Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (223)

Search Parameters:
Keywords = TMT proteomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3921 KiB  
Article
Quantitative Proteomics Reveals Fh15 as an Antagonist of TLR4 Downregulating the Activation of NF-κB, Inducible Nitric Oxide, Phagosome Signaling Pathways, and Oxidative Stress of LPS-Stimulated Macrophages
by Albersy Armina-Rodriguez, Bianca N. Valdés Fernandez, Carlimar Ocasio-Malavé, Yadira M. Cantres Rosario, Kelvin Carrasquillo Carrión, Loyda M. Meléndez, Abiel Roche Lima, Eduardo L. Tosado Rodriguez and Ana M. Espino
Int. J. Mol. Sci. 2025, 26(14), 6914; https://doi.org/10.3390/ijms26146914 - 18 Jul 2025
Viewed by 312
Abstract
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering [...] Read more.
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering macrophages and a persistent cascade of inflammatory mediators. Our previous studies have demonstrated that Fh15, a recombinant member of the Fasciola hepatica fatty acid binding protein family, can significantly increase the survival rate by suppressing many inflammatory mediators induced by LPS in a septic shock mouse model. Although Fh15 has been proposed as a TLR4 antagonist, the specific mechanisms underlying its immunomodulatory effect remained unclear. In the present study, we employed a quantitative proteomics approach using tandem mass tag (TMT) followed by LC-MS/MS analysis to identify and quantify differentially expressed proteins that participate in signaling pathways downstream TLR4 of macrophages, which can be dysregulated by Fh15. Data are available via ProteomeXchange with identifier PXD065520. Based on significant fold change (FC) cut-off of 1.5 and p-value ≤ 0.05 criteria, we focused our attention to 114 proteins that were upregulated by LPS and downregulated by Fh15. From these proteins, TNFα, IL-1α, Lck, NOS2, SOD2 and CD36 were selected for validation by Western blot on murine bone marrow-derived macrophages due to their relevant roles in the NF-κB, iNOS, oxidative stress, and phagosome signaling pathways, which are closely associated with sepsis pathogenesis. These results suggest that Fh15 exerts a broad spectrum of action by simultaneously targeting multiple downstream pathways activated by TLR4, thereby modulating various aspects of the inflammatory responses during sepsis. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

17 pages, 4730 KiB  
Article
Comparative Quantitative Proteomic Analysis of High and Low Toxin-Producing Karenia brevis Strains Reveals Differences in Polyketide Synthase Abundance and Redox Status of the Proteome
by Kathleen S. Rein, Ricardo Colon, Carlos R. Romagosa, Nicholas R. Ohnikian, Kirstie T. Francis and Samuel R. Rein
Mar. Drugs 2025, 23(7), 291; https://doi.org/10.3390/md23070291 - 17 Jul 2025
Viewed by 541
Abstract
To identify differentially abundant polyketide synthases (PKSs) and to characterize the biochemical consequences of brevetoxin biosynthesis, bottom-up, TMT-based quantitative proteomics and redox proteomics were conducted to compare two strains of the Florida red tide dinoflagellate Karenia brevis, which differ significantly in their [...] Read more.
To identify differentially abundant polyketide synthases (PKSs) and to characterize the biochemical consequences of brevetoxin biosynthesis, bottom-up, TMT-based quantitative proteomics and redox proteomics were conducted to compare two strains of the Florida red tide dinoflagellate Karenia brevis, which differ significantly in their brevetoxin content. Forty-eight PKS enzymes potentially linked to brevetoxin production were identified, with thirty-eight showing up to 16-fold higher abundance in the high-toxin strain. A pronounced shift toward a more oxidized redox state was observed in this strain’s proteome. Notably, 25 antioxidant-related proteins were significantly elevated, including alternative oxidase (AOX), which increased by 17-fold. These results elucidate the cellular consequences of toxin biosynthesis in K. brevis, offer new leads for the study of brevetoxin biosynthesis, and suggest a novel red tide mitigation approach targeting high toxin-producing strains. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

15 pages, 5632 KiB  
Article
Characterization and Multi-Omics Basis of Biofilm Formation by Lactiplantibacillus plantarum
by Ruitang Ma, Dong Zhao, Rongqing Zhou, Jia Zheng and Chongde Wu
Fermentation 2025, 11(7), 400; https://doi.org/10.3390/fermentation11070400 - 12 Jul 2025
Viewed by 491
Abstract
Lactiplantibacillus plantarum is a kind of common lactic acid bacteria, which plays an important role in the production of fermented foods. In general, the formation of biofilm is conducive to the adaptability of cells in the face of fierce competition and an increasingly [...] Read more.
Lactiplantibacillus plantarum is a kind of common lactic acid bacteria, which plays an important role in the production of fermented foods. In general, the formation of biofilm is conducive to the adaptability of cells in the face of fierce competition and an increasingly harsh fermentation environment. In this work, optimum conditions for the formation of biofilm by L. plantarum were investigated, and scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analysis showed the morphology of biofilm cells and 3D architecture of biofilm under different conditions, respectively. In addition, cells in the biofilms showed higher cell viability under heat stress, acid stress, and oxidative stress compared with planktonic cells. RNA-seq technology and TMT-based proteomic technology were employed to reveal the differential expression of profiles between biofilm cells and planktonic cells. The shelter provided by biofilm and the differential expression of genes and proteins involved in PTS, the TCA cycle, alanine, and teichoic acid biosynthesis may be involved in the formation of biofilm cells. The results presented in this study will help to understand the formation of biofilms in L. plantarum and regulate the industrial performance of cells in the food industry. Full article
Show Figures

Figure 1

26 pages, 2650 KiB  
Article
Combining Metabolomics and Proteomics to Reveal Key Serum Compounds Related to Canine Intervertebral Disc Herniation
by Anita Horvatić, Josipa Kuleš, Andrea Gelemanović, Ozren Smolec, Boris Pirkić, Marko Pećin, Ivana Rubić, Vladimir Mrljak, Marko Samardžija and Marija Lipar
Metabolites 2025, 15(6), 396; https://doi.org/10.3390/metabo15060396 - 12 Jun 2025
Viewed by 719
Abstract
Background/Objectives: Canine intervertebral disc herniation (IVDH) is an important musculoskeletal pathology. Unlike in humans, IVDH mechanisms in dogs are underinvestigated from a system-level integrative omics point of view. The aim of this study was to identify key serum molecular players in canine [...] Read more.
Background/Objectives: Canine intervertebral disc herniation (IVDH) is an important musculoskeletal pathology. Unlike in humans, IVDH mechanisms in dogs are underinvestigated from a system-level integrative omics point of view. The aim of this study was to identify key serum molecular players in canine IVDH. Methods: An integrative multi-omics approach combining high-resolution LC-MS-based untargeted metabolomics and tandem mass tag (TMT)-based proteomics was applied. Additionally, serum zinc concentration was determined by spectrophotometry. Results: Nineteen serum metabolites were differentially abundant in IVDH dogs. Metabolite analysis highlighted dysregulation in lipoic acid and branched-chain amino acid (BCAA) metabolism, with elevated levels of valine, leucine, and isoleucine in IVDH. These findings suggest disrupted energy, nitrogen, and neurotransmitter metabolism, potentially contributing to the IVDH pathophysiology. Additionally, lower serum uridine, possibly influenced by BCAA accumulation, was observed, indicating altered neuroinflammatory responses. ELISA validation confirmed elevated serum levels of zinc-α2-glycoprotein (ZAG), alpha-1-microglobulin/bikunin precursor (AMBP), and vitronectin (VTN) in IVDH, supporting immune modulation and neuroprotective mechanisms. Serum prekallikrein (KLKB1) and Protein C inhibitor (SERPINA5), involved in fibrin cloth formation, were found to be lowered in IVDH patients. Pathway enrichment revealed disturbances in aromatic amino acid biosynthesis, with elevated phenylalanine, tyrosine, and tryptophan influencing neurotransmission and inflammation. In addition, elevated serum Zn concentration emphasized its antioxidant importance in immune response, wound healing, and neuropathic pain signaling. Conclusions: Integration with our prior CSF multi-omics data reinforced the relevance of identified molecules in IVDH-associated neurodegeneration, inflammation, and repair processes. This study offers insight into potential diagnostic biomarkers and therapeutic targets for canine IVDH through serum-based molecular profiling. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Technology for Metabolic Profiling)
Show Figures

Graphical abstract

22 pages, 14854 KiB  
Article
Multiomics Analysis Reveals Role of ncRNA in Hypoxia of Mouse Brain Microvascular Endothelial Cells
by Qixin Shi, Shuai Zhang, Shaohua Li, Bin Zhang, Jin Xu, Yun-Gang Bai, Man-Jiang Xie and Jin Ma
Int. J. Mol. Sci. 2025, 26(12), 5629; https://doi.org/10.3390/ijms26125629 - 12 Jun 2025
Viewed by 489
Abstract
Hypoxia leads to endothelial dysfunction and increased blood–brain barrier (BBB) permeability, promoting the incidence of diseases such as stroke and acute high-altitude illness. Brain microvascular endothelial cells (BMECs) are important structural and functional components of the BBB; however, the molecular changes that occur [...] Read more.
Hypoxia leads to endothelial dysfunction and increased blood–brain barrier (BBB) permeability, promoting the incidence of diseases such as stroke and acute high-altitude illness. Brain microvascular endothelial cells (BMECs) are important structural and functional components of the BBB; however, the molecular changes that occur in BMECs during hypoxia remain unknown. We reported the molecular and functional changes in BMECs under hypoxia through whole-transcriptome sequencing, small RNA microarray, TMT quantitative proteomic, and untargeted metabolomic analyses. We found that hypoxia affected pathways such as ncRNA processing, the HIF-1 signaling pathway, the cell cycle, DNA replication, glucose metabolism, protein synthesis, and inflammation pathways. ncRNA processing was significantly downregulated. However, the levels of some miRNAs, tRNAs, tsRNAs, snoRNAs, lncRNAs, and circRNAs were significantly upregulated under hypoxia. These results suggest that ncRNAs may play an important role in oxidative stress and cellular adaptation to hypoxia, helping us understand the pathological process of BBB injury and providing potential targets for the treatment of BBB-related cerebrovascular diseases. Full article
(This article belongs to the Special Issue Hypoxia: Molecular Mechanism and Health Effects)
Show Figures

Figure 1

17 pages, 6960 KiB  
Article
Hippocampal Proteomics Reveals the Novel Molecular Profiling of Postnatal Lead (Pb) Exposure on Autism-like Behaviors
by Li Liu, Xulan Zhou, Zihan Ma, Ruming Liu, Yuhan Zhang, Yaqi Wang, Yiwen Liu, Xiaochun Xia and Juan Wang
Toxics 2025, 13(6), 465; https://doi.org/10.3390/toxics13060465 - 31 May 2025
Viewed by 672
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder, with lead (Pb) exposure increasingly linked to its risk. However, the molecular mechanisms linking Pb to ASD remain poorly understood. This study established a postnatal Pb-exposed mouse model and employed the three-chamber social test [...] Read more.
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder, with lead (Pb) exposure increasingly linked to its risk. However, the molecular mechanisms linking Pb to ASD remain poorly understood. This study established a postnatal Pb-exposed mouse model and employed the three-chamber social test and the marble-burying test to assess ASD-like behavioral phenotypes. The Pb levels in both blood and the hippocampus were quantified, and hippocampal neurons were assessed for morphological alterations. Moreover, a Tandem Mass Tag (TMT)-based quantitative proteomics approach was applied to elucidate the underlying mechanisms. Neurobehavioral experiments revealed Pb-exposed C57BL/6 offspring exhibited reduced social interaction and novelty preference along with increased repetitive marble-burying behavior. The Pb levels in both the blood and hippocampus of Pb-treated mice were significantly elevated compared with those of control animals. Postnatal Pb exposure resulted in a reduction in the neuronal numbers and disorganized neuronal arrangement in the hippocampus. A total of 66 proteins were identified as being differentially expressed after postnatal Pb exposure. Among them, 34 differentially expressed proteins were common in both Pb exposure groups, with 33 downregulated and 1 upregulated. Bioinformatic analysis revealed multi-pathway regulation involved in Pb-induced neurodevelopmental disorders, including dysregulation of synaptic signaling, abnormal activation of neuron apoptosis, and neuroinflammation. Notably, the SYT10/IGF-1 signaling pathway may play a potential key role. These findings enhance understanding of Pb-induced autism-like behaviors, providing novel proteomic insights into the etiology of ASD. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

20 pages, 12812 KiB  
Article
Quantitative Proteomics Revealed the Molecular Regulatory Network of Lysine and the Effects of Lysine Supplementation on Sunit Skeletal Muscle Satellite Cells
by Mingxu Wang, Fan Bai, Qinan Zhao, Jianan Shi, Yutian Hao and Jindi Wu
Animals 2025, 15(10), 1425; https://doi.org/10.3390/ani15101425 - 14 May 2025
Viewed by 489
Abstract
Stimulating skeletal muscle satellite cells (SMSCs) with amino acids improves their proliferation and differentiation, enhancing skeletal muscle mass, thereby increasing lean meat rate. This study explored lysine (Lys)’s effects on SMSCs and their protein profiles in Sunit sheep. SMSCs were successfully isolated, assessing [...] Read more.
Stimulating skeletal muscle satellite cells (SMSCs) with amino acids improves their proliferation and differentiation, enhancing skeletal muscle mass, thereby increasing lean meat rate. This study explored lysine (Lys)’s effects on SMSCs and their protein profiles in Sunit sheep. SMSCs were successfully isolated, assessing their survival and proliferation after Lys stimulation at varying concentrations using the CCK-8 assay. Western blotting revealed Lys-induced changes in myogenic differentiation protein expression, while immunocytochemistry detected α-Actinin and Myostatin within the SMSCs. TMT proteomics identified differentially expressed proteins, which underwent functional and interaction analyses, with RT-qPCR validating the corresponding gene expression. This study revealed that 4 mmol/L of Lys significantly boosted SMSC proliferation. A 24 h stimulation with this concentration reduced Myostatin expression, and increased MYOD1 and α-Actinin levels in the SMSCs. A proteomic analysis identified 577 differentially expressed proteins, primarily associated with lipoblast differentiation and muscle development, as highlighted by the GO enrichment analysis. A pathway analysis further demonstrated these proteins’ involvement in the autophagy–lysosome and NOD-like receptor signaling pathways. Lys enhances SMSC proliferation, differentiation, and adipogenesis in Sunit sheep, exhibiting antioxidant properties and supporting muscle stability and amino acid metabolism. It may also have anti-inflammatory, anti-pyroptotic, and proteolysis-inhibitory effects, offering insights into muscle growth mechanisms through amino acid supplementation in ruminants. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

16 pages, 1645 KiB  
Review
Proteomic Strategies on the Management of Phytopathogenic Fungi
by Aldrey Nathália Ribeiro Corrêa, Ana Carolina Ritter and Adriano Brandelli
J. Fungi 2025, 11(4), 306; https://doi.org/10.3390/jof11040306 - 11 Apr 2025
Viewed by 745
Abstract
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several [...] Read more.
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several organisms. This review outlines recent advances in mass spectrometry-based proteomics applied to the study of phytopathogenic fungi, including analytical platforms such as LC-MS/MS and MALDI-TOF, as well as quantitative strategies including TMT, iTRAQ, and label-free quantification. Key findings are presented from studies exploring infection-related protein expression, virulence-associated factors, post-translational modifications, and fungal adaptation to chemical fungicides, antimicrobial peptides, and biological control agents. Proteomic analyses have also elucidated mechanisms of resistance, oxidative stress response, and metabolic disruption following exposure to natural products, including essential oils and volatile organic compounds. The proteomic approach enables a comprehensive understanding of fungal biology by identifying proteins related to pathogenicity, stress adaptation, and antifungal resistance, while also facilitating the discovery of molecular targets and natural compounds for the development of sustainable antifungal strategies that reduce risks to human health and the environment. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

17 pages, 6050 KiB  
Article
Effects of Benzo[a]Pyrene Exposure on Lung Cancer: A Mechanistic Study of Epigenetic m6A Levels and YTHDF1
by Siyi Xu, Jie Li, Sheng Yang, Panpan Yang, Yiru Niu, Yiling Ge and Geyu Liang
Toxics 2025, 13(4), 280; https://doi.org/10.3390/toxics13040280 - 5 Apr 2025
Cited by 1 | Viewed by 724
Abstract
Benzo[a]pyrene, as the primary component of air pollutants, has been implicated in the pathogenesis of non-small-cell lung cancer (NSCLC). As an m6A reader that facilitates mRNA translation, YTHDF1 serves as a crucial regulator in tumor progression. Therefore, we established Benzo[a]pyrene(B[a]P)-induced bronchial epithelial malignant [...] Read more.
Benzo[a]pyrene, as the primary component of air pollutants, has been implicated in the pathogenesis of non-small-cell lung cancer (NSCLC). As an m6A reader that facilitates mRNA translation, YTHDF1 serves as a crucial regulator in tumor progression. Therefore, we established Benzo[a]pyrene(B[a]P)-induced bronchial epithelial malignant transformed cells (HBE-P35) to simulate the precancerous lesions of NSCLC and investigated the regulatory axis of YTHDF1 in both HBE-P35 and A549 lung cancer cells. A high level of m6A expression was detected in both HBE-P35 and A549 cells. Over-expression of YTHDF1 was observed in NSCLC tissues and correlated with poor overall survival in NSCLC patients. TMT labeling-based proteomic analysis and clinical lung tissue microarray assays demonstrated that CDK6 and MAP3K6 were positively correlated with YTHDF1 expression. MeRIP and RIP analyses revealed that YTHDF1 mediates the m6A-dependent regulation of CDK6 and MAP3K6 protein expression. The acquisition and deletion of miR-139/145-5p, along with luciferase reporter gene assays, demonstrated that miR-139-5p can target YTHDF1. Therefore, we conclude that YTHDF1 regulates CDK6 and MAP3K6 through m6A in B[a]P-induced HBE-P35 and A549 cells, providing a potential target for lung cancer treatment. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health)
Show Figures

Graphical abstract

25 pages, 3652 KiB  
Article
Cell-Type-Specific Heat-Induced Changes in the Proteomes of Pollen Mother Cells and Microspores Provide New Insights into Tomato Pollen Production Under Elevated Temperature
by Priya Thapa, Jun Guo, Kajol Pradhan, Dibya Thapa, Sudhakar Madhavarapu, Jing Zou, Jesse Potts, Hui Li, Joshua O’Hair, Chen Wang, Suping Zhou, Yong Yang, Tara Fish and Theodore W. Thannhauser
Proteomes 2025, 13(2), 13; https://doi.org/10.3390/proteomes13020013 - 25 Mar 2025
Cited by 1 | Viewed by 895
Abstract
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared [...] Read more.
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared to the ‘Micro-Tom’ variety. Pollen productivity is determined by meiotic activity during microsporogenesis and the development of free microspores during gametogenesis. This study focused on identifying heat stress (HS)-induced proteomes in pollen mother cells (PMCs) and microspores. Methods: Tomato plants were grown under two temperature conditions: 26 °C (non-heat-treated control) and 37 °C (heat-treated). Homogeneous cell samples of meiotic PMCs (prior to the tetrad stage) and free microspores were collected using laser capture microdissection (LCM). The heat-induced proteomes were identified using tandem mass tag (TMT)–quantitative proteomics analysis. Results: The enrichment of the meiotic cell cycle in PMCs and the pre-mitotic process in free microspores confirmed the correlation between proteome expression and developmental stage. Under HS, PMCs in both tomato varieties were enriched with heat shock proteins (HSPs). However, the ‘Black Vernissage’ variety exhibited a greater diversity of HSP species and a higher level of enrichment compared to the ‘Micro-Tom’ variety. Additionally, several proteins involved in gene expression and protein translation were downregulated in PMCs and microspores of both varieties. In the PMC proteomes, the relative abundance of proteins showed no significant differences between the two varieties under normal conditions, with very few exceptions. However, HS induced significant differential expression both within and between the varieties. More importantly, these heat-induced differentially abundant proteins (DAPs) in PMCs are directly involved in meiotic cell division, including the meiosis-specific protein ASY3 (Solyc01g079080), the cell division protein kinase 2 (Solyc11g070140), COP9 signalosome complex subunit 1 (Solyc01g091650), the kinetochore protein ndc80 (Solyc01g104570), MORC family CW-type zinc finger 3 (Solyc02g084700), and several HSPs that function in protecting the fidelity of the meiotic processes, including the DNAJ chaperone (Solyc04g009770, Solyc05g055160), chaperone protein htpG (Solyc04g081570), and class I and class II HSPs. In the microspores, most of the HS-induced DAPs were consistently observed across both varieties, with only a few proteins showing significant differences between them under heat stress. These HS-induced DAPs include proteases, antioxidant proteins, and proteins related to cell wall remodeling and the generation of pollen exine. Conclusions: HS induced more dynamic proteomic changes in meiotic PMCs compared to microspores, and the inter-varietal differences in the PMC proteomes align with the effects of HS on pollen productivity observed in the two varieties. This research highlights the importance of the cell-type-specific proteomics approach in identifying the molecular mechanisms that are critical for the pollen developmental process under elevated temperature conditions. Full article
(This article belongs to the Section Plant Proteomics)
Show Figures

Graphical abstract

28 pages, 10013 KiB  
Article
A TMT-Based Proteomic Analysis of Osmoregulation in the Gills of Oreochromis mossambicus Exposed to Three Osmotic Stresses
by Huanhuan Su, Dongmei Ma, Jiajia Fan, Zaixuan Zhong, Yuanyuan Tian and Huaping Zhu
Int. J. Mol. Sci. 2025, 26(6), 2791; https://doi.org/10.3390/ijms26062791 - 20 Mar 2025
Viewed by 2887
Abstract
Salinity and alkalinity are critical environmental factors that affect fish physiology and ability to survive. Oreochromis mossambicus is a euryhaline species that can endure a wide range of salinities and has the potential to serve as a valuable model animal for environmental science. [...] Read more.
Salinity and alkalinity are critical environmental factors that affect fish physiology and ability to survive. Oreochromis mossambicus is a euryhaline species that can endure a wide range of salinities and has the potential to serve as a valuable model animal for environmental science. In order to detect the histomorphological changes, antioxidant enzymes, and proteomic responses of O. mossambicus to different osmotic stresses, O. mossambicus was subjected to salinity stress (25 g/L, S_S), alkalinity stress (4 g/L, A_S), saline–alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L, SA_S), and freshwater (the control group; C_S). The histomorphological and antioxidant enzyme results indicated that salinity, alkalinity, and saline–alkalinity stresses have different degrees of damage and effects on the gills and liver of O. mossambicus. Compared with the control, 83, 187, and 177 differentially expressed proteins (DEPs) were identified in the salinity, alkalinity, and saline–alkalinity stresses, respectively. The obtained DEPs can be summarized into four categories: ion transport channels or proteins, energy synthesis and metabolism, immunity, and apoptosis. The KEGG enrichment results indicated that DNA replication and repair were significantly enriched in the salinity stress group. Lysosomes and oxidative phosphorylation were considerably enriched in the alkalinity stress group. Comparatively, the three most important enriched pathways in the saline–alkalinity stress group were Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. The findings of this investigation yield robust empirical evidence elucidating osmoregulatory mechanisms and adaptive biological responses in euryhaline teleost, thereby establishing a scientific foundation for the cultivation and genomic exploration of high-salinity-tolerant teleost species. This advancement facilitates the sustainable exploitation of saline–alkaline aquatic ecosystems while contributing to the optimization of piscicultural practices in hypersaline environments. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 4692 KiB  
Article
Comparative Hypothalamic Proteomic Analysis Between Diet-Induced Obesity and Diet-Resistant Rats
by Pengjiao Xi, Shuhui Ma, Derun Tian and Yanna Shen
Int. J. Mol. Sci. 2025, 26(5), 2296; https://doi.org/10.3390/ijms26052296 - 5 Mar 2025
Viewed by 833
Abstract
Obesity arises from a complex interplay of genetic and environmental factors. Even among individuals with the same genetic predisposition, diet-induced obesity (DIO) exhibits varying degrees of susceptibility, which are categorized as DIO and diet-induced obesity resistance (DR). The hypothalamus plays a pivotal role [...] Read more.
Obesity arises from a complex interplay of genetic and environmental factors. Even among individuals with the same genetic predisposition, diet-induced obesity (DIO) exhibits varying degrees of susceptibility, which are categorized as DIO and diet-induced obesity resistance (DR). The hypothalamus plays a pivotal role in regulating energy homeostasis. This study performed a comparative hypothalamic proteomic analysis in DIO and DR rats to identify differentially expressed proteins (DEPs) associated with alterations in body weight. Male Sprague Dawley rats were fed either a standard chow diet or a high-fat diet for 12 weeks. DIO rats exhibited the most rapid weight gain compared to both the control and DR rats. Despite consuming similar caloric intake, DR rats exhibited less weight gain relative to DIO rats. Proteomic analysis revealed 31 DEPs in the hypothalamus of DR rats compared to DIO rats (with a false discovery rate (FDR) < 1%). Notably, 14 proteins were upregulated and 17 proteins were downregulated in DR rats. Gene ontology analysis revealed an enrichment of ion-binding proteins, such as those binding to Fe2+, Zn2+, Ca2+, and Se, as well as proteins involved in neuronal activity and function, potentially enhancing neuronal development and cognition in DR rats. The DEPs pathway analysis via the Kyoto Encyclopedia of Genes and Genomes (KEGG) implicated starch and sucrose metabolism, antigen processing and presentation, and the regulation of inflammatory mediator affecting TRP channels. Western blotting confirmed the proteomic findings for TRPV4, CaMKV, RSBN1, and BASP1, which were consistent with those obtained from Tandem Mass tag (TMT) proteomic analysis. In conclusion, our study highlights the hypothalamic proteome as a critical determinant in the susceptibility to DIO and provides novel targets for obesity prevention and treatment. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

26 pages, 11679 KiB  
Article
Evaluation of Salt-Tolerant Germplasms and Identification of Salt Tolerance-Related Proteins in Upland Cotton at the Seedling Stage
by Xiawen Li, Abdul Rehman, Zhenzhen Wang, Hongge Li, Jun Ma, Xiongming Du, Zhen Peng and Shoupu He
Int. J. Mol. Sci. 2025, 26(5), 1982; https://doi.org/10.3390/ijms26051982 - 25 Feb 2025
Viewed by 760
Abstract
Currently, developing cotton cultivation in saline–alkali soils is a vital focus for restructuring the cotton industry in China. The seedling stage, specifically the three-leaf stage, is a crucial period for assessing the salt tolerance of cotton. This research examined 430 natural populations of [...] Read more.
Currently, developing cotton cultivation in saline–alkali soils is a vital focus for restructuring the cotton industry in China. The seedling stage, specifically the three-leaf stage, is a crucial period for assessing the salt tolerance of cotton. This research examined 430 natural populations of upland cotton, including 45 semi-wild germlines of Gossypium purpurascens. We measured the phenotypic responses of salt stress injury on seedlings as well as potassium (K), calcium (Ca), sodium (Na), and magnesium (Mg) concentrations in the roots, stems, and leaves following a 72 h exposure. The comprehensive salt tolerance index (CSTI) was determined using a membership function, principal component analysis, and cluster analysis based on 48 phenotypic traits related to salt tolerance. The results revealed significant variations in the phenotypic traits of the ion group under salt stress. Salt stress greatly affected the relative contents of Mg, K, and Ca ions in the aboveground parts of cotton, and correlations were observed among the 48 indices. The CSTI was calculated using seven principal component indexes, identifying 30 salt-tolerant, 114 weakly salt-tolerant, 39 salt-sensitive, and 4 highly sensitive materials based on cluster analysis. Among the 45 G. purpurascens cotton resources, 28 were weakly salt-tolerant, while 17 were salt-sensitive. Through TMT (Tandem Mass Tag)-based quantitative analysis, we identified 3107 unique peptides among 28,642 detected peptides, resulting in 203,869 secondary mass spectra, with 50,039 spectra successfully matched to peptides. Additionally, we identified several salt tolerance-related pathways (carbon metabolism; glutathione metabolism; the biosynthesis of amino acids, etc.) and proteins classified within the CAZy (Carbohydrate-Active EnZYme) family and expansin proteins. The results of this study concerning salt-tolerant materials provide a crucial theoretical foundation for the identification and evaluation of salt-tolerant breeding parents in cultivated cotton. Full article
(This article belongs to the Special Issue New Insights into Environmental Stresses and Plants)
Show Figures

