Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = Takagi-Sugeno (T-S) fuzzy approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1924 KB  
Article
Mathematically Grounded Neuro-Fuzzy Control of IoT-Enabled Irrigation Systems
by Nikolay Hinov, Reni Kabakchieva, Daniela Gotseva and Plamen Stanchev
Mathematics 2026, 14(2), 314; https://doi.org/10.3390/math14020314 - 16 Jan 2026
Viewed by 103
Abstract
This paper develops a mathematically grounded neuro-fuzzy control framework for IoT-enabled irrigation systems in precision agriculture. A discrete-time, physically motivated model of soil moisture is formulated to capture the nonlinear water dynamics driven by evapotranspiration, irrigation, and drainage in the crop root zone. [...] Read more.
This paper develops a mathematically grounded neuro-fuzzy control framework for IoT-enabled irrigation systems in precision agriculture. A discrete-time, physically motivated model of soil moisture is formulated to capture the nonlinear water dynamics driven by evapotranspiration, irrigation, and drainage in the crop root zone. A Mamdani-type fuzzy controller is designed to approximate the optimal irrigation strategy, and an equivalent Takagi–Sugeno (TS) representation is derived, enabling a rigorous stability analysis based on Input-to-State Stability (ISS) theory and Linear Matrix Inequalities (LMIs). Online parameter estimation is performed using a Recursive Least Squares (RLS) algorithm applied to real IoT field data collected from a drip-irrigated orchard. To enhance prediction accuracy and long-term adaptability, the fuzzy controller is augmented with lightweight artificial neural network (ANN) modules for evapotranspiration estimation and slow adaptation of membership-function parameters. This work provides one of the first mathematically certified neuro-fuzzy irrigation controllers integrating ANN-based estimation with Input-to-State Stability (ISS) and LMI-based stability guarantees. Under mild Lipschitz continuity and boundedness assumptions, the resulting neuro-fuzzy closed-loop system is proven to be uniformly ultimately bounded. Experimental validation in an operational IoT setup demonstrates accurate soil-moisture regulation, with a tracking error below 2%, and approximately 28% reduction in water consumption compared to fixed-schedule irrigation. The proposed framework is validated on a real IoT deployment and positioned relative to existing intelligent irrigation approaches. Full article
(This article belongs to the Special Issue Advances in Fuzzy Logic and Artificial Neural Networks, 2nd Edition)
32 pages, 1924 KB  
Review
A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems
by Rodrigo Vidal-Martínez, José R. García-Martínez, Rafael Rojas-Galván, José M. Álvarez-Alvarado, Mario Gozález-Lee and Juvenal Rodríguez-Reséndiz
Technologies 2025, 13(9), 422; https://doi.org/10.3390/technologies13090422 - 20 Sep 2025
Cited by 1 | Viewed by 3191
Abstract
This review presents a synthesis of fuzzy logic-based (FL) controllers applied to photovoltaic (PV) systems over the last decade, with a specific focus on maximum power point tracking (MPPT) and power management. These subsystems are critical for improving the efficiency of PV energy [...] Read more.
This review presents a synthesis of fuzzy logic-based (FL) controllers applied to photovoltaic (PV) systems over the last decade, with a specific focus on maximum power point tracking (MPPT) and power management. These subsystems are critical for improving the efficiency of PV energy conversion, as they directly address the nonlinear, time-varying, and uncertain behavior of solar generation under dynamic environmental conditions. FL-based control has proven to be a powerful and versatile tool for enhancing MPPT accuracy, inverter performance, and hybrid energy management strategies. The analysis concentrates on three main categories, namely, Mamdani, Takagi–Sugeno (T-S), and Type-2, highlighting their architectures, operational characteristics, and application domains. Mamdani controllers remain the most widely adopted due to their simplicity, interpretability, and effectiveness in scenarios with moderate response time requirements. T-S controllers excel in real-time high-frequency operations by eliminating the defuzzification stage and approximating system nonlinearities through local linear models, achieving rapid convergence to the maximum power point (MPP) and improved power quality in grid-connected PV systems. Type-2 fuzzy controllers represent the most advanced evolution, incorporating footprints of uncertainty (FOU) to handle high variability, sensor noise, and environmental disturbances, thereby strengthening MPPT accuracy under challenging conditions. This review also examines the integration of metaheuristic algorithms for automated tuning of membership functions and hybrid architectures that combine fuzzy control with artificial intelligence (AI) techniques. A bibliometric perspective reveals a growing research interest in T-S and Type-2 approaches. Quantitatively, Mamdani controllers account for 54.20% of publications, T-S controllers for 26.72%, and Type-2 fuzzy controllers for 19.08%, reflecting the balance between interpretability, computational performance, and robustness to uncertainty in PV-based MPPT and power management applications. Full article
Show Figures

