Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = TRMM satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10190 KiB  
Article
Assessing the Impact of Assimilated Remote Sensing Retrievals of Precipitation on Nowcasting a Rainfall Event in Attica, Greece
by Aikaterini Pappa, John Kalogiros, Maria Tombrou, Christos Spyrou, Marios N. Anagnostou, George Varlas, Christine Kalogeri and Petros Katsafados
Hydrology 2025, 12(8), 198; https://doi.org/10.3390/hydrology12080198 - 28 Jul 2025
Viewed by 319
Abstract
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these [...] Read more.
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these challenges by implementing the Local Analysis and Prediction System (LAPS) enhanced with a forward advection nowcasting module, integrating multiple remote sensing rainfall datasets. Specifically, we combine weather radar data with three different satellite-derived rainfall products (H-SAF, GPM, and TRMM) to assess their impact on nowcasting performance for a rainfall event in Attica, Greece (29–30 September 2018). The results demonstrate that combined high-resolution radar data with the broader coverage and high temporal frequency of satellite retrievals, particularly H-SAF, leads to more accurate predictions with lower uncertainty. The assimilation of H-SAF with radar rainfall retrievals (HX experiment) substantially improved forecast skill, reducing the unbiased Root Mean Square Error by almost 60% compared to the control experiment for the 60 min rainfall nowcast and 55% for the 90 min rainfall nowcast. This work validates the effectiveness of the specific LAPS/advection configuration and underscores the importance of multi-source data assimilation for weather prediction. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

22 pages, 4147 KiB  
Article
Evaluation of the Extreme Precipitation and Runoff Flow Characteristics in a Semiarid Sub-Basin Based on Three Satellite Precipitation Products
by Rosalía López Barraza, María Teresa Alarcón Herrera, Ana Elizabeth Marín Celestino, Armando Daniel Blanco Jáquez and Diego Armando Martínez Cruz
Hydrology 2025, 12(4), 89; https://doi.org/10.3390/hydrology12040089 - 15 Apr 2025
Viewed by 685
Abstract
In this study, we analyzed the suitability of using the CHIRPS, CMORPH and TRMM platforms in monitoring extreme precipitation events, precipitation–runoff relationships, and seasonal/year-to-year variability in the Saltito semiarid sub-basin in the Mexican state of Durango. Satellite precipitation products (SPP) in 16 sites [...] Read more.
In this study, we analyzed the suitability of using the CHIRPS, CMORPH and TRMM platforms in monitoring extreme precipitation events, precipitation–runoff relationships, and seasonal/year-to-year variability in the Saltito semiarid sub-basin in the Mexican state of Durango. Satellite precipitation products (SPP) in 16 sites were contrasted point to point with data from rainfall gauge stations and with a daily temporal resolution for the period of four years (2015–2019). Using this information, we constructed Rx1d, Rx2d, R25mm, and RR95 extreme rainfall indices. For the precipitation–runoff relationships, a runoff model based on the Storm Water Management Model (SWMM) was calibrated and validated with gauge data, and we obtained the Qx1d, Qx2d, and Qx3d runoff indices. We used the bias volume (%), MSE, correlation coefficient, and median bias to evaluate the ability of satellite products to detect and analyze extreme precipitation and run flow events. Although these sensors tend to overestimate both precipitation levels and the occurrence of extreme precipitation events, their high spatial and temporal resolutions make them a reliable tool for the analysis of trends in climate change indices. As a result, they serve as a useful resource in evaluating the intensity of climate change in the region, particularly in terms of precipitation patterns. They also allow hydrological modeling and the observation of precipitation–runoff relationships. This is relevant in the absence of precipitation and hydrometric information, which is usually common in vast regions of the developing world. Full article
(This article belongs to the Section Hydrological Measurements and Instrumentation)
Show Figures

