphoric acid/menthol mixture to a 4:1:5 ratio, high extraction efficiency was achieved. The solvent demonstrated stability over 10 cycles, and conditions for its regeneration were successfully established. At room temperature, the DES exhibited a density of 0.89 g/mL and a viscosity of 56 mPa·s, which are suitable for laboratory-scale extraction processes. Experimental results from a laboratory setup with mixer-settlers confirmed the efficiency of separating Ti(IV) and Co(II) ions in the context of their extraction kinetics. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 5154 KB  
Article
Detection of Hydrogen Peroxide Vapors Using Acidified Titanium(IV)-Based Test Strips
by Rayhan Hossain and Nicholas F. Materer
Materials 2024, 17(23), 5887; https://doi.org/10.3390/ma17235887 - 1 Dec 2024
Cited by 3 | Viewed by 1717
Abstract
One method for the colorimetric detection of hydrogen peroxide vapor is based on a titanium–hydrogen peroxide complex. A color changing material based on a titania hydroxypropyl cellulose thin film was initially developed. However, as this material dries, the sensitivity of the material is [...] Read more.
One method for the colorimetric detection of hydrogen peroxide vapor is based on a titanium–hydrogen peroxide complex. A color changing material based on a titania hydroxypropyl cellulose thin film was initially developed. However, as this material dries, the sensitivity of the material is significantly reduced. Thus, an alternative sensing material, based on titanium(IV) oxysulfate, an ionic liquid, and in some cases, triflouromethanesulfonic acid adsorbed onto low-cost silicon thin-layer chromatography (TLC) plates, was developed. TiO2 was heated with concentrated sulfuric acid in a controlled environment, usually at temperatures ranging from 100 °C to 250 °C. These sensors are disposable and single-use and are simple and inexpensive. When the resulting thin-film sensors are exposed to ppm levels of hydrogen peroxide vapor, they turn from a white reflective material to an intense yellow or orange. Ti(IV) oxysulfate combined with an acid catalyst and an ionic-liquid-based material provides an opportunity to enhance the sensor activity towards the peroxide vapor and decreases the detection limit. Kinetic measurements were made by the quantification of the intensity of the reflected light as a function of the exposure time from the sensor in a special cell using a low-cost web camera and a tungsten lamp. The measured rate of the color change indicates high sensitivity and first-order kinetics over a hydrogen peroxide concentration range of approximately 2 to 31 ppm. These new materials are a starting point for the preparation of more active sensor materials for hydrogen peroxide and organic peroxide vapor detection. Full article
Show Figures

Figure 1

17 pages, 3399 KB  
Article
How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study
by Xiaoxiao Huang, Mengru Wu, Rongying Huang and Gang Yang
Molecules 2024, 29(17), 3991; https://doi.org/10.3390/molecules29173991 - 23 Aug 2024
Cited by 2 | Viewed by 1519
Abstract
The efficient adsorption and removal of As(III), which is highly toxic, remains difficult. TiO2 shows promise in this field, though the process needs improvement. Herein, how doping regulates As(OH)3 adsorption over TiO2 surfaces is comprehensively investigated by means of the [...] Read more.
The efficient adsorption and removal of As(III), which is highly toxic, remains difficult. TiO2 shows promise in this field, though the process needs improvement. Herein, how doping regulates As(OH)3 adsorption over TiO2 surfaces is comprehensively investigated by means of the DFT + D3 approach. Doping creates the bidentate mononuclear (Ce doping at the Ti5c site), tridentate (N, S doping at the O2c site), and other new adsorption structures. The extent of structural perturbation correlates with the atomic radius when doping the Ti site (Ce >> Fe, Mn, V >> B), while it correlates with the likelihood of forming more bonds when doping the O site (N > S > F). Doping the O2c, O3c rather than the Ti5c site is more effective in enhancing As(OH)3 adsorption and also causes more structural perturbation and diversity. Similar to the scenario of pristine surfaces, the bidentate binuclear complexes with two Ti-OAs bonds are often the most preferred, except for B doping at the Ti5c site, S doping at the O2c site, and B doping at the O3c site of rutile (110) and Ce, B doping at the Ti5c site, N, S doping at the O2c site, and N, S, B doping at the O3c site of anatase (101). Doping significantly regulates the As(OH)3 adsorption efficacy, and the adsorption energies reach −4.17, −4.13, and −4.67 eV for Mn doping at the Ti5c site and N doping at the O2c and O3c sites of rutile (110) and −1.99, −2.29, and −2.24 eV for Ce doping at the Ti5c site and N doping at the O2c and O3c sites of anatase (101), respectively. As(OH)3 adsorption and removal are crystal-dependent and become apparently more efficient for rutile vs. anatase, whether doped at the Ti5c, O2c, or O3c site. The auto-oxidation of As(III) occurs when the As centers interact directly with the TiO2 surface, and this occurs more frequently for rutile rather than anatase. The multidentate adsorption of As(OH)3 causes electron back-donation and As(V) re-reduction to As(IV). The regulatory effects of doping during As(III) adsorption and the critical roles played by crystal control are further unraveled at the molecular level. Significant insights are provided for As(III) pollution management via the adsorption and rational design of efficient scavengers. Full article
(This article belongs to the Special Issue Feature Papers in Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