Graphical abstract

26 pages, 2471 KB  
Article
Fault-Tolerant Tracking Observer-Based Controller Design for DFIG-Based Wind Turbine Affected by Stator Inter-Turn Short Circuit
by Yossra Sayahi, Moez Allouche, Mariem Ghamgui, Sandrine Moreau, Fernando Tadeo and Driss Mehdi
Symmetry 2025, 17(8), 1343; https://doi.org/10.3390/sym17081343 - 17 Aug 2025
Viewed by 1008
Abstract
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early [...] Read more.
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early detection is therefore essential to reduce maintenance costs and prevent severe damage to the wind turbine system. To address this, a Fault Detection and Diagnosis (FDD) approach is proposed to identify and assess the severity of ITSC faults in the stator windings. A state-space model of the DFIG under ITSC fault conditions is first developed in the (d,q) reference frame. Based on this model, an Unknown Input Observer (UIO) structured using Takagi–Sugeno (T-S) fuzzy models is designed to estimate the fault level. To mitigate the impact of the fault and ensure continued operation under degraded conditions, a T-S fuzzy fault-tolerant controller is synthesized. This controller enables natural decoupling and optimal power extraction across a wide range of rotor speed variations. Since the effectiveness of the FTC relies on accurate fault information, a Proportional-Integral Observer (PIO) is employed to estimate the ITSC fault level. The proposed diagnosis and compensation strategy is validated through simulations performed on a 3 kW wind turbine system, demonstrating its efficiency and robustness. Full article
(This article belongs to the Special Issue Symmetry, Fault Detection, and Diagnosis in Automatic Control Systems)
Show Figures

Figure 1

20 pages, 394 KB  
Article
Feedback Linearization for a Generalized Multivariable T-S Model
by Basil Mohammed Al-Hadithi, Javier Blanco Rico and Agustín Jiménez
Electronics 2025, 14(15), 3129; https://doi.org/10.3390/electronics14153129 - 6 Aug 2025
Cited by 1 | Viewed by 637
Abstract
This study presents a novel optimal fuzzy logic control (FLC) strategy based on feedback linearization for the regulation of multivariable nonlinear systems. Building upon an enhanced Takagi–Sugeno (T-S) model previously developed by the authors, the proposed method incorporates a refined parameter-weighting scheme to [...] Read more.
This study presents a novel optimal fuzzy logic control (FLC) strategy based on feedback linearization for the regulation of multivariable nonlinear systems. Building upon an enhanced Takagi–Sugeno (T-S) model previously developed by the authors, the proposed method incorporates a refined parameter-weighting scheme to optimize both local and global approximations within the T-S framework. This approach enables improved selection and minimization of the performance index. The effectiveness of the control strategy is validated through its application to a two-link serial robotic manipulator. The results demonstrate that the proposed FLC achieves robust performance, maintaining system stability and high accuracy even under the influence of noise and load disturbances, with well-damped system behavior and negligible steady-state error. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

39 pages, 16838 KB  
Article
Control of Nonlinear Systems Using Fuzzy Techniques Based on Incremental State Models of the Variable Type Employing the “Extremum Seeking” Optimizer
by Basil Mohammed Al-Hadithi and Gilberth André Loja Acuña
Appl. Sci. 2025, 15(14), 7791; https://doi.org/10.3390/app15147791 - 11 Jul 2025
Viewed by 764
Abstract
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator [...] Read more.
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator (LQR) design, and state observer implementation. To optimize controller performance, the Extremum Seeking Control (ESC) technique is employed for the automatic tuning of LQR gains, minimizing a predefined cost function. The control strategy is formulated within a generalized framework that evolves from conventional discrete fuzzy models to a higher-order incremental-N state-space representation. The simulation results on a nonlinear multivariable thermal mixing tank system validate the effectiveness of the proposed approach under reference tracking and various disturbance scenarios, including ramp, parabolic, and higher-order polynomial signals. The main contribution of this work is that the proposed scheme achieves zero steady-state error for reference inputs and disturbances up to order N−1 by employing the incremental-N formulation. Furthermore, the system exhibits robustness against input and load disturbances, as well as measurement noise. Remarkably, the ESC algorithm maintains its effectiveness even when noise is present in the system output. Additionally, the proposed incremental-N model is applicable to fast dynamic systems, provided that the system dynamics are accurately identified and the model is discretized using a suitable sampling rate. This makes the approach particularly relevant for control applications in electrical systems, where handling high-order reference signals and disturbances is critical. The incremental formulation, thus, offers a practical and effective framework for achieving high-performance control in both slow and fast nonlinear multivariable processes. Full article
Show Figures

Figure 1

16 pages, 1648 KB  
Article
Robust Control and Energy Management in Wind Energy Systems Using LMI-Based Fuzzy H∞ Design and Neural Network Delay Compensation
by Kaoutar Lahmadi, Oumaima Lahmadi, Soufiane Jounaidi and Ismail Boumhidi
Processes 2025, 13(7), 2097; https://doi.org/10.3390/pr13072097 - 2 Jul 2025
Viewed by 770
Abstract
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach [...] Read more.
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach with a neural network-based delay compensation mechanism. A fuzzy observer-based H∞ tracking controller is developed to enhance robustness and minimize the impact of disturbances. The stability conditions are rigorously derived using a quadratic Lyapunov function, H∞ performance criteria, and Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational efficiency. In parallel, a neural network-based controller is employed to compensate for the input delays introduced by online learning processes. Furthermore, an energy management layer is incorporated to regulate the power flow and optimize energy utilization under varying operating conditions. The proposed framework effectively combines control and energy coordination to improve the systems’ performance. The simulation results confirm the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness, delay tolerance, and energy efficiency in wind energy systems. Full article
Show Figures

Figure 1

25 pages, 1198 KB  
Article
State Estimation Based State Augmentation and Fractional Order Proportional Integral Unknown Input Observers
by Abdelghani Djeddi, Abdelaziz Aouiche, Chaima Aouiche and Yazeed Alkhrijah
Mathematics 2025, 13(11), 1786; https://doi.org/10.3390/math13111786 - 27 May 2025
Viewed by 714
Abstract
This paper presents a new method for the simultaneous estimation of system states and unknown inputs in fractional-order Takagi–Sugeno (FO-TS) systems with unmeasurable premise variables (UPVs), by introducing a fractional-order proportional-integral unknown input observer (FO-PIUIO) based on partial state augmentation. This approach permits [...] Read more.
This paper presents a new method for the simultaneous estimation of system states and unknown inputs in fractional-order Takagi–Sugeno (FO-TS) systems with unmeasurable premise variables (UPVs), by introducing a fractional-order proportional-integral unknown input observer (FO-PIUIO) based on partial state augmentation. This approach permits the estimation of both states and unknown inputs, which are essential for system monitoring and control. Partial state augmentation allows the integration of unknown inputs into a partially augmented model, ensuring accurate estimates of both states and unknown inputs. The state estimation error is formulated as a perturbed system. The convergence conditions for the state estimation errors between the system and the observer are derived using the second Lyapunov method and the L2 approach. Compared to traditional integer-order unknown input observers or fuzzy observers with measurable premise variables, in our method, fractional-order dynamics are combined with partial state augmentation uniquely for the persistent estimation of states along with unknown inputs in unmeasurable premise variable systems. Such a combination allows for robust estimation even under uncertainties in systems and long memory phenomena and is a significant step forward from traditional methods. Finally, a numerical example is provided to illustrate the performance of the proposed observer. Full article
Show Figures

Figure 1

26 pages, 655 KB  
Review
A Comprehensive Survey on Advanced Control Techniques for T-S Fuzzy Systems Subject to Control Input and System Output Requirements
by Wen-Jer Chang, Yann-Horng Lin and Cheung-Chieh Ku
Processes 2025, 13(3), 792; https://doi.org/10.3390/pr13030792 - 9 Mar 2025
Cited by 3 | Viewed by 3629
Abstract
This paper provides a comprehensive survey on advanced control techniques for Takagi-Sugeno (T-S) fuzzy systems that are subject to input and output performance constraints. The focus is on addressing practical applications, such as actuator saturation and output limits, which are often encountered in [...] Read more.
This paper provides a comprehensive survey on advanced control techniques for Takagi-Sugeno (T-S) fuzzy systems that are subject to input and output performance constraints. The focus is on addressing practical applications, such as actuator saturation and output limits, which are often encountered in industries like aerospace, automotive, and robotics. The paper discusses key control methods such as model predictive control, anti-windup compensators, and Linear Matrix Inequality (LMI)-based control, emphasizing their effectiveness in handling input and output constraints. These techniques ensure system stability, robustness, and performance even under strict physical limitations. The survey also highlights the importance of T-S fuzzy systems, which provide a flexible framework for modeling and controlling nonlinear systems by breaking them down into simpler linear models. Additionally, recent developments in robust and adaptive control strategies are explored, particularly in handling time delays, disturbances, and uncertainties. These methods are crucial for real-time applications where the system must remain stable and safe despite unmeasured states or external disturbances. By reviewing these advanced techniques, the paper aims to identify research gaps and future directions, particularly in scalable solutions and integrating data-driven approaches with T-S fuzzy control frameworks. Full article
(This article belongs to the Special Issue Fuzzy Control System: Design and Applications)
25 pages, 1585 KB  
Article
Fuzzy Control of Multivariable Nonlinear Systems Using T–S Fuzzy Model and Principal Component Analysis Technique
by Basil Mohammed Al-Hadithi and Javier Gómez
Processes 2025, 13(1), 217; https://doi.org/10.3390/pr13010217 - 14 Jan 2025
Cited by 4 | Viewed by 1540
Abstract
In this work, a new nonlinear control method is proposed, which integrates the Takagi–Sugeno (T–S) fuzzy model with the Principal Component Analysis (PCA) technique. The approach uses PCA to reduce the system’s dimensionality, minimizing the number of fuzzy rules required in the T–S [...] Read more.
In this work, a new nonlinear control method is proposed, which integrates the Takagi–Sugeno (T–S) fuzzy model with the Principal Component Analysis (PCA) technique. The approach uses PCA to reduce the system’s dimensionality, minimizing the number of fuzzy rules required in the T–S fuzzy model. This reduction not only simplifies the system variables but also decreases the computational complexity, resulting in a more efficient control with smooth transient responses and zero steady-state error. To validate the performance of this PCA-based approach for both system identification and control, an interconnected double-tank system was employed. The results demonstrate the method’s capacity to maintain control accuracy while reducing computational load, making it a promising solution for applications in industrial and engineering systems that require robust, efficient control mechanisms. Full article
(This article belongs to the Special Issue Fuzzy Control System: Design and Applications)
Show Figures

Figure 1

15 pages, 403 KB  
Article
Guaranteed Cost Control of Singular Fuzzy Time-Delay Systems Based on Proportional Plus Derivative Feedback
by Huayang Zhang, Hebin Wang and Xin Wang
Electronics 2024, 13(22), 4554; https://doi.org/10.3390/electronics13224554 - 20 Nov 2024
Cited by 2 | Viewed by 1074
Abstract
This paper explores the guaranteed cost control issue for singular Takagi-Sugeno (T-S) fuzzy systems with time delay. An augmented Lyapunov-Krasovskii functional (LKF) is adopted to analyze the system’s stabilization, and sufficient conditions are established based on Lyapunov stability theory. The method of free [...] Read more.
This paper explores the guaranteed cost control issue for singular Takagi-Sugeno (T-S) fuzzy systems with time delay. An augmented Lyapunov-Krasovskii functional (LKF) is adopted to analyze the system’s stabilization, and sufficient conditions are established based on Lyapunov stability theory. The method of free weight matrices is employed to provide a systematic approach for determining the controller parameters. Additionally, two compelling examples are presented to demonstrate the viability of the proposed methods. Full article
Show Figures