Figure 1

22 pages, 4618 KiB  
Article
Understanding Climate Change Impacts on Streamflow by Using Machine Learning: Case Study of Godavari Basin
by Ravi Ande, Chandrashekar Pandugula, Darshan Mehta, Ravikumar Vankayalapati, Prashant Birbal, Shashikant Verma, Hazi Mohammad Azamathulla and Nisarg Nanavati
Water 2025, 17(8), 1171; https://doi.org/10.3390/w17081171 - 14 Apr 2025
Viewed by 1104
Abstract
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, [...] Read more.
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, India, with an emphasis on understanding the impacts of climate change. This study employed both conceptual and machine learning models to assess how changing precipitation patterns and temperature variations influence streamflow dynamics. Seven satellite precipitation products CMORPH, Princeton Global Forcing (PGF), Tropical Rainfall Measuring Mission (TRMM), Climate Prediction Centre (CPC), Infrared Precipitation with Stations (CHIRPS), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN-CDR) were evaluated in a gridded precipitation evaluation over the Godavari River basin. Results of Multi-Source Weighted-Ensemble Precipitation (MSWEP) had a Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and root mean square error (RMSE) of 0.806, 0.831, and 56.734 mm/mon, whereas the Tropical Rainfall Measuring Mission had 0.768, 0.846, and 57.413 mm, respectively. MSWEP had the highest accuracy, the lowest false alarm ratio, and the highest Peirce’s skill score (0.844, 0.571, and 0.462). Correlation and pairwise correlation attribution approaches were used to assess the input parameters, which included a two-day lag of streamflow, maximum and minimum temperatures, and several precipitation datasets (IMD, EC-Earth3, EC-Earth3-Veg, MIROC6, MRI-ESM2-0, and GFDL-ESM4). CMIP6 datasets that had been adjusted for bias were used in the modeling process. R, NSE, RMSE, and R2 assessed the model’s effectiveness. RF and M5P performed well when using CMIP6 datasets as input. RF demonstrated adequate performance in testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) and extremely good performance in training (0.75 < NSE < 1 and 0.7 < R < 1). Likewise, M5P demonstrated good performance in both training and testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6). While RF was the best performer for both datasets, Indian Meteorological Department outperformed all CMIP6 datasets in streamflow modeling. Using the Indian Meteorological Department gridded precipitation, RF’s NSE, R, R2, and RMSE values during training were 0.95, 0.979, 0.937, and 30.805 m3/s. The test results were 0.681, 0.91, 0.828, and 41.237 m3/s. Additionally, the Multi-Layer Perceptron (MLP) model demonstrated consistent performance across both the training and assessment phases, reinforcing the reliability of machine learning approaches in climate-informed hydrological forecasting. This study underscores the significance of incorporating climate change projections into hydrological modeling to enhance water resource management and adaptation strategies in the Godavari basin and similar regions facing climate-induced hydrological shifts. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

18 pages, 17515 KiB  
Article
Regional Drought Monitoring Using Satellite-Based Precipitation and Standardized Palmer Drought Index: A Case Study in Henan Province, China
by Mingwei Ma, Fandi Xiong, Hongfei Zang, Chongxu Zhao, Yaquan Wang and Yuhuai He
Water 2025, 17(8), 1123; https://doi.org/10.3390/w17081123 - 9 Apr 2025
Viewed by 587
Abstract
Drought poses significant challenges to agricultural productivity and water resource sustainability in Henan Province, emphasizing the need for effective monitoring approaches. This study investigates the suitability of the TRMM 3B43V7 satellite precipitation product for drought assessment, based on monthly data from 15 meteorological [...] Read more.
Drought poses significant challenges to agricultural productivity and water resource sustainability in Henan Province, emphasizing the need for effective monitoring approaches. This study investigates the suitability of the TRMM 3B43V7 satellite precipitation product for drought assessment, based on monthly data from 15 meteorological stations during 1998–2019. Satellite-derived precipitation was compared with ground-based observations, and the Standardized Palmer Drought Index (SPDI) was calculated to determine the optimal monitoring timescale. Statistical metrics, including Nash–Sutcliffe Efficiency (NSE = 0.87) and Pearson correlation coefficient (PCC = 0.88), indicate high consistency between TRMM data and ground measurements. The 12-month SPDI (SPDI-12) was found to be the most effective for capturing historical drought variability. To support integrated drought management, a regionally adaptive framework is recommended, balancing agricultural demands and ecosystem stability through tailored strategies such as enhanced irrigation efficiency in humid regions and ecological restoration in arid zones. These findings provide a foundation for implementing an operational drought monitoring and response system in Henan Province. Full article
Show Figures

Figure 1

32 pages, 11641 KiB  
Article
The Performance of a High-Resolution WRF Modelling System in the Simulation of Severe Tropical Cyclones over the Bay of Bengal Using the IMDAA Regional Reanalysis Dataset
by Thatiparthi Koteshwaramma, Kuvar Satya Singh and Sridhara Nayak
Climate 2025, 13(1), 17; https://doi.org/10.3390/cli13010017 - 13 Jan 2025
Viewed by 1332
Abstract
Extremely severe cyclonic storms over the North Indian Ocean increased by approximately 10% during the past 30 years. The climatological characteristics of tropical cyclones for 38 years were assessed over the Bay of Bengal (BoB). A total of 24 ESCSs formed over the [...] Read more.
Extremely severe cyclonic storms over the North Indian Ocean increased by approximately 10% during the past 30 years. The climatological characteristics of tropical cyclones for 38 years were assessed over the Bay of Bengal (BoB). A total of 24 ESCSs formed over the BoB, having their genesis in the southeast BoB, and the intensity and duration of these storms have increased in recent times. The Advanced Research version of the Weather Research and Forecasting (ARW) model is utilized to simulate the five extremely severe cyclonic storms (ESCSs) over the BoB during the past two decades using the Indian Monsoon Data Assimilation and Analysis (IMDAA) data. The initial and lateral boundary conditions are derived from the IMDAA datasets with a horizontal resolution of 0.12° × 0.12°. Five ESCSs from the past two decades were considered: Sidr 2007, Phailin 2013, Hudhud 2014, Fani 2019, and Amphan 2020. The model was integrated up to 96 h using double-nested domains of 12 km and 4 km. Model performance was evaluated using the 4 km results, compared with the available observational datasets, including the best-fit data from the India Meteorological Department (IMD), the Tropical Rainfall Measuring Mission (TRMM) satellite, and the Doppler Weather Radar (DWR). The results indicated that IMDAA provided accurate forecasts for Fani, Hudhud, and Phailin regarding the track, intensity, and mean sea level pressure, aligning well with the IMD observational datasets. Statistical evaluation was performed to estimate the model skills using Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), the Probability of Detection (POD), the Brier Score, and the Critical Successive Index (CSI). The calculated mean absolute maximum sustained wind speed errors ranged from 8.4 m/s to 10.6 m/s from day 1 to day 4, while mean track errors ranged from 100 km to 496 km for a day. The results highlighted the prediction of rainfall, maximum reflectivity, and the associated structure of the storms. The predicted 24 h accumulated rainfall is well captured by the model with a high POD (96% for the range of 35.6–64.4 mm/day) and a good correlation (65–97%) for the majority of storms. Similarly, the Brier Score showed a value of 0.01, indicating the high performance of the model forecast for maximum surface winds. The Critical Successive Index was 0.6, indicating the moderate model performance in the prediction of tracks. It is evident from the statistical analysis that the performance of the model is good in forecasting storm structure, intensity and rainfall. However, the IMDAA data have certain limitations in predicting the tracks due to inadequate representation of the large-scale circulations, necessitating improvement. Full article
Show Figures

Figure 1

19 pages, 18178 KiB  
Article
Spatiotemporal Variations of Precipitation Extremes and Population Exposure in the Beijing–Tianjin–Hebei Region, China
by Hao Lin, Xi Yu, Yumei Lin and Yandong Tang
Water 2024, 16(24), 3594; https://doi.org/10.3390/w16243594 - 13 Dec 2024
Viewed by 1060
Abstract
In recent years, precipitation extremes in China have increased due to global warming, posing a significant threat to human life and property. It is thus crucial to understand the changes in population exposure to precipitation extremes and the causes of these changes, since [...] Read more.
In recent years, precipitation extremes in China have increased due to global warming, posing a significant threat to human life and property. It is thus crucial to understand the changes in population exposure to precipitation extremes and the causes of these changes, since complex terrain areas are not accurately simulated by rain gauge interpolation data. Thus, we first used three satellite-based precipitation products—TRMM 3B42, CHIRPS, and CMORPH—combined with population data to analyze the spatiotemporal changes of precipitation extremes and population exposure from 1998 to 2019 in the Beijing–Tianjin–Hebei (BTH) region. In addition, the contributions of population, climate, and composite factors were quantified. The results showed that TRMM 3B42 outperformed the other two datasets in the BTH region. Over the past 22 years, the precipitation extremes in the central and northeastern regions, especially in Beijing, reached 2.5 days per decade, while the northern and southern regions showed a downward trend. The highest population exposure was mainly concentrated in central Beijing, most areas of Tianjin, and the urban centers of cities in southeastern Hebei province. Compared to the 2000s, a significant increase in exposure was observed in Beijing, Tianjin, and Zhangjiakou in the 2010s, whereas other regions showed negligible changes during this period. Climatic factors had the greatest influence on population exposure in most cities such as Qinhuangdao and Hengshui, where their climatic contribution exceeded 70%. While population change was more responsible for the increase in population exposure in the densely populated cities such as Tianjin, Handan, and Langfang, these cities contributed over 60% of the population. The interaction effect in Beijing and Tianjin was relatively obvious. The results of this study can provide a scientific basis for formulating targeted disaster risk management measures against climate change in the BTH region. Full article
Show Figures

Figure 1

18 pages, 9125 KiB  
Article
Spatial-Temporal Evaluation of Satellite-Derived Rainfall Estimations for Water Resource Applications in the Upper Congo River Basin
by Alaba Boluwade
Remote Sens. 2024, 16(20), 3868; https://doi.org/10.3390/rs16203868 - 18 Oct 2024
Cited by 1 | Viewed by 1224
Abstract
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of [...] Read more.
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of Meteorology Using Satellite and Ground-based Observations (TAMSAT); TRMM Multi-satellite Precipitation Analysis (TMPA); and the National Aeronautics and Space Administration’s new Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (GPM) early run (IMERG-ER), late run (IMERG-LR), and final run (IMERG-FR), were used to force a gauge-calibrated Soil & Water Assessment Tool (SWAT) model for the Congo River Basin, Central Africa. In this study, the National Centers for Environmental Prediction’s Climate Forecast System Reanalysis (CFSR) calibrated version of the SWAT was used as the benchmark/reference, while scenario versions were created as configurations using each satellite product identified above. CFSR was used as an independent sample to prevent bias toward any of the satellite products. The calibrated CFSR model captured and reproduced the hydrology (timing, peak flow, and seasonality) of this basin using the average monthly discharge from January 1984–December 1991. Furthermore, the results show that TMPA, IMERG-FR, and CHIRPS captured the peak flows and correctly reproduced the seasonality and timing of the monthly discharges (January 2007–December 2010). In contrast, TAMSAT, IMERG-ER, and IMERG-LR overestimated the peak flows. These results show that some of these precipitation products must be bias-corrected before being used for practical applications. The results of this study will be significant in integrated water resource management in the Congo River Basin and other regional river basins in Africa. Most importantly, the results obtained from this study have been hosted in a repository for free access to all interested in hydrology and water resource management in Africa. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Graphical abstract

13 pages, 8386 KiB  
Article
Nocturnal Extreme Rainfall over the Central Yungui Plateau under Cold and Warm Upper-Level Anomaly Backgrounds during Warm Seasons in 1980–2020
by Weihua Yuan and Zhi Li
Atmosphere 2024, 15(9), 1057; https://doi.org/10.3390/atmos15091057 - 1 Sep 2024
Viewed by 923
Abstract
The spatiotemporal and cloud features of the extreme rainfall under the warm and cold upper-level anomalies over the central Yungui Plateau (YGP) were investigated using the hourly rain gauge records, ERA5 reanalysis data, TRMM, and Fengyun satellite data, aiming to refine the understanding [...] Read more.
The spatiotemporal and cloud features of the extreme rainfall under the warm and cold upper-level anomalies over the central Yungui Plateau (YGP) were investigated using the hourly rain gauge records, ERA5 reanalysis data, TRMM, and Fengyun satellite data, aiming to refine the understanding of different types of extreme rainfall. Extreme rainfall under an upper-level negative temperature anomaly (cold events) presents stronger convective cloud features when compared with the positive temperature anomaly (warm events). The maximum rainfall intensity and duration in cold events is much larger than that of warm events, while the brightness temperature of the cloud top is lower, and the ratio of convective rainfall is higher. In cold events, the middle-to-upper troposphere is dominated by a cold anomaly, and an unstable configuration with upper (lower) cold (warm) anomalies is observed around the central YGP. Although the upper-level temperature anomaly is positive, the anomalous divergence and convergence of southerly and northerly winds, as well as the strong moisture center and upward motions, are also found over the central YGP in warm events. The stronger atmospheric instability and higher convective energy under the upper-level cold anomalous circulation are closely associated with the rainfall features over the central YGP. The results indicate that the upper tropospheric temperature has significant influences on extreme rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses. Full article
(This article belongs to the Special Issue Characteristics of Extreme Climate Events over China)
Show Figures

Figure 1

20 pages, 5597 KiB  
Article
Downscaling TRMM Monthly Precipitation in Cloudy and Rainy Regions and Analyzing Spatiotemporal Variations: A Case Study in the Dongting Lake Basin
by Haonan Xia, Huanhua Peng, Jun Zhai, Haifeng Gao, Diandian Jin and Sijia Xiao
Remote Sens. 2024, 16(16), 2959; https://doi.org/10.3390/rs16162959 - 12 Aug 2024
Cited by 1 | Viewed by 1323
Abstract
High-resolution and accurate precipitation data are essential for hydrological, meteorological, and ecological research at the watershed scale. However, in regions with complex terrain and significant rainfall variability, the limited number of rain gauge stations (RGS) is insufficient, and the spatial resolution of existing [...] Read more.
High-resolution and accurate precipitation data are essential for hydrological, meteorological, and ecological research at the watershed scale. However, in regions with complex terrain and significant rainfall variability, the limited number of rain gauge stations (RGS) is insufficient, and the spatial resolution of existing satellite precipitation data is too low to capture detailed precipitation patterns at the watershed scale. To address this issue, the downscaling of satellite precipitation products has become an effective method to obtain high-resolution precipitation data. This study proposes a monthly downscaling method based on a random forest model, aiming to improve the resolution of precipitation data in cloudy and rainy regions at mid-to-low latitudes. We combined the Google Earth Engine (GEE) platform with a local Python environment, introducing cloud cover characteristics into traditional downscaling variables (latitude, longitude, topography, and vegetation index). The TRMM data were downscaled from 25 km to 1 km, generating high-resolution monthly precipitation data for the Dongting Lake Basin from 2001 to 2019. Furthermore, we analyzed the spatiotemporal variation characteristics of precipitation in the study area. The results show the following: (1) In cloudy and rainy regions, our method improves resolution and detail while maintaining the accuracy of precipitation data; (2) The response of monthly precipitation to environmental variables varies, with cloud cover characteristics contributing more to the downscaling model than vegetation characteristics, helping to overcome the lag effect of vegetation characteristics; and (3) Over the past 20 years, there have been significant seasonal trends in precipitation changes in the study area, with a decreasing trend in winter and spring (January–May) and an increasing trend in summer and autumn (June–December). These results indicate that the proposed method is suitable for downscaling monthly precipitation data in cloudy and rainy regions of the Dongting Lake Basin. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

16 pages, 3948 KiB  
Article
A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China
by Ge Zheng, Nan Zhang, Laifu Zhang, Yijun Chen and Sensen Wu
Atmosphere 2024, 15(7), 792; https://doi.org/10.3390/atmos15070792 - 30 Jun 2024
Cited by 1 | Viewed by 1411
Abstract
Spatial downscaling is an effective way to improve the spatial resolution of precipitation products. However, the existing methods often fail to adequately consider the spatial heterogeneity and complex nonlinearity between precipitation and surface parameters, resulting in poor downscaling performance and inaccurate expression of [...] Read more.
Spatial downscaling is an effective way to improve the spatial resolution of precipitation products. However, the existing methods often fail to adequately consider the spatial heterogeneity and complex nonlinearity between precipitation and surface parameters, resulting in poor downscaling performance and inaccurate expression of regional details. In this study, we propose a precipitation downscaling model based on geographically neural network weighted regression (GNNWR), which integrates normalized difference vegetation index, digital elevation model, land surface temperature, and slope data to address spatial heterogeneity and complex nonlinearity. We explored the spatiotemporal trends of precipitation in the Sichuan region over the past two decades. The results show that the GNNWR model outperforms common methods in downscaling precipitation for the four distinct seasons, achieving a maximum R2 of 0.972 and a minimum RMSE of 3.551 mm. Overall, precipitation in Sichuan Province exhibits a significant increasing trend from 2001 to 2019, with a spatial distribution pattern of low in the northwest and high in the southeast. The GNNWR downscaled results exhibit the strongest correlation with observed data and provide a more accurate representation of precipitation spatial patterns. Our findings suggest that GNNWR is a practical method for precipitation downscaling considering its high accuracy and model performance. Full article
(This article belongs to the Special Issue Regional Climate Predictions and Impacts)
Show Figures

Figure 1

18 pages, 4992 KiB  
Article
Assessment of Satellite Products in Estimating Tropical Cyclone Remote Precipitation over the Yangtze River Delta Region
by Xinyue Wu, Yebing Liu, Shulan Liu, Yubing Jin and Huiyan Xu
Atmosphere 2024, 15(6), 667; https://doi.org/10.3390/atmos15060667 - 31 May 2024
Cited by 3 | Viewed by 1112
Abstract
Satellite products have shown great potential in estimating torrential rainfall due to their wide and consistent global coverage. This study assessed the monitoring capabilities of satellite products for the tropical cyclone remote precipitation (TRP) over the Yangtze River Delta region (YRDR) associated with [...] Read more.
Satellite products have shown great potential in estimating torrential rainfall due to their wide and consistent global coverage. This study assessed the monitoring capabilities of satellite products for the tropical cyclone remote precipitation (TRP) over the Yangtze River Delta region (YRDR) associated with severe typhoon Khanun (2017) and super-typhoon Mangkhut (2018). The satellite products include the CPC MORPHing technique (CMORPH) data, Tropical Rainfall Measuring Mission 3B42 Version 7 (TRMM 3B42), and Integrated Multi-satellite Retrievals for the Global Precipitation Measurement Mission (GPM IMERG). Eight precision evaluation indexes and statistical methods were used to analyze and evaluate the monitoring capabilities of CMORPH, TRMM 3B42, and GPM IMERG satellite precipitation products. The results indicated that the monitoring capability of TRMM satellite precipitation products was superior in capturing the spatial distribution, and GPM products captured the temporal distributions and different category precipitation observed from gauge stations. In contrast, the CMORPH products performed moderately during two heavy rainfall events, often underestimating or overestimating precipitation amounts and inaccurately detecting precipitation peaks. Overall, the three satellite precipitation products showed low POD, high FAR, low TS, and high FBIAS for heavy rainfall events, and the differences in monitoring torrential TRP may be related to satellite retrieval algorithms. Full article
(This article belongs to the Special Issue Severe Weather: Evolution, Prediction, and Risk Reduction)
Show Figures

Figure 1

19 pages, 7654 KiB  
Article
An Innovative Correction–Fusion Approach for Multi-Satellite Precipitation Products Conditioned by Gauge Background Fields over the Lancang River Basin
by Linjiang Nan, Mingxiang Yang, Hao Wang, Hejia Wang and Ningpeng Dong
Remote Sens. 2024, 16(11), 1824; https://doi.org/10.3390/rs16111824 - 21 May 2024
Cited by 2 | Viewed by 1356
Abstract
Satellite precipitation products can help improve precipitation estimates where ground-based observations are lacking; however, their relative accuracy and applicability in data-scarce areas remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the Lancang River Basin, Western China, including the [...] Read more.
Satellite precipitation products can help improve precipitation estimates where ground-based observations are lacking; however, their relative accuracy and applicability in data-scarce areas remain unclear. Here, we evaluated the accuracy of different satellite precipitation datasets for the Lancang River Basin, Western China, including the Tropical Rainfall Measuring Mission (TRMM) 3B42RT, the Global Precipitation Measurement Integrated Multi-satellitE Retrievals (GPM IMERG), and Fengyun 2G (FY-2G) datasets. The results showed that GPM IMERG and FY-2G are superior to TRMM 3B42RT for meeting local research needs. A subsequent bias correction on these two datasets significantly increased the correlation coefficient and probability of detection of the products and reduced error indices such as the root mean square error and mean absolute error. To further improve data quality, we proposed a novel correction–fusion method based on window sliding data correction and Bayesian data fusion. Specifically, the corrected FY-2G dataset was merged with GPM IMERG Early, Late, and Final Runs. The resulting FY-Early, FY-Late, and FY-Final fusion datasets showed high correlation coefficients, strong detection performances, and few observation errors, thereby effectively extending local precipitation data sources. The results of this study provide a scientific basis for the rational use of satellite precipitation products in data-scarce areas, as well as reliable data support for precipitation forecasting and water resource management in the Lancang River Basin. Full article
Show Figures

Graphical abstract

25 pages, 19921 KiB  
Article
Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions
by Hongji Gu, Dingtao Shen, Shuting Xiao, Chunxiao Zhang, Fengpeng Bai and Fei Yu
Remote Sens. 2024, 16(9), 1516; https://doi.org/10.3390/rs16091516 - 25 Apr 2024
Cited by 3 | Viewed by 1752
Abstract
Satellite precipitation products (SPPs) are of great significance for water resource management and utilization in China; however, they suffer from considerable uncertainty. While numerous researchers have evaluated the accuracy of various SPPs, further investigation is needed to assess their performance across China’s nine [...] Read more.
Satellite precipitation products (SPPs) are of great significance for water resource management and utilization in China; however, they suffer from considerable uncertainty. While numerous researchers have evaluated the accuracy of various SPPs, further investigation is needed to assess their performance across China’s nine major water resource regions. This study used the latest precipitation dataset of the China Meteorological Administration’s Land Surface Data Assimilation System (CLDAS-V2.0) as the benchmark and evaluated the performance of six SPPs—GSMaP, PERSIANN, CMORPH, CHIRPS, GPM IMERG, and TRMM—using six indices: correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI), at both daily and hourly scales across China’s nine water resource regions. The conclusions of this study are as follows: (1) The performance of the six SPPs was generally weaker in the west than in the east, with the Continental Basin (CB) exhibiting the poorest performance, followed by the Southwest Basin (SB). (2) At the hourly scale, the performance of the six SPPs was weaker compared to the daily scale, particularly in the high-altitude CB and the high-latitude Songhua and Liaohe River Basin (SLRB), where observing light precipitation and snowfall presents significant challenges. (3) GSMaP, CMORPH, and GPM IMERG demonstrated superior overall performance compared to CHIRPS, PERISANN, and TRMM. (4) CMORPH was found to be better suited for application in drought-prone areas, showcasing optimal performance in the CB and SB. GSMaP excelled in humid regions, displaying the best overall performance in the remaining seven basins. GPM IMERG serves as a complementary precipitation data source for the first two. Full article
Show Figures

Figure 1

22 pages, 18324 KiB  
Article
Spatial Downscaling of Precipitation Data in Arid Regions Based on the XGBoost-MGWR Model: A Case Study of the Turpan–Hami Region
by Huanhuan He, Jinjie Wang, Jianli Ding and Lei Wang
Land 2024, 13(4), 448; https://doi.org/10.3390/land13040448 - 31 Mar 2024
Cited by 7 | Viewed by 1923
Abstract
Accurate and reliable precipitation data are important for analyzing regional precipitation distribution, water resource management, and ecological environment construction. Due to the scarcity of meteorological stations in the Turpan–Hami region, precipitation observation conditions are limited, and it is difficult to obtain precipitation data. [...] Read more.
Accurate and reliable precipitation data are important for analyzing regional precipitation distribution, water resource management, and ecological environment construction. Due to the scarcity of meteorological stations in the Turpan–Hami region, precipitation observation conditions are limited, and it is difficult to obtain precipitation data. Firstly, the applicability of TRMM 3B43v7, GPM_3IMERGM 06, and CMORPH CDR satellite precipitation data for the Turpan–Hami Region was evaluated, and the products with better applicability were selected. Next, the Extreme Gradient Boosting Algorithm (XGBoost) and the Shapley Additive Explanations for Machine Learning (SHAP) model were combined to carry out a feature importance analysis on the climate factors affecting precipitation (mean temperature, actual evapotranspiration, wind speed, cloud cover), from which climate factors with a greater influence on precipitation were selected. Combined with climate factors, normalized difference vegetation index (NDVI), slope, aspect, and elevation as explanatory variables, a Multi-Scale Geographically Weighted Regression (MGWR) model was constructed to obtain the monthly precipitation data of 1 km spatial resolution in the Turpan–Hami area from 2001 to 2020. Finally, the spatiotemporal distribution characteristics and changing trend of precipitation in the Turpan–Hami region from 2001 to 2020 were analyzed. The results show that (1) GPM_3IMERGM 06 satellite precipitation data exhibits good applicability in the Turpan–Hami region. (2) The precision verification of the downscaling results from a monthly scale and an annual scale shows that the accuracy and spatial resolution of the data are improved after downscaling. (3) From 2001 to 2020, the precipitation in the Turpan–Hami region showed an insignificantly increasing trend. Full article
Show Figures

Figure 1

26 pages, 6287 KiB  
Article
Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan
by Nuaman Ejaz, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman and Songhao Shang
Water 2024, 16(4), 597; https://doi.org/10.3390/w16040597 - 17 Feb 2024
Viewed by 2294
Abstract
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of [...] Read more.
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of dynamically weighted MPDs in contrast to those using static weights. The analysis focuses on comparing MPDs generated using the “dynamic clustered Bayesian averaging (DCBA)” approach with those utilizing the “regional principal component analysis (RPCA)” under fixed-weight conditions. These MPDs were merged from SPPs and reanalysis precipitation data, including TRMM (Tropical Rainfall Measurement Mission) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, PERSIANN-CDR, CMORPH, and the ERA-Interim reanalysis precipitation data. The performance of these datasets was evaluated in Pakistan’s diverse climatic zones—glacial, humid, arid, and hyper-arid—employing data from 102 rain gauge stations. The effectiveness of the DCBA model was quantified using Theil’s U statistic, demonstrating its superiority over the RPCA model and other individual merging methods in the study area The comparative performances of DCBA and RPCA in these regions, as measured by Theil’s U, are 0.49 to 0.53, 0.38 to 0.45, 0.37 to 0.42, and 0.36 to 0.43 in glacial, humid, arid, and hyper-arid zones, respectively. The evaluation of DCBA and RPCA compared with SPPs at different elevations showed poorer performance at high altitudes (>4000 m). The comparison of MPDs with the best performance of SPP (i.e., TMPA) showed significant improvement of DCBA even at altitudes above 4000 m. The improvements are reported as 49.83% for mean absolute error (MAE), 42.31% for root-mean-square error (RMSE), 27.94% for correlation coefficient (CC), 40.15% for standard deviation (SD), and 13.21% for Theil’s U. Relatively smaller improvements are observed for RPCA at 13.04%, 1.56%, 10.91%, 1.67%, and 5.66% in the above indices, respectively. Overall, this study demonstrated the superiority of DCBA over RPCA with static weight. Therefore, it is strongly recommended to use dynamic variation of weights in the development of MPDs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop