How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. As(OH)3 Adsorption by Rutile (110) with the Ti Site Being Doped
2.2. As(OH)3 Adsorption by Rutile (110) with Doping the O Site
2.3. As(OH)3 Adsorption by Doped Anatase (101)
2.4. Regulatory Mechanism of As(OH)3 Adsorption by Doping
3. Computational Section
3.1. Models
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Hu, H.; Jiao, F.; Zuo, W.; Liu, C.; Xie, H.; Dong, L.; Wang, X. Thermal separation of heavy metals from municipal solid waste incineration fly ash: A review. Chem. Eng. J. 2023, 467, 143344. [Google Scholar] [CrossRef]
- Han, Y.S.; Park, J.H.; Min, Y.; Lim, D.H. Competitive adsorption between phosphate and arsenic in soil containing iron sulfide: XAS experiment and DFT calculation approaches. Chem. Eng. J. 2020, 397, 125426. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Zheng, T.; Ma, J.; Zhang, G.; Ren, G.; Wang, L.; Liu, Y. Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent. J. Hazard. Mater. 2018, 353, 410–420. [Google Scholar] [CrossRef]
- Luo, J.; Yu, D.; Hristovski, K.D.; Fu, K.; Shen, Y.; Westerhoff, P.; Crittenden, J.C. Critical review of advances in engineering nanomaterial adsorbents for metal removal and recovery from water: Mechanism identification and engineering design. Environ. Sci. Technol. 2021, 55, 4287–4304. [Google Scholar] [CrossRef]
- Yan, L.; Chan, T.; Jing, C. Arsenic adsorption on hematite facets: Spectroscopy and DFT study. Environ. Sci. Nano 2020, 7, 3927–3939. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.; Zhang, H.; Shahab, A. A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Rosales, M.; Orive, J.; Espinoza-González, R.; de Luis, R.F.; Gauvin, R.; Brodusch, N.; Rodríguez, B.; Gracia, F.; García, A. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO2 nanostructures with tunable morphology. Chem. Eng. J. 2021, 415, 128906. [Google Scholar] [CrossRef]
- Liu, B.; Kim, K.H.; Kumar, V.; Kim, S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J. Hazard. Mater. 2020, 388, 121815. [Google Scholar] [CrossRef]
- Guan, X.; Du, J.; Meng, X.; Sun, Y.; Sun, B.; Hu, Q. Application of titanium dioxide in arsenic removal from water: A review. J. Hazard. Mater. 2012, 215, 1–16. [Google Scholar] [CrossRef]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, Z.; Zhao, F.; Chai, Z.; Yang, W.; Xiang, H.; Liao, Q.; Si, M.; Lin, Z. Manganese doping of hematite enhancing oxidation and bidentate-binuclear complexation during As(III) remediation: Experiments and DFT calculation. Chem. Eng. J. 2023, 471, 144758. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, B.; Wang, C.; Huang, Y.; Liu, X.; Wang, R.; Wang, C. Dual-functional effect encompassing adsorption and catalysis by Mn-modified iron-based sorbents for arsenic removal: Experimental and DFT study. J. Hazard. Mater. 2023, 459, 132079. [Google Scholar] [CrossRef]
- Cai, H.; Du, X.; Lin, Z.; Tao, X.; Zou, M.; Liu, J.; Zhang, L.; Dang, Z.; Lu, G. Enhanced arsenic (III) sequestration via sulfidated zero-valent iron in aerobic conditions: Adsorption and oxidation coupling processes. J. Hazard. Mater. 2023, 459, 132190. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, R.; Feng, X.; Chu, Z.; Li, J.; Wei, W.; Zheng, R.; Zhang, J.; Chen, H. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation. J. Hazard. Mater. 2022, 424, 127244. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.R.; Jia, S.Y.; Guo, J.W.; Zhuo, J.; Na, P. TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem. Eng. J. 2012, 191, 66–74. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Zou, C.; Liu, H.; Hu, H.; Huang, Y.; Wang, C.; Yao, H. Effect of CO2 on the As2O3 adsorption over carbonaceous surface: Experiment and quantum chemistry study. Chem. Eng. J. 2022, 446, 137156. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Yang, Y.; Zhao, Y.; Zheng, Y. The role of SO2 in arsenic removal by carbon-based sorbents: A DFT study. Chem. Eng. J. 2021, 410, 128439. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Patel, M.; Singh, P.; Bundschuh, J.; Pittman, C.U., Jr.; Trakal, L.; Mohan, D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Sci. Total Environ. 2019, 694, 133427. [Google Scholar] [CrossRef]
- Du, T.; Wang, J.; Zhang, L.; Wang, S.; Yang, C.; Xie, L.; Liu, Z.; Ni, Y.; Xie, X.; Sun, J.; et al. Missing-linker engineering of Eu(III)-doped UiO-MOF for enhanced detection of heavy metal ions. Chem. Eng. J. 2022, 431, 134050. [Google Scholar] [CrossRef]
- Hu, P.; Wang, S.; Zhuo, Y. Research on As2O3 adsorption enhancement characteristics of Mn-modified γ-Al2O3. Chem. Eng. J. 2021, 426, 131660. [Google Scholar] [CrossRef]
- Huang, X.; Li, T.; Yang, G. Immobilization of As(III) by gibbsite and catalytic oxidation to As(V): Profound impacts of doping and unraveling of associated mechanisms. Chemosphere 2023, 313, 137583. [Google Scholar] [CrossRef]
- Chen, K.; Chen, C.; Ren, X.; Alsaedi, A.; Hayat, T. Interaction mechanism between different facet TiO2 and U(VI): Experimental and density-functional theory investigation. Chem. Eng. J. 2019, 359, 944–954. [Google Scholar] [CrossRef]
- Pena, M.E.; Korfiatis, G.P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 2005, 39, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hu, J.; Wu, F.; Zhang, X.; Wang, B.; Yang, Y.; Shen, G.; Liu, J.; Tao, S.; Wang, X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard. Mater. 2021, 405, 124047. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhi, T.; Liu, L.; Yan, L.; Yan, W.; Tang, Y.; He, B.; Jing, C.; Jiang, G. 3D printing of TiO2 nano particles containing macrostructures for As(III) removal in water. Sci. Total Environ. 2022, 815, 152754. [Google Scholar] [CrossRef]
- Zimmerman, A.J.; Gutierrez, D.G.; Shaghaghi, N.; Sharma, A.; Deonarine, A.; Landrot, G.; Weindorf, D.C.; Siebecker, M.G. Mobility and bioaccessibility of arsenic (As) bound to titanium dioxide (TiO2) water treatment residuals (WTRs). Environ. Pollut. 2023, 326, 121468. [Google Scholar] [CrossRef]
- Huang, X.; Yang, G. Enhanced immobilization of arsenic(III) and auto-oxidation to arsenic(V) by titanium oxide (TiO2), due to single-atom vacancies and oxyanion formation. J. Colloid Interf. Sci. 2023, 650, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Umare, S.S.; Charanpahari, A.; Sasikala, R. Enhanced visible light photocatalytic activity of Ga, N and S codoped TiO2 for degradation of azo dye. Mater. Chem. Phys. 2013, 140, 529–534. [Google Scholar] [CrossRef]
- Wei, Z.; Liang, K.; Wu, Y.; Zou, Y.; Zuo, J.; Arriagada, D.C.; Pan, Z.; Hu, G. The effect of pH on the adsorption of arsenic (III) and arsenic (V) at the TiO2 anatase [101] surface. J. Colloid Interf. Sci. 2016, 462, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Jing, C.; Yan, L. A critical review on arsenic and antimony adsorption and transformation on mineral facets. J. Environ. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Ivan, A.; Dalibor, S.; Jelena, N.; Jugoslav, K.; Predrag, V.; Dragan, M.; Goran, R. Fe doped TiO2 prepared by microwave-assisted hydrothermal process for removal of As(III) and As(V) from water. Ind. Eng. Chem. Res. 2014, 53, 10841–10848. [Google Scholar]
- Song, G.; Gao, R.; Zhao, Z.; Zhang, Y.; Tan, H.; Li, H.; Wang, D.; Sun, Z. High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B 2022, 301, 120809. [Google Scholar] [CrossRef]
- Shan, C.; Liu, H.; Hua, M.; Pan, B. Enhanced Fenton-like oxidation of As(III) over Ce-Ti binary oxide: A new strategy to tune catalytic activity via balancing bimolecular adsorption energies. Environ. Sci. Technol. 2020, 54, 5893–5901. [Google Scholar] [CrossRef]
- Cano-Casanova, L.; Ansón-Casaos, A.; Hernández-Ferrer, J.; Benito, A.M.; Maser, W.K.; Garro, N.; Lillo-Ródenas, M.A.; Román-Martínez, M.D.C. Surface-enriched boron-doped TiO2 nanoparticles as photocatalysts for propene oxidation. ACS Appl. Nano Mater. 2022, 5, 12527–12539. [Google Scholar] [CrossRef]
- García-Mota, M.; Vojvodic, A.; Abild-Pedersen, F.; Nørskov, J.K. Electronic origin of the surface reactivity of transition-metal-doped TiO2 (110). J. Phys. Chem. C 2013, 117, 460–465. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Fang, P.; Pan, C.; Xiao, W. First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. Appl. Surf. Sci. 2012, 258, 8312–8318. [Google Scholar] [CrossRef]
- Zhang, J.; Liao, J.; Yang, F.; Xu, M.; Lin, S. Regulation of the electroanalytical performance of ultrathin titanium dioxide nanosheets toward lead ions by non-metal doping. Nanomaterials 2017, 7, 327. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Pelaez, M.; Likodimos, V.; Kontos, A.G.; Falaras, P.; O’Shea, K.; Dionysiou, D.D. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 2011, 107, 77–87. [Google Scholar] [CrossRef]
- Deedar, N.A.B.I.; Aslam, I. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci. 2009, 21, 402–408. [Google Scholar]
- Khan, M.S.; Shah, J.A.; Arshad, M.; Halim, S.A.; Khan, A.; Shaikh, A.J.; Riaz, N.; Khan, A.J.; Arfan, M.; Shahid, M.; et al. Photocatalytic decolorization and biocidal applications of nonmetal doped TiO2: Isotherm, kinetic modeling and In Silico molecular docking studies. Molecules 2020, 25, 4468. [Google Scholar] [CrossRef]
- Grajciar, L.; Heard, C.J.; Bondarenko, A.A.; Polynski, M.V.; Meeprasert, J.; Pidko, E.A.; Nachtigall, P. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 2018, 47, 8307–8348. [Google Scholar] [CrossRef]
- Vogiatzis, K.D.; Polynski, M.V.; Kirkland, J.K.; Townsend, J.; Hashemi, A.; Liu, C.; Pidko, E.A. Computational approach to molecular catalysis by 3d transition metals: Challenges and opportunities. Chem. Rev. 2018, 119, 2453–2523. [Google Scholar] [CrossRef]
- Albuquerque, A.R.; Bruix, A.; dos Santos, I.M.; Sambrano, J.R.; Illas, F. DFT study on Ce-doped anatase TiO2: Nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J. Phys. Chem. C 2014, 118, 9677–9689. [Google Scholar] [CrossRef]
- Finazzi, E.; Di Valentin, C.; Pacchioni, G. Boron-doped anatase TiO2: Pure and hybrid DFT calculations. J. Phys. Chem. C 2009, 113, 220–228. [Google Scholar] [CrossRef]
- Yan, L.; Du, J.; Jing, C. How TiO2 facets determine arsenic adsorption and photooxidation: Spectroscopic and DFT studies. Catal. Sci. Technol. 2016, 6, 2419–2426. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Z.; Ding, Z.; Zuo, M.; Cheng, J.; Jing, C. Simultaneous arsenic and fluoride removal using {201} TiO2–ZrO2: Fabrication, characterization, and mechanism. J. Hazard. Mater. 2019, 377, 267–273. [Google Scholar] [CrossRef]
- Sarkar, A.; Paul, B. Synthesis, characterization of iron-doped TiO2(B) nanoribbons for the adsorption of As(III) from drinking water and evaluating the performance from the perspective of physical chemistry. J. Mol. Liq. 2021, 322, 114556. [Google Scholar] [CrossRef]
- Li, Y.F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Zhu, C.; Huang, X.; Yang, G. Molecular insights for uranium(VI) adsorption at nano-TiO2 surfaces and reduction by alcohols and biomass sugars. Chem. Eng. J. Adv. 2022, 10, 100264. [Google Scholar] [CrossRef]
- Li, Z.; Deng, S.; Yu, G.; Huang, J.; Lim, V.C. As(V) and As(III) removal from water by a Ce-Ti oxide adsorbent: Behavior and mechanism. Chem. Eng. J. 2010, 161, 106–113. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, C.; Wang, Q.; Yang, G. Mechanisms for As(OH)3 and H3AsO4 adsorption at anhydrous and hydrated surfaces of gibbsite and possibility for anionic As(III) and As(V) formation. Appl. Surf. Sci. 2020, 525, 146494. [Google Scholar] [CrossRef]
- Jiang, S.; Li, X.; Yin, Y.; Luo, B.; Isah, A.G.; Zhang, Z.; Zhu, T. Extraordinary deactivation offset effect of zinc and arsenic on V2O5-WO3/TiO2 catalysts: Like cures like. J. Hazard. Mater. 2023, 441, 129894. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zhang, Y.; Wang, M.; Yang, W.; Gao, Z. Density functional theory investigation of As4, As2 and AsH3 adsorption on Ti-doped graphene. Chem. Eng. J. 2021, 421, 129747. [Google Scholar] [CrossRef]
- Chen, H.; Yan, L.; Jing, C. DFT study on TiO2 facet-dependent As(III) oxidation process: Importance of As(IV) species. Surf. Sci. 2023, 729, 122219. [Google Scholar] [CrossRef]
- Tobón, L.L.A.; Fuente, S.; Branda, M.M. Electronic and magnetic properties of the adsorption of As harmful species on zero-valent Fe surfaces, clusters and nanoparticules. Appl. Surf. Sci. 2019, 465, 715–723. [Google Scholar] [CrossRef]
- Wang, X.; Pehkonen, S.O.; Rämö, J.; Väänänen, M.; Highfield, J.G.; Laasonen, K. Experimental and computational studies of nitrogen doped Degussa P25 TiO2: Application to visible-light driven photo-oxidation of As(III). Catal. Sci. Technol. 2012, 2, 784–793. [Google Scholar] [CrossRef]
- Zhang, M.; He, G.; Pan, G. Binding mechanism of arsenate on rutile (110) and (001) planes studied using grazing-incidence EXAFS measurement and DFT calculation. Chemosphere 2015, 122, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Howard, C.J.; Sabine, T.M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Crystallog. B 1991, 47, 462–468. [Google Scholar] [CrossRef]
- Pang, C.L.; Lindsay, R.; Thornton, G. Chemical reactions on rutile TiO2 (110). Chem. Soc. Rev. 2008, 37, 2328–2353. [Google Scholar] [CrossRef] [PubMed]
- Martsinovich, N.; Jones, D.R.; Troisi, A. Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations. J. Phys. Chem. C 2010, 114, 22659–22670. [Google Scholar] [CrossRef]
- Kim, H.L.; Hidayat, R.; Khumaini, K.; Lee, W.J. A theoretical study on the surface reaction of tetrakis (dimethylamino) titanium on titanium oxide. Phys. Chem. Chem. Phys. 2023, 25, 22250–22257. [Google Scholar] [CrossRef]
- Di Liberto, G.; Tosoni, S.; Pacchioni, G. Role of surface termination in forming type-II photocatalyst heterojunctions: The case of TiO2/BiVO4. J. Phys. Condens. Matter 2020, 33, 075001. [Google Scholar] [CrossRef]
- Maleki, F.; Di Liberto, G.; Pacchioni, G. pH-and facet-dependent surface chemistry of TiO2 in aqueous environment from first principles. ACS Appl. Mater. Interfaces 2023, 15, 11216–11224. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Wang, L.; Song, W.; Deng, J.; Zheng, H.; Liu, J.; Zhao, Z.; Gao, M.; Wei, Y. Facet-dependent photocatalytic decomposition of N2O on the anatase TiO2: A DFT study. Nanoscale 2018, 10, 6024–6038. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, C.; Wang, H.; Hu, P. Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO2 (110). ACS Catal. 2017, 7, 2374–2380. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Chen, J.; Lin, J.; Zhang, X.; Wang, Z.; Zhou, J. Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations. Appl. Catal. B 2017, 204, 324–334. [Google Scholar] [CrossRef]
- Cen, W.; Liu, Y.; Wu, Z.; Wang, H.; Weng, X. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping. Phys. Chem. Chem. Phys. 2012, 14, 5769–5777. [Google Scholar] [CrossRef]
- D’Alessandro, O.; Pintos, D.G.; Juan, A.; Irigoyen, B.; Sambeth, J. A DFT study of phenol adsorption on a low doping Mn-Ce composite oxide model. Appl. Surf. Sci. 2015, 359, 14–20. [Google Scholar] [CrossRef]
- Ranea, V.A.; Quiña, P.L.D.; Yalet, N.M. General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5 (001) surface including the van der Waals interaction. Chem. Phys. Lett. 2019, 720, 58–63. [Google Scholar] [CrossRef]
- Ranea, V.A.; Quiña, P.L.D. The structure of the bulk and the (001) surface of V2O5. A DFT+ U study. Mater. Res. Express 2016, 3, 085005. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallog. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- van Santen, R.A.; Tranca, I. How molecular is the chemisorptive bond? Phys. Chem. Chem. Phys. 2016, 18, 20868–20894. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wu, M.; Huang, R.; Yang, G. How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study. Molecules 2024, 29, 3991. https://doi.org/10.3390/molecules29173991
Huang X, Wu M, Huang R, Yang G. How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study. Molecules. 2024; 29(17):3991. https://doi.org/10.3390/molecules29173991
Chicago/Turabian StyleHuang, Xiaoxiao, Mengru Wu, Rongying Huang, and Gang Yang. 2024. "How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study" Molecules 29, no. 17: 3991. https://doi.org/10.3390/molecules29173991
APA StyleHuang, X., Wu, M., Huang, R., & Yang, G. (2024). How Doping Regulates As(III) Adsorption at TiO2 Surfaces: A DFT + U Study. Molecules, 29(17), 3991. https://doi.org/10.3390/molecules29173991