Figure 1

27 pages, 1679 KB  
Article
T–S Fuzzy Observer-Based Output Feedback Lateral Control of UGVs Using a Disturbance Observer
by Seunghoon Lee, Sounghwan Hwang and Han Sol Kim
Drones 2024, 8(11), 685; https://doi.org/10.3390/drones8110685 - 19 Nov 2024
Cited by 7 | Viewed by 1737
Abstract
This paper introduces a novel observer-based fuzzy tracking controller that integrates disturbance estimation to improve state estimation and path tracking in the lateral control systems of Unmanned Ground Vehicles (UGVs). The design of the controller is based on linear matrix inequality (LMI) conditions [...] Read more.
This paper introduces a novel observer-based fuzzy tracking controller that integrates disturbance estimation to improve state estimation and path tracking in the lateral control systems of Unmanned Ground Vehicles (UGVs). The design of the controller is based on linear matrix inequality (LMI) conditions derived from a Takagi–Sugeno fuzzy model and a relaxation technique that incorporates additional null terms. The state observer is developed to estimate both the vehicle’s state and external disturbances, such as road curvature. By incorporating the disturbance observer, the proposed approach effectively mitigates performance degradation caused by discrepancies between the system and observer dynamics. The simulation results, conducted in MATLAB and a commercial autonomous driving simulator, demonstrate that the proposed control method substantially enhances state estimation accuracy and improves the robustness of path tracking under varying conditions. Full article
Show Figures

Figure 1

27 pages, 1868 KB  
Article
A New Stochastic Controller for Efficient Power Extraction from Small-Scale Wind Energy Conversion Systems under Random Load Consumption
by Abdelhakim Tighirt, Mohamed Aatabe, Fatima El Guezar, Hassane Bouzahir, Alessandro N. Vargas and Gabriele Neretti
Energies 2024, 17(19), 4927; https://doi.org/10.3390/en17194927 - 1 Oct 2024
Cited by 4 | Viewed by 2239
Abstract
This paper presents an innovative scheme to enhance the efficiency of power extraction from wind energy conversion systems (WECSs) under random loads. The study investigates how stochastic load consumption, modeled and predicted using a Markov chain process, impacts WECS efficiency. The suggested approach [...] Read more.
This paper presents an innovative scheme to enhance the efficiency of power extraction from wind energy conversion systems (WECSs) under random loads. The study investigates how stochastic load consumption, modeled and predicted using a Markov chain process, impacts WECS efficiency. The suggested approach regulates the rectifier voltage rather than the rotor speed, making it a sensorless and reliable method for small-scale WECSs. Nonlinear WECS dynamics are represented using Takagi–Sugeno (TS) fuzzy modeling. Furthermore, the closed-loop system’s stochastic stability and recursive feasibility are guaranteed regardless of random load changes. The performance of the suggested controller is compared with the traditional perturb-and-observe (P&O) algorithm under varying wind speeds and random load variations. Simulation results show that the proposed approach outperforms the traditional P&O algorithm, demonstrating higher tracking efficiency, rapid convergence to the maximum power point (MPP), reduced steady-state oscillations, and lower error indices. Enhancing WECS efficiency under unpredictable load conditions is the primary contribution, with simulation results indicating that the tracking efficiency increases to 99.93%. Full article
Show Figures

Figure 1

15 pages, 347 KB  
Article
Stability Analysis and Stabilization of General Conformable Polynomial Fuzzy Models with Time Delay
by Imen Iben Ammar, Hamdi Gassara, Mohamed Rhaima, Lassaad Mchiri and Abdellatif Ben Makhlouf
Symmetry 2024, 16(10), 1259; https://doi.org/10.3390/sym16101259 - 25 Sep 2024
Cited by 1 | Viewed by 1715
Abstract
This paper introduces a sum-of-squares (S-O-S) approach to Stability Analysis and Stabilization (SAS) of nonlinear dynamical systems described by General Conformable Polynomial Fuzzy (GCPF) models with a time delay. First, we present GCPF models, which are more general compared to the widely recognized [...] Read more.
This paper introduces a sum-of-squares (S-O-S) approach to Stability Analysis and Stabilization (SAS) of nonlinear dynamical systems described by General Conformable Polynomial Fuzzy (GCPF) models with a time delay. First, we present GCPF models, which are more general compared to the widely recognized Takagi–Sugeno Fuzzy (T-SF) models. Then, we establish SAS conditions for these models using a Lyapunov–Krasovskii functional and the S-O-S approach, making the SAS conditions in this work less conservative than the Linear Matrix Inequalities (LMI)-based approach to the T-SF models. In addition, the SAS conditions are found by satisfying S-O-S conditions dependent on membership functions that are reliant on the polynomial fitting approximation algorithm. These S-O-S conditions can be solved numerically using the recently developed SOSTOOLS. To demonstrate the effectiveness and practicality of our approach, two numerical examples are provided to demonstrate the effectiveness and practicality of our approach. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Automation and Control Systems)
Show Figures

Figure 1

16 pages, 579 KB  
Article
Fuzzy Modelling Algorithms and Parallel Distributed Compensation for Coupled Electromechanical Systems
by Christian Reyes, Julio C. Ramos-Fernández, Eduardo S. Espinoza and Rogelio Lozano
Algorithms 2024, 17(9), 391; https://doi.org/10.3390/a17090391 - 3 Sep 2024
Cited by 1 | Viewed by 1725
Abstract
Modelling and controlling an electrical Power Generation System (PGS), which consists of an Internal Combustion Engine (ICE) linked to an electric generator, poses a significant challenge due to various factors. These include the non-linear characteristics of the system’s components, thermal effects, mechanical vibrations, [...] Read more.
Modelling and controlling an electrical Power Generation System (PGS), which consists of an Internal Combustion Engine (ICE) linked to an electric generator, poses a significant challenge due to various factors. These include the non-linear characteristics of the system’s components, thermal effects, mechanical vibrations, electrical noise, and the dynamic and transient impacts of electrical loads. In this study, we introduce a fuzzy modelling identification approach utilizing the Takagi–Sugeno (T–S) structure, wherein model and control parameters are optimized. This methodology circumvents the need for deriving a mathematical model through energy balance considerations involving thermodynamics and the non-linear representation of the electric generator. Initially, a non-linear mathematical model for the electrical power system is obtained through the fuzzy c-means algorithm, which handles both premises and consequents in state space, utilizing input–output experimental data. Subsequently, the Particle Swarm Algorithm (PSO) is employed for optimizing the fuzzy parameter m of the c-means algorithm during the modelling phase. Additionally, in the design of the Parallel Distributed Compensation Controller (PDC), the optimization of parameters pertaining to the poles of the closed-loop response is conducted also by using the PSO method. Ultimately, numerical simulations are conducted, adjusting the power consumption of an inductive load. Full article
(This article belongs to the Special Issue Algorithms for PID Controller 2024)
Show Figures

Figure 1

20 pages, 622 KB  
Article
Finite-Time Fault-Tolerant Control of Nonlinear Spacecrafts with Randomized Actuator Fault: Fuzzy Model Approach
by Wenlong Xue, Zhenghong Jin and Yufeng Tian
Symmetry 2024, 16(7), 873; https://doi.org/10.3390/sym16070873 - 9 Jul 2024
Cited by 2 | Viewed by 1160
Abstract
The primary objective of this paper is to address the challenge of designing finite-time fault-tolerant control mechanisms for nonlinear flexible spacecraft systems, which are particularly vulnerable to randomized actuator faults. Diverging from traditional methodologies, our research harnesses the capabilities of the Takagi–Sugeno (T–S) [...] Read more.
The primary objective of this paper is to address the challenge of designing finite-time fault-tolerant control mechanisms for nonlinear flexible spacecraft systems, which are particularly vulnerable to randomized actuator faults. Diverging from traditional methodologies, our research harnesses the capabilities of the Takagi–Sugeno (T–S) fuzzy framework. A unique feature of our model is the representation of actuator failures as stochastic signals following a Markov process, thereby offering a robust solution for addressing timeliness concerns. In this paper, we introduce a generalized reciprocally convex inequality that includes adjustable parameters, broadening the scope of previous results by accommodating them as special cases. Through the amalgamation of this enhanced inequality and flexible independent parameters, we propose an innovative controller design strategy. This approach establishes a stability standard that guarantees mean-square H performance. In order to validate the efficacy of the suggested strategy, we present a numerical illustration involving a nonlinear spacecraft system, showcasing the practical advantages and feasibility of our proposed technique. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop