Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
2.2.1. Satellite Precipitation Data
2.2.2. Benchmark Precipitation Data
3. Method
3.1. Data Preprocessing
- (1)
- CHIRPS. The data format for CHIRPS is TIFF, which can be directly used.
- (2)
- CMORPH. The data format for CMORPH is NC, and we have written a program to convert the NC format to TIFF format.
- (3)
- GPM IMERG. The data format for GPM IMERG is NC. The same program is used to convert the NC format to TIFF format. Additionally, the GPM IMERG does not provide hourly precipitation data, but only half-hourly data, and the unit for the half-hourly data is mm/h. Therefore, it is necessary to add the two sets of data from the same hour together and then divide by 2 to obtain the hourly precipitation data.
- (4)
- GSMaP. The data format for GSMaP is DAT, and we used Arcpy to convert it to TIFF format. Additionally, the unit of the GSMaP daily-scale data is in mm/h. To obtain the actual daily precipitation, the data need to be multiplied by 24.
- (5)
- PERISANN. The data format for PERISANN is TIFF, which can be directly used.
- (6)
- TRMM. The data format for TRMM is NC. The same program is used to convert the NC format to TIFF.
3.2. Evaluation Metrics
4. Results
4.1. Daily and Hourly Average Precipitation
4.2. Performance Evaluation on Daily Scale
4.2.1. Daily Scale Index Evaluation and Statistical Analysis
4.2.2. Spatial Distribution of Daily Scale Evaluation Index
4.3. Performance Evaluation on Hourly Scale
4.3.1. Hourly Scale Index Evaluation and Statistical Analysis
4.3.2. Spatial Distribution of Hourly Scale Evaluation Index
5. Discussions
5.1. Influence of Elevation on SPPs
5.2. Uncertainties and Errors in SPPs
5.2.1. Observation of Light Rain and Drizzle in Continental Basin
5.2.2. Observation of Snowfall in the Songhua and Liaohe River Basin
6. Conclusions
- At the daily scale, GSMaP performed best overall in basins such as the HRB, HURB, PRB, SEB, YARB, and YRB, while CMORPH demonstrated the best overall performance in the CB, SLB, and SWB. At the hourly scale, CMORPH exhibited the strongest rainfall detection performance, while GSMaP demonstrated the best correlation in seven basins excluding the CB and SWB. This suggests that CMORPH is preferable for applications involving the statistical counting of precipitation occurrences, while GSMaP is suitable for hydrological model construction and similar applications in basins such as the HRB, HURB, PRB, SEB, SLRB, YARB, and YRB, whereas CMORPH is suitable for the CB and SWB.
- The temporal scale effect was also an important factor affecting the accuracy of SPPs, manifested as follows: at the daily scale, SPPs exhibited stronger correlation and better monitoring performance, whereas at the hourly scale, the error level of SPPs was much lower than that at the daily scale. From our perspective, there were two reasons for this: (1) Observing precipitation accurately at smaller time scales is much more challenging than at larger time scales. (2) Errors accumulate over time at larger time scales. Helmi et al. [44] have thoroughly demonstrated this point through their comparison and analysis of RMSE values at daily, monthly, and annual scales.
- The evaluation indices showed a gradient trend from southwest to southeast regions, mainly influenced by the spatial distribution of climate and terrain. Specifically, (1) although the error levels of six SPPs were relatively low in the arid climate of the CB, SWB, and YASB, their correlation was poor and reliability was low; (2) in the humid PRB and SEB, SPPs demonstrated stronger correlation but higher error levels; (3) the performance of SPPs decreased with increasing altitude, with a significantly higher reduction rate above 5000 m compared to regions below 5000 m. Among them, CMORPH effectively alleviated this downward trend.
- The six SPPs generally exhibited a tendency to underestimate the frequency of no rainfall while overestimating the frequency of light rain and drizzle. At the daily scale, TRMM exhibited the closest observation frequency to CLDAS for light rain, drizzle, and no rainfall, while at the hourly scale, it was CMORPH. PERSIANN exhibited the poorest consistency with CLDAS at the daily scale, while at the hourly scale, it was GSMaP. Although GSMaP’s performance in observing light rain, drizzle, and no rainfall was relatively poor, its advantage lies in snowfall observation, surpassing other SPPs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarojini, B.; Stott, P.; Black, E. Detection and attribution of human influence on regional precipitation. Nat. Clim. Chang. 2016, 6, 669–675. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.; Muller, C.; Joe, P.; Jackson, G.; Kirschbaum, D. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2016, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.; Adler, R.; Morrissey, M.; Bolvin, D.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Vasiloff, S.; Kaney, B.; Arthur, A.; Van Cooten, S.; Kelleher, K.; Kitzmiller, D.; Ding, F.; et al. National Mosaic and Multi-sensor QPE (NMQ) System-Description, Results and Future Plans. Bull. Am. Meteorol. Soc. 2011, 92, 1321–1338. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Ushio, T.; Aonashi, K.; Kachi, M.; Okamoto, K. Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Int. Symp. Geosci. Remote Sens. 2006, 45, 2584–2587. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Joyce, R.; Janowiak, J.; Arkin, P.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shulka, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Mekonnen, K.; Melesse, A.; Woldesenbet, T.A. How suitable are satellite rainfall estimates in simulating high flows and actual evapotranspiration in MelkaKunitre catchment, Upper Awash Basin, Ethiopia? Sci. Total Environ. 2021, 806, 150443. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ding, Y.; Liu, R.; Wei, L.; Liu, Y.; Ren, M.; Ren, J. Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China. Remote Sens. 2022, 14, 4406. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Feng, H.; Yu, Q.; Zou, Y.; Liu, F.; Pulatov, B. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos. Res. 2021, 249, 105304. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2017, 56, 79–107. [Google Scholar] [CrossRef]
- Paredes, F.; Barbosa, H.; Kumar, T.; Thakur, M.; Buriti, C. Assessment of the CHIRPS-Based Satellite Precipitation Estimates. In Inland Waters-Dynamics and Ecology; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci. 2019, 6, 1321–1335. [Google Scholar] [CrossRef]
- Roy, D.; Hassan, S.M.Q.; Sultana, S.S. An Assessment of Spatial Distribution of Four Different Satellite-Derived Rainfall Estimations and Observed Precipitation over Bangladesh. J. Agric. Chem. Environ. 2020, 9, 195–205. [Google Scholar] [CrossRef]
- Hussain, Y.; Satge, F.; Hussain, M.B.; Martínez-Carvajal, H.; Bonnet, M.; Cárdenas-Soto, M.; Roig, H.; Akhter, G. Performance of CMORPH, TMPA and PERSIANN rainfall datasets over plain, mountainous and glacial regions of Pakistan. Theor. Appl. Climatol. 2018, 131, 1119–1132. [Google Scholar] [CrossRef]
- Anjum, M.N.; Irfan, M.; Waseem, M.; Leta, M.K.; Niazi, U.; Rahman, S.; Ghanim, A.; Mukhtar, M.; Nadeem, M. Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 Rainfall Products over a Semi-Arid Subtropical Climatic Region. Water 2022, 14, 147. [Google Scholar] [CrossRef]
- Sarpong, K.; Xu, W.; Mensah-Akoto, J.; Neequaye, J.; Dadzie, A.; Frimpong, O. Waterscape, State and Situation of China’s Water Resources. J. Geosci. Environ. Prot. 2020, 8, 26–51. [Google Scholar] [CrossRef]
- Zhou, H.; Ning, S.; Li, D.; Pan, X.; Li, Q.; Zhao, M.; Tang, X. Assessing the Applicability of Three Precipitation Products, IMERG, GSMaP, and ERA5, in China over the Last Two Decades. Remote Sens. 2023, 15, 4154. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final Run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Lai, R.; Zhu, Z. Performance of satellite-based and reanalysis precipitation products under multi-temporal scales and extremes weather in mainland China. J. Hydrol. 2022, 605, 127389. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Zhu, Y.; Wang, X.; Wei, G. Component Analysis of Errors in Four GPM-Based Precipitation Estimations over Mainland China. Remote Sens. 2018, 10, 1420. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Xu, C.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Xiao, S.; Xia, J.; Zou, L. Evaluation of Multi-Satellite Precipitation Products and Their Ability in Capturing the Characteristics of Extreme Climate Events over the Yangtze River Basin, China. Water 2020, 12, 1179. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2022, 605, 127353. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Cao, Y.; Nan, Z.; Wang, W.; Ge, Y.; Wang, P.; Yu, W. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. J. Hydrol. 2020, 581, 124456. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Xu, W.; Lei, X.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part II: Extreme Temperature. Front. Environ. Sci. 2022, 10, 921659. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, L.; Tian, L.; Yuan, L.; Xiao, Y.; Zhang, L.; Zou, D.; Qiao, Y. Evaluation of the integrated multi-satellite retrievals for global precipitation measurement over the Tibetan Plateau. J. Mt. Sci. 2019, 16, 1500–1514. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Dong, Z.; Gui, S. A Multiscale Assessment of Three Satellite Precipitation Products (TRMM, CMORPH, and PERSIANN) in the Three Gorges Reservoir Area in China. Adv. Meteorol. 2021, 2021, 9979216. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, B.; Xing, W.; Zhou, J.; Xu, F.; Xu, Y. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- Meng, C.; Mo, X.; Liu, S.; Hu, S. Extensive evaluation of IMERGE precipitation for both liquid and solid in Yellow River source region. Atmos. Res. 2021, 256, 105570. [Google Scholar] [CrossRef]
- Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci. 2017, 21, 5805–5821. [Google Scholar] [CrossRef]
- CMA (The China Meteorological Administration). China Meteorological Administration Land Surface Data Assimilation System (CLDAS-V2.0) Near Real-Time Product Dataset. 2024. Available online: https://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html (accessed on 19 April 2024).
- Bai, B.; Cheng, Y.-P.; Jiang, Z.-C.; Zhang, C. Climate change and groundwater resources in China. J. Groundw. Sci. Eng. 2017, 5, 44–52. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Jia, L.; Jia, T. China’s water resources in 2020. China Geol. 2021, 4, 536–538. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, F.; Deng, H.; He, B.; Tian, H.; Fang, Y. Changes in Precipitation Grades in China from 1961–2020. Res. Soil Water Conserv. 2024, 31, 181–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Yeh, P.J.-F.; Li, J.; Hu, B.X.; Feng, P. Evaluation and comparison of precipitation estimates and hydrologic utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR products in various climate regimes. Atmos. Res. 2022, 265, 105881. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, J.; Wang, Z.; Dong, J.; Chang, L.; Li, C.; Zhang, P.; Gu, X.; Nie, Z. Groundwater circulation patterns and its resources assessment of inland river catchments in northwestern China. Geol. China 2021, 48, 1094–1111. [Google Scholar]
- Yang, X.; Lu, Y.; Tan, M.L.; Li, X.; Wang, G.; He, R. Nine-Year Systematic Evaluation of the GPM and TRMM Precipitation Products in the Shuaishui River Basin in East-Central China. Remote Sens. 2020, 12, 1042. [Google Scholar] [CrossRef]
- Helmi, A.M.; Abdelhamed, M.S. Evaluation of CMORPH, PERSIANN-CDR, CHIRPS V2.0, TMPA 3B42 V7, and GPM IMERG V6 Satellite Precipitation Datasets in Arabian Arid Regions. Water 2023, 15, 92. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, B.; Ma, Z.; Chen, X.; Qiu, J.; Liu, D. Comprehensive Comparisons of State-of-the-Art Gridded Precipitation Estimates for Hydrological Applications over Southern China. Remote Sens. 2020, 12, 3997. [Google Scholar] [CrossRef]
- Yong, B.; Hong, Y.; Ren, L.; Gourley, J.; Huffman, G.; Chen, X.; Wang, W.; Khan, S. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. Atmos. 2012, 117, 9108. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Sun, A.; Wang, K.; Yue, Y.; Tong, X.; Liu, W. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theor. Appl. Climatol. 2014, 119, 203–219. [Google Scholar] [CrossRef]
- Kenawy, A.; López-Moreno, J.I.; McCabe, M.; Vicente-Serrano, S. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia. Glob. Planet. Chang. 2015, 133, 188–200. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y. Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Li, X.; Sungmin, O.; Wang, N.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhai, P.M.; Chen, Y.; Lu, H. Differing mechenisms for the 2008 and 2016 wintertime cold events in southern China. Int. J. Climatol. 2020, 40, 4944–4955. [Google Scholar] [CrossRef]
SPP | Temporal Resolution | Spatial Resolution | Date Range | Data Source | Format |
---|---|---|---|---|---|
CHIRPS-2.0 | 1 d | 0.25° × 0.25° | 2017~2022 | https://data.chc.ucsb.edu (accessed on 19 April 2024) | TIFF |
CMORPH | 1 h/1 d | 0.25° × 0.25° | 2017~2022 | https://www.ncei.noaa.gov (accessed on 19 April 2024) | NC |
GPM IMERG Final | 0.5 h/1 d | 0.1° × 0.1° | 2017~2021 | https://search.earthdata.nasa.gov (accessed on 19 April 2024) | NC |
GSMaP_Guage V6 | 1 h/1 d | 0.1° × 0.1° | 2017~2022 | https://sharaku.eorc.jaxa.jp (accessed on 19 April 2024) | DAT |
PERSIANN-CDR | 1 d | 0.25° × 0.25° | 2017~2022 | https://chrsdata.eng.uci.edu (accessed on 19 April 2024) | TIFF |
TRMM 3B42V7 | 1 d | 0.25° × 0.25° | 2017~2019 | https://search.earthdata.nasa.gov/search (accessed on 19 April 2024) | NC |
Accuracy Evaluation Indicator | Formula | Optimal Value |
---|---|---|
CC | 1 | |
RMSE | 0 | |
MAE | 0 | |
POD | 1 | |
FAR | 0 | |
CSI | 1 |
Rainfall (mm/d) | Benchmark | Satellite Precipitation Products (SPPs) | |||||
---|---|---|---|---|---|---|---|
CLDAS | CHIRPS | CMORPH | IMERG | GSMaP | PERSIANN | TRMM | |
Non-rain: [0] | 88.75% | 73.96% | 75.89% | 61.18% | 66.64% | 39.68% | 81.94% |
Light drizzle: (0, 0.1] | 0.36% | 6.58% | 3.73% | 15.77% | 8.68% | 11.67% | 1.38% |
Light rain: (0.1, 10] | 9.99% | 18.47% | 18.84% | 22.14% | 23.93% | 48.19% | 15.56% |
Total | 99.10% | 99.01% | 98.46% | 99.09% | 99.25% | 99.54% | 98.88% |
Rainfall (mm/h) | Benchmark | Satellite Precipitation Products (SPPs) | ||
---|---|---|---|---|
CLDAS | CMORPH | IMERG | GSMaP | |
Non-rain: [0] | 98.19% | 94.39% | 91.75% | 73.09% |
Light drizzle: (0, 0.1] | 0.09% | 2.36% | 4.99% | 22.10% |
Light rain: (0.1, 10] | 1.70% | 3.22% | 3.24% | 4.80% |
Total | 99.98% | 99.97% | 99.98% | 99.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Shen, D.; Xiao, S.; Zhang, C.; Bai, F.; Yu, F. Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions. Remote Sens. 2024, 16, 1516. https://doi.org/10.3390/rs16091516
Gu H, Shen D, Xiao S, Zhang C, Bai F, Yu F. Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions. Remote Sensing. 2024; 16(9):1516. https://doi.org/10.3390/rs16091516
Chicago/Turabian StyleGu, Hongji, Dingtao Shen, Shuting Xiao, Chunxiao Zhang, Fengpeng Bai, and Fei Yu. 2024. "Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions" Remote Sensing 16, no. 9: 1516. https://doi.org/10.3390/rs16091516
APA StyleGu, H., Shen, D., Xiao, S., Zhang, C., Bai, F., & Yu, F. (2024). Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions. Remote Sensing, 16(9), 1516. https://doi.org/10.3390/rs16091516