12 pages, 1486 KB  
Article
Biocompatibility of Subperiosteal Dental Implants: Changes in the Expression of Osteogenesis-Related Genes in Osteoblasts Exposed to Differently Treated Titanium Surfaces
by Marco Roy, Elisa Chelucci, Alessandro Corti, Lorenzo Ceccarelli, Mauro Cerea, Barbara Dorocka-Bobkowska, Alfonso Pompella and Simona Daniele
J. Funct. Biomater. 2024, 15(6), 146; https://doi.org/10.3390/jfb15060146 - 27 May 2024
Cited by 1 | Viewed by 2058
Abstract
The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal [...] Read more.
The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, β-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants. Full article
(This article belongs to the Special Issue Orthodontic Biomaterials: From the Past to the Present)
Show Figures

Graphical abstract

19 pages, 4883 KB  
Article
Structural Characterization and Bioactivity of a Titanium(IV)-Oxo Complex Stabilized by Mandelate Ligands
by Barbara Kubiak, Tadeusz Muzioł, Grzegorz Wrzeszcz, Aleksandra Radtke, Patrycja Golińska, Tomasz Jędrzejewski, Sylwia Wrotek and Piotr Piszczek
Molecules 2024, 29(8), 1736; https://doi.org/10.3390/molecules29081736 - 11 Apr 2024
Cited by 2 | Viewed by 2203
Abstract
Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the [...] Read more.
Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the general formula [Ti8O2(OiPr)20(man)4] (1), which was isolated from the reaction mixture of titanium(IV) isopropoxide with mandelic acid (Hman) in a molar ratio of 4:1. The structure (1) was determined using single-crystal X-ray diffraction, while spectroscopic studies provided insights into its physicochemical properties. To assess the potential practical applications of (1), its microcrystals were incorporated into a polymethyl methacrylate (PMMA) matrix, yielding composite materials of the type PMMA + (1) (2 wt.%, 5 wt.%, 10 wt.%, and 20 wt.%). The next stage of our research involved the evaluation of the antimicrobial activity of the obtained materials. The investigations performed demonstrated the antimicrobial activity of pure (1) and its composites (PMMA + (1)) against both Gram-positive and Gram-negative strains. Furthermore, MTT tests conducted on the L929 murine fibroblast cell line confirmed the lack of cytotoxicity of these composites. Our study identified (1) as a promising antimicrobial agent, which is also may be use for producing composite coatings. Full article
Show Figures

Graphical abstract

28 pages, 3165 KB  
Review
Survey of Main Group Metals and Metalloids in Cancer Treatment
by Irena Kostova
Inorganics 2024, 12(1), 29; https://doi.org/10.3390/inorganics12010029 - 12 Jan 2024
Cited by 4 | Viewed by 3495
Abstract
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups [...] Read more.
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention. Full article
(This article belongs to the Special Issue Rational Design of Pharmacologically Active Metal-Based Compounds)
Show Figures

Figure 1

19 pages, 4267 KB  
Article
Green Development of Titanium Dioxide Using Astragalus boeticus for the Degradation of Cationic and Anionic Dyes in an Aqueous Environment
by Fadwa Maanane, Adil El Yadini, Marouane El Alouani, Jamal Mabrouki, Hamid Saufi and Mohamed Tabyaoui
Water 2023, 15(19), 3471; https://doi.org/10.3390/w15193471 - 30 Sep 2023
Cited by 2 | Viewed by 2663
Abstract
Wastewater discharge from the textile industry poses significant health problems for humans. As a result, the effluent waters are often rich in dyes, whose low natural decomposition capacity makes their treatment complex, thus contributing to environmental degradation. It becomes imperative to implement effective [...] Read more.
Wastewater discharge from the textile industry poses significant health problems for humans. As a result, the effluent waters are often rich in dyes, whose low natural decomposition capacity makes their treatment complex, thus contributing to environmental degradation. It becomes imperative to implement effective solutions for treating these contaminated waters, with a primary goal: to make them fit for human consumption. The present study focuses on the development of green TiO2 nanoparticles (TiO2-NP) using titanium (IV) isopropoxide as a precursor, along with the extract of Astragalus boeticus (A.B). These green TiO2 nanoparticles have been developed for use as highly efficient photocatalysts for the degradation of two types of dyes: Reactive Yellow 161 (RY161), an anionic dye, and Crystal Violet (CV), a cationic dye. The structural, microstructural, and optical properties of the synthesized material were characterized using XRD, FTIR, SEM, EDX, and UV-Vis methods. The results of these analyses revealed that the nanoparticles have a size of approximately 68 nm, possess an anatase structure, exhibit a spherical surface morphology, and have a band gap of 3.22 eV. The photocatalytic activity of the synthesized material demonstrated a 94.06% degradation of CV dye in a basic environment (pH = 10) within 30 min, with an initial CV concentration of 10 mg/L and a catalyst mass of 1 g/L. Additionally, it achieved a 100% degradation of RY161 dye in an acidic environment (pH = 4) within 90 min, with an initial RY161 concentration of 30 mg/L and a catalyst mass of 1 g/L. Furthermore, the recycling study indicated that the green TiO2 NPs catalyst could be effectively reused for up to five cycles. These experimental findings suggest that the developed TiO2 catalyst holds significant potential as an eco-friendly solution for remediating aqueous media polluted by both anionic and cationic dyes. Full article
(This article belongs to the Special Issue Advanced Technology for Smart Environment and Water Treatment)
Show Figures

Figure 1

28 pages, 6734 KB  
Article
Optically Transparent TiO2 and ZnO Photocatalytic Thin Films via Salicylate-Based Sol Formulations
by Bozhidar I. Stefanov
Coatings 2023, 13(9), 1568; https://doi.org/10.3390/coatings13091568 - 7 Sep 2023
Cited by 9 | Viewed by 3146
Abstract
Sol compositions for transparent TiO2 and ZnO photocatalytic thin film deposition are of interest for the wet-chemical fabrication of self-cleaning coatings. The choice of stabilizing agent is crucial for the sol film-forming properties, with acetylacetone and monoethanolamine conventionally employed for TiO2 [...] Read more.
Sol compositions for transparent TiO2 and ZnO photocatalytic thin film deposition are of interest for the wet-chemical fabrication of self-cleaning coatings. The choice of stabilizing agent is crucial for the sol film-forming properties, with acetylacetone and monoethanolamine conventionally employed for TiO2 and ZnO deposition sols, respectively. Salicylic acid (SA), capable of chelating both Ti(IV) and Zn(II) precursors, remains underexplored. This study presents novel SA-based sol formulations for the deposition of both TiO2 and ZnO films, based on titanium tetraisopropoxide (TTIP) and zinc acetate dihydrate (ZAD) precursors, in a fixed 1:3 (TTIP:SA) and 1:2 (ZAD:SA) ratio, and isopropanol solvent, varied across the 1:10 to 1:20 precursor-to-solvent ratio range. Fourier-Transform Infrared Spectroscopy analysis and Density Functional Theory computations confirmed the formation of H2Ti[SA]3 and Zn[SA]2·2H2O complexes. Scanning Electron Microscopy, X-ray diffraction, and Ultraviolet-Visible spectroscopy were employed to study the structural and optical properties of the dip-coated films, revealing dense TiO2 (86–205 nm) and ZnO (35–90 nm) layers of thickness proportional to the salicylate concentration and transmittance in the 70–90% range. Liquid-phase Methylene blue (MB) photooxidation experiments revealed that all films exhibit photocatalytic activity, with ZnO films being superior to TiO2, with 2.288 vs. 0.366 nm h−1 cm−2 MB removal rates. Full article
Show Figures

