Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = The inflationary era

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 537 KiB  
Article
Gravitational Waves as a Probe to the Early Universe
by I-Tai Ho, Wolung Lee and Chun-Hsien Wu
Universe 2025, 11(5), 145; https://doi.org/10.3390/universe11050145 - 1 May 2025
Viewed by 346
Abstract
We investigate primordial gravitational waves produced in the early universe within the Running Vacuum Model, which ensures a smooth transition from a primeval inflationary epoch to a radiation-dominant era, ultimately following the standard Hot Big Bang trajectory. In contrast to traditional methods, we [...] Read more.
We investigate primordial gravitational waves produced in the early universe within the Running Vacuum Model, which ensures a smooth transition from a primeval inflationary epoch to a radiation-dominant era, ultimately following the standard Hot Big Bang trajectory. In contrast to traditional methods, we approach the gravitational wave equation by reformulating it as an inhomogeneous equation and addressing it as a back-reaction problem. The effective potential, known as the Grishchuk potential, which drives cosmic expansion, is crucial in damping the amplitude of gravitational waves. Our findings indicate that this potential is contingent upon the maximum value of the reduced Hubble parameter, Hmax, which is sensitive to the time at which there is a transition from vacuum energy dominance to radiation dominance. By varying Hmax, we explore its influence on the scale factor and effective potential, revealing its connection to the spectrum of gravitational wave amplitudes that can be constrained by observational data. Full article
Show Figures

Figure 1

10 pages, 246 KiB  
Article
Is Planckian Discreteness Observable in Cosmology?
by Gabriel R. Bengochea, Gabriel León and Alejandro Perez
Universe 2025, 11(5), 139; https://doi.org/10.3390/universe11050139 - 27 Apr 2025
Cited by 1 | Viewed by 774
Abstract
A Planck scale inflationary era—in a quantum gravity theory predicting discreteness of quantum geometry at the fundamental scale—produces the scale-invariant spectrum of inhomogeneities with a very small tensor-to-scalar ratio of perturbations and a hot big bang leading to a natural dark matter genesis [...] Read more.
A Planck scale inflationary era—in a quantum gravity theory predicting discreteness of quantum geometry at the fundamental scale—produces the scale-invariant spectrum of inhomogeneities with a very small tensor-to-scalar ratio of perturbations and a hot big bang leading to a natural dark matter genesis scenario. Here, we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
24 pages, 352 KiB  
Article
Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry
by Meir Shimon
Universe 2025, 11(3), 93; https://doi.org/10.3390/universe11030093 - 9 Mar 2025
Viewed by 528
Abstract
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and [...] Read more.
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and has a conserved global charge associated with time variations of the phase of ϕ. An interplay between the positive energy density contributions of relativistic and non-relativistic matter and that of the negative kinetic energy associated with the phase of ϕ results in a classical non-singular stable bouncing dynamics deep in the radiation-dominated era. This encompasses the observed redshifting era, which is preceded by a blueshifting era. The proposed model potentially avoids the flatness and horizon problems, as well as allowing for the generation of a scale-invariant spectrum of metric perturbations of the scalar type during a matter-dominated-like pre-bounce phase, with no recourse to an inflationary era. Full article
26 pages, 996 KiB  
Review
Primordial Black Holes: Formation, Spin and Type II
by Tomohiro Harada
Universe 2024, 10(12), 444; https://doi.org/10.3390/universe10120444 - 30 Nov 2024
Cited by 2 | Viewed by 1349
Abstract
Primordial black holes (PBHs) may have formed through the gravitational collapse of cosmological perturbations that were generated and stretched during the inflationary era, later entering the cosmological horizon during the decelerating phase, if their amplitudes were sufficiently large. In this review paper, we [...] Read more.
Primordial black holes (PBHs) may have formed through the gravitational collapse of cosmological perturbations that were generated and stretched during the inflationary era, later entering the cosmological horizon during the decelerating phase, if their amplitudes were sufficiently large. In this review paper, we will briefly introduce the basic concept of PBHs and review the formation dynamics through this mechanism, the estimation of the initial spins of PBHs and the time evolution of type II fluctuations, with a focus on the radiation-dominated and (early) matter-dominated phases. Full article
(This article belongs to the Special Issue Primordial Black Holes from Inflation)
Show Figures

Figure 1

21 pages, 622 KiB  
Article
Reheating Constraints and the H0 Tension in Quintessential Inflation
by Jaume de Haro and Supriya Pan
Symmetry 2024, 16(11), 1434; https://doi.org/10.3390/sym16111434 - 28 Oct 2024
Viewed by 1507
Abstract
In this work, we focus on two important aspects of modern cosmology: reheating and Hubble constant tension within the framework of a unified cosmic theory, namely the quintessential inflation connecting the early inflationary era and late-time cosmic acceleration. In the context of reheating, [...] Read more.
In this work, we focus on two important aspects of modern cosmology: reheating and Hubble constant tension within the framework of a unified cosmic theory, namely the quintessential inflation connecting the early inflationary era and late-time cosmic acceleration. In the context of reheating, we use instant preheating and gravitational reheating, two viable reheating mechanisms when the evolution of the universe is not affected by an oscillating regime. After obtaining the reheating temperature, we analyze the number of e-folds and establish its relationship with the reheating temperature. This allows us to connect, for different quintessential inflation models (in particular for models coming from super-symmetric theories such as α-attractors), the reheating temperature with the spectral index of scalar perturbations, thereby enabling us to constrain its values. In the second part of this article, we explore various alternatives to address the H0 tension. From our perspective, this tension suggests that the simple Λ-Cold Dark Matter model, used as the baseline by the Planck team, needs to be refined in order to reconcile its results with the late-time measurements of the Hubble constant. Initially, we establish that quintessential inflation alone cannot mitigate the Hubble tension by solely deviating from the concordance model at low redshifts. The introduction of a phantom fluid, capable of increasing the Hubble rate at the present time, becomes a crucial element in alleviating the Hubble tension, resulting in a deviation from the Λ-Cold Dark Matter model only at low redshifts. On a different note, by utilizing quintessential inflation as a source of early dark energy, thereby diminishing the physical size of the sound horizon close to the baryon–photon decoupling redshift, we observe a reduction in the Hubble tension. This alternative avenue, which has the same effect of a cosmological constant changing its scale close to the recombination, sheds light on the nuanced interplay between the quintessential inflation and the Hubble tension, offering a distinct perspective on addressing this cosmological challenge. Full article
Show Figures

Figure 1

43 pages, 639 KiB  
Tutorial
Graviton Physics: A Concise Tutorial on the Quantum Field Theory of Gravitons, Graviton Noise, and Gravitational Decoherence
by Jen-Tsung Hsiang, Hing-Tong Cho and Bei-Lok Hu
Universe 2024, 10(8), 306; https://doi.org/10.3390/universe10080306 - 24 Jul 2024
Cited by 5 | Viewed by 3017
Abstract
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests [...] Read more.
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests of Einstein’s theory of classical general relativity (GR). In recent years, two interesting proposals have aimed to reveal the quantum nature of perturbative gravity: (1) theoretical predictions on how graviton noise from the early universe, after the vacuum of the gravitational field was strongly squeezed by inflationary expansion; (2) experimental proposals using the quantum entanglement between two masses, each in a superposition (gravitational cat, or gravcat) state. The first proposal focuses on the stochastic properties of quantum fields (QFs), and the second invokes a key concept of quantum information (QI). An equally basic and interesting idea is to ask whether (and how) gravity might be responsible for a quantum system becoming classical in appearance, known as gravitational decoherence. Decoherence due to gravity is of special interest because gravity is universal, meaning, gravitational interaction is present for all massive objects. This is an important issue in macroscopic quantum phenomena (MQP), underlining many proposals in alternative quantum theories (AQTs). To fully appreciate or conduct research in these exciting developments requires a working knowledge of classical GR, QF theory, and QI, plus some familiarity with stochastic processes (SPs), namely, noise in quantum fields and decohering environments. Traditionally a new researcher may be conversant in one or two of these four subjects: GR, QFT, QI, and SP, depending on his/her background. This tutorial attempts to provide the necessary connective tissues between them, helping an engaged reader from any one of these four subjects to leapfrog to the frontier of these interdisciplinary research topics. In the present version, we shall address the three topics listed in the title, excluding gravitational entanglement, because, despite the high attention some recent experimental proposals have received, its nature and implications in relation to quantum gravity still contain many controversial elements. Full article
(This article belongs to the Special Issue Quantum Field Theory of Open Systems)
Show Figures

Figure 1

21 pages, 378 KiB  
Article
Reconstructing Modified and Alternative Theories of Gravity
by Dalia Saha, Manas Chakrabortty and Abhik Kumar Sanyal
Universe 2024, 10(1), 44; https://doi.org/10.3390/universe10010044 - 17 Jan 2024
Cited by 3 | Viewed by 1946
Abstract
A viable radiation-dominated era in the early universe is best described by the standard (FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of F(R) in the modified theory of gravity and the metric compatible [...] Read more.
A viable radiation-dominated era in the early universe is best described by the standard (FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of F(R) in the modified theory of gravity and the metric compatible F(T) together with the symmetric F(Q) in alternative teleparallel theories of gravity, from different perspectives, primarily rendering emphasis on a viable FLRW radiation era. Inflation has also been studied for a particular choice of the scalar potential. The inflationary parameters are found to agree appreciably with the recently released observational data. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
11 pages, 317 KiB  
Article
Stability Properties of Geometrothermodynamic Cosmological Models
by Nurzada Beissen, Medeu Abishev, Manas Khassanov, Temirbolat Aitassov, Sagira Mamatova and Saken Toktarbay
Entropy 2023, 25(10), 1391; https://doi.org/10.3390/e25101391 - 28 Sep 2023
Cited by 1 | Viewed by 1268
Abstract
We consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce [...] Read more.
We consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce the main aspects of the inflationary era and the ΛCDM paradigm. We use GTD to analyze the geometric properties of the corresponding equilibrium space and to derive the stability properties and phase transition structure of the cosmological model. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
Show Figures

Figure 1

15 pages, 606 KiB  
Article
Is the Universe Anisotropic Right Now? Comparing the Real Universe with the Kasner’s Space-Time
by Serge Parnovsky
Particles 2023, 6(3), 819-833; https://doi.org/10.3390/particles6030052 - 7 Sep 2023
Cited by 1 | Viewed by 1594
Abstract
We investigate possible astronomical manifestations of space-time anisotropy. The homogeneous vacuum Kasner solution was chosen as a reference anisotropic cosmological model because there are no effects caused by inhomogeneity in this simple model with a constant degree of anisotropy. This anisotropy cannot become [...] Read more.
We investigate possible astronomical manifestations of space-time anisotropy. The homogeneous vacuum Kasner solution was chosen as a reference anisotropic cosmological model because there are no effects caused by inhomogeneity in this simple model with a constant degree of anisotropy. This anisotropy cannot become weak. The study of its geodesic structure made it possible to clarify the properties of this space-time. It showed that the degree of manifestation of anisotropy varies significantly depending on the travel time of the light from the observed object. For nearby objects, for which it does not exceed half the age of the universe, the manifestations of anisotropy are very small. Distant objects show more pronounced manifestations; for example, in the distribution of objects over the sky and over photometric distances. These effects for each of the individual objects decrease with time but, in general, the manifestations of anisotropy in the Kasner space-time remain constant due to the fact that new sources come from beyond the cosmological horizon. We analyze observable signatures of the Kasner-type anisotropy and compare it to observations. These effects were not found in astronomical observations, including the study of the CMB. We can assume that the Universe has always been isotropic or almost isotropic since the recombination era. This does not exclude the possibility of its significant anisotropy at the moment of the Big Bang followed by rapid isotropization during the inflationary epoch. Full article
Show Figures

Figure 1

22 pages, 637 KiB  
Article
Impact of Climate Change on Inflation in 26 Selected Countries
by Cunpu Li, Xuetong Zhang and Jing He
Sustainability 2023, 15(17), 13108; https://doi.org/10.3390/su151713108 - 31 Aug 2023
Cited by 5 | Viewed by 5452
Abstract
In the era of persistent globalization, climate governance has emerged as a prominent concern within both the theoretical community and government departments of diverse nations. Of particular interest in academic research is the adverse effect of climate shocks on the global economy. This [...] Read more.
In the era of persistent globalization, climate governance has emerged as a prominent concern within both the theoretical community and government departments of diverse nations. Of particular interest in academic research is the adverse effect of climate shocks on the global economy. This paper employs average temperature as a surrogate indicator for climate shocks and examines the influence of temperature fluctuations on inflation levels using a balanced panel dataset from 1995 to 2021. The findings indicate a positive association between temperature change and inflation within the country, which remains consistent even after subjecting the analysis to multiple robustness tests. Furthermore, accounting for heterogeneity reveals variations in the magnitude of response of inflation levels to temperature fluctuations. Regarding the analysis of underlying mechanisms, this study underscores the significance of energy demand as a pivotal pathway influencing inflationary pressures at the national level. Lastly, by incorporating GDP per capita as a threshold, this research reveals a nonlinear relationship between temperature change and inflation levels. Full article
(This article belongs to the Special Issue Resource Price Fluctuations and Sustainable Growth)
Show Figures

Figure 1

22 pages, 380 KiB  
Review
Geometrothermodynamic Cosmology
by Orlando Luongo and Hernando Quevedo
Entropy 2023, 25(7), 1037; https://doi.org/10.3390/e25071037 - 10 Jul 2023
Cited by 5 | Viewed by 1632
Abstract
We review the main aspects of geometrothermodynamics, a formalism that uses contact geometry and Riemannian geometry to describe the properties of thermodynamic systems. We show how to handle in a geometric way the invariance of classical thermodynamics with respect to Legendre transformations, which [...] Read more.
We review the main aspects of geometrothermodynamics, a formalism that uses contact geometry and Riemannian geometry to describe the properties of thermodynamic systems. We show how to handle in a geometric way the invariance of classical thermodynamics with respect to Legendre transformations, which means that the properties of the systems do not depend on the choice of the thermodynamic potential. Moreover, we show that, in geometrothermodynamics, it is possible to apply a variational principle to generate thermodynamic fundamental equations, which can be used in the context of relativistic cosmology to generate cosmological models. As a particular example, we consider a fundamental equation that relates the entropy with the internal energy and the volume of the Universe, and construct cosmological models with arbitrary parameters, which can be fixed to reproduce the main aspects of the inflationary era and the standard cosmological paradigm. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
Show Figures

Figure 1

13 pages, 1023 KiB  
Article
Post-Inflationary Production of Dark Matter after Inflection Point Slow Roll Inflation
by Anish Ghoshal, Gaetano Lambiase, Supratik Pal, Arnab Paul and Shiladitya Porey
Symmetry 2023, 15(2), 543; https://doi.org/10.3390/sym15020543 - 17 Feb 2023
Cited by 4 | Viewed by 1965
Abstract
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial [...] Read more.
We explore a feasible model that combines near-inflection point small-field slow roll inflationary scenario driven by single scalar inflaton with the production of non-thermal vector-like fermionic dark matter, χ, during the reheating era. For the inflationary scenario, we consider two separate polynomial forms of the potential; one is symmetric about the origin, and the other is not. We fix the coefficients of the potentials satisfying current Planck-Bicep data. We calculate the permissible range of yχ and mχ for the production of enough dark matter to explain the total Cold Dark Matter (CDM) mass density of the present universe while satisfying Cosmic Background Radiation (CMBR) measurements and other cosmological bounds. Full article
Show Figures

Figure 1

36 pages, 1683 KiB  
Article
What Is Needed of a Scalar Field If It Is to Unify Inflation and Late Time Acceleration?
by Nur Jaman and Mohammad Sami
Galaxies 2022, 10(2), 51; https://doi.org/10.3390/galaxies10020051 - 23 Mar 2022
Cited by 14 | Viewed by 4659
Abstract
Quintessential inflation refers to scenarios in which a single scalar field is used to describe inflation and late time acceleration. This review is dedicated to the framework of quintessential inflation, with a focus on the building blocks of formalism. Consistent unification of inflation [...] Read more.
Quintessential inflation refers to scenarios in which a single scalar field is used to describe inflation and late time acceleration. This review is dedicated to the framework of quintessential inflation, with a focus on the building blocks of formalism. Consistent unification of inflation and late time acceleration using a single scalar field asks for a shallow field potential initially followed by steep behaviour thereafter and shallow again around the present epoch. The requirement of non-interference of the scalar field with thermal history dictates the steep nature of potential in the post-inflationary era, with a further restriction that late time physics be independent of initial conditions. We describe, in detail, the scaling and asymptotic scaling solutions and the mechanism of exit from the scaling regime to late time acceleration. The review includes a fresh look at scaling solutions that are central to the theme of unification of inflation and late time acceleration. As for the exit mechanism, special attention is paid to the coupling of massive neutrino matter to the scalar field, which builds up dynamically and can give rise to late time acceleration. We present a detailed analytical treatment of scalar field dynamics in the presence of coupling. We briefly discuss the distinguishing feature of quintessential inflation, namely the blue spectrum of gravity waves produced during the transition from inflation to the kinetic regime. Full article
Show Figures

Figure 1

20 pages, 1077 KiB  
Article
Hilltop Inflation and Generation of Helical Magnetic Field
by Sumanta Chakraborty, Supratik Pal and Soumitra SenGupta
Universe 2022, 8(1), 26; https://doi.org/10.3390/universe8010026 - 2 Jan 2022
Cited by 10 | Viewed by 1904
Abstract
Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of [...] Read more.
Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of U(1) gauge field in quantum electrodynamics in the context of hilltop inflation. We have analysed at length the power spectrum of the magnetic field, thus generated, which turns out to be helical in nature. We have also found that magnetic power spectrum has significant scale-dependence giving rise to a non-trivial magnetic spectral index, a key feature of this model. Interestingly, there exists a large parameter space, where magnetic field of significant strength can be produced. Full article
(This article belongs to the Special Issue Probing the Dark Universe with Theory and Observations)
Show Figures

Figure 1

43 pages, 865 KiB  
Review
Torsion in String-Inspired Cosmologies and the Universe Dark Sector
by Nick E. Mavromatos
Universe 2021, 7(12), 480; https://doi.org/10.3390/universe7120480 - 6 Dec 2021
Cited by 19 | Viewed by 3409
Abstract
Several aspects of torsion in string-inspired cosmologies are reviewed. In particular, its connection with fundamental, string-model independent, axion fields associated with the massless gravitational multiplet of the string are discussed. It is argued in favour of the role of primordial gravitational anomalies coupled [...] Read more.
Several aspects of torsion in string-inspired cosmologies are reviewed. In particular, its connection with fundamental, string-model independent, axion fields associated with the massless gravitational multiplet of the string are discussed. It is argued in favour of the role of primordial gravitational anomalies coupled to such axions in inducing inflation of a type encountered in the “Running-Vacuum-Model (RVM)” cosmological framework, without fundamental inflaton fields. The gravitational-anomaly terms owe their existence to the Green–Schwarz mechanism for the (extra-dimensional) anomaly cancellation, and may be non-trivial in such theories in the presence of (primordial) gravitational waves at early stages of the four-dimensional string universe (after compactification). The paper also discusses how the torsion-induced stringy axions can acquire a mass in the post inflationary era, due to non-perturbative effects, thus having the potential to play the role of (a component of) dark matter in such models. Finally, the current-era phenomenology of this model is briefly described with emphasis placed on the possibility of alleviating tensions observed in the current-era cosmological data. A brief phenomenological comparison with other cosmological models in contorted geometries is also made. Full article
(This article belongs to the Special Issue Beyond Riemannian Geometry in Classical and Quantum Gravity)
Show Figures

Figure 1

Back to TopTop