Graphical abstract

15 pages, 3317 KB  
Article
Sn(IV)porphyrin-Anchored TiO2 Nanoparticles via Axial-Ligand Coordination for Enhancement of Visible Light-Activated Photocatalytic Degradation
by Nirmal Kumar Shee and Hee-Joon Kim
Inorganics 2023, 11(8), 336; https://doi.org/10.3390/inorganics11080336 - 15 Aug 2023
Cited by 14 | Viewed by 2918
Abstract
A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the [...] Read more.
A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the surface of the TiO2 nanoparticles via the adipic acid linkage in SnP/AA@TiO2, as confirmed by various instrumental techniques. SnP/AA@TiO2 exhibited remarkably enhanced photocatalytic activity toward the degradation of rhodamine B dye (RhB) in aqueous solution under visible-light irradiation. The RhB degradation efficiency of SnP/AA@TiO2 was 95% within 80 min, with a rate constant of 0.0366 min−1. The high degradation efficiency, low catalyst loading and high reusability make SnP-anchored photocatalysts more efficient than other photocatalysts, such as TiO2 and SnP@TiO2. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis)
Show Figures

Graphical abstract

33 pages, 10518 KB  
Article
Structural Speciation of Ti(IV)-(α-Hydroxycarboxylic Acid) Complexes in Metabolism-Related (Patho)Physiology—In Vitro Approaches to (Pre)Adipocyte Differentiation and Mineralization
by Olga Tsave, Catherine Iordanidou, Antonios Hatzidimitriou, Maria P. Yavropoulou, Eva N. Kassi, Narjes Nasiri-Ansari, Catherine Gabriel and Athanasios Salifoglou
Int. J. Mol. Sci. 2023, 24(14), 11865; https://doi.org/10.3390/ijms241411865 - 24 Jul 2023
Cited by 3 | Viewed by 1825
Abstract
The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic [...] Read more.
The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic acid) systems, involving natural physiological chelator ligands (α-hydroxy isobutyric acid, D-quinic acid, 2-ethyl-2-hydroxybutyric acid) in aqueous media, led to the successful isolation of binary crystalline Ti(IV)-containing products. The new materials were physicochemically characterized by elemental analysis, FT-IR, TGA, and X-ray crystallography, revealing in all cases the presence of mononuclear Ti(IV) complexes bearing a TiO6 core, with three bound ligands of variable deprotonation state. Solution studies through electrospray ionization mass spectrometry (ESI-MS) revealed the nature of species arising upon dissolution of the title compounds in water, thereby formulating a solid-state–solution correlation profile necessary for further employment in biological experiments. The ensuing cytotoxicity profile (pre-adipocytes and osteoblasts) of the new materials supported their use in cell differentiation experiments, thereby unraveling their structure-specific favorable effect toward adipogenesis and mineralization through an arsenal of in vitro biological assays. Collectively, well-defined atoxic binary Ti(IV)-hydroxycaboxylato complexes, bearing bound physiological substrates, emerge as competent inducers of cell differentiation, intimately associated with cell maturation, thereby (a) associating the adipogenic (insulin mimetic properties) and osteogenic potential (mineralization) of titanium and (b) justifying further investigation into the development of a new class of multipotent titanodrugs. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

Back to TopTop