Figure 1

17 pages, 60912 KiB  
Article
Proteomics and Expression of HIF2α/BNIP3L Signaling in Yak Brains at Different Altitudes
by Qian Zhang, Yan Cui, Sijiu Yu, Junfeng He, Yangyang Pan, Meng Wang and Jialing Che
Int. J. Mol. Sci. 2025, 26(4), 1675; https://doi.org/10.3390/ijms26041675 - 16 Feb 2025
Viewed by 717
Abstract
The yak, a unique inhabitant of low-oxygen environments, exhibits brain adaptability to hypoxic conditions. However, the impact of hypoxia on yak brain proteomics and the expression of the HIF2α/BNIP3L signaling pathway remains unexplored. This study utilized TMT-based proteomics analysis to identify differentially expressed [...] Read more.
The yak, a unique inhabitant of low-oxygen environments, exhibits brain adaptability to hypoxic conditions. However, the impact of hypoxia on yak brain proteomics and the expression of the HIF2α/BNIP3L signaling pathway remains unexplored. This study utilized TMT-based proteomics analysis to identify differentially expressed proteins (DEPs) in the cerebral cortexes of 9-month-old yaks at high (n = 3) and low (n = 3) altitudes. Additionally, qRT-PCR, Western blot, immunohistochemistry, and immunofluorescence were used to analyze HIF2α, BNIP3L, Beclin1, LC3-II, and cleaved caspase-3 expression in various brain regions from both altitude groups. KEGG analysis revealed that the DEPs were mainly concentrated in the synthesis and metabolism, DNA replication, and repair pathways. Specifically, the autophagy in KEGG attracted our attention due to its absence in other animals. HIF2α, BNIP3L, Beclin1, and LC3-II in the autophagy pathway increased significantly. Furthermore, the results of qRT-PCR and Western blot analysis showed that, at the same altitude, the mRNA and protein levels of HIF2α, BNIP3L, LC3-II, and Beclin1 in the cerebral cortexes and hippocampi of yaks were significantly higher than those in the thalami, medulla oblongatae, and cerebella (p < 0.05), while the expression of cleaved caspase-3 was not significantly different among the regions (p > 0.05). Additionally, within the same brain region, the expression levels of HIF2α, BNIP3L, Beclin1, and LC3-II in high-altitude yaks were higher than those in low-altitude yaks. Moreover, there was no difference in the cleaved caspase-3 mRNA and protein expression between the high-altitude and low-altitude yaks. Immunohistochemistry revealed that HIF2α-positive signaling was expressed in the nucleus and cytoplasm of neurons, while BNIP3L, LC3-II, Beclin1, and cleaved caspase-3 were concentrated in the cytoplasm. The immunofluorescence results showed that HIF2α, BNIP3L, LC3-II, Beclin1, cleaved caspase-3, and NeuN were co-located in the neurons of the cerebral cortex, hippocampus, thalamus, medulla oblongata, and cerebellum, respectively. This study offers a complete characterization of the yak cerebral cortex proteome at different altitudes. The higher expression of HIF2α, BNIP3L, Beclin1, and LC3-II in the cerebral cortexes and hippocampi of yaks indicates that these brain regions are more resistant to hypoxia. In addition, the increased HIF2α/BNIP3L signaling in the high-altitude yaks may enhance brain tissue adaptation to hypoxic conditions. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Insights from Tandem Mass Tag (TMT) Proteomic Analysis on Protein Network Modification in Control of Yak Hair Follicle Cycle
by Shijie Li, Yan Cui, Sijiu Yu, Junfeng He, Rui Ma, Bo Liao, Pengfei Zhao, Pengqiang Wei and Niayaler Robert
Int. J. Mol. Sci. 2025, 26(4), 1532; https://doi.org/10.3390/ijms26041532 - 12 Feb 2025
Cited by 1 | Viewed by 882
Abstract
Highland animals have unique hair growth mechanisms to allow them to adapt to harsh living environments. Compared with other species, their hair cycle growth is affected by more environmental factors. Yaks, as highland animals, have obvious periodic hair growth characteristics in a year; [...] Read more.
Highland animals have unique hair growth mechanisms to allow them to adapt to harsh living environments. Compared with other species, their hair cycle growth is affected by more environmental factors. Yaks, as highland animals, have obvious periodic hair growth characteristics in a year; this biological process is regulated by numerous proteins, but the specific molecular regulatory mechanism is still unclear. Here we analyzed the histological characteristics of yak hair follicles (HFs) at each stage and conducted TMT proteomics research. The protein expression network of yak hair at each stage and the mechanism of the yak HF growth cycle were systematically explored, and the candidate proteins Sfrp1 and Ppard were verified. A total of 3176 proteins were quantifiable and 1142 differentially expressed proteins (DEPs) were obtained at five stages of the yak hair cycle. DEPs enriched in complement activation change, tissue development, lipid metabolism, WNT pathway, VEGF pathway, JAK-STAT pathway, and PPAR pathway may promote the growth of yak hair follicles, such as Serpinf1, Ppard, and Stat3. DEPs enriched in complement system, coagulation, cell adhesion, lipid metabolic process, proliferation of epidermal cells, and estrogen pathway may promote the degeneration of yak hair, such as Sfrp1, Eppk1, and Egfr. Using Protein-Protein Interaction (PPI) analysis, we found that core nodes of DEP networks in yak skin are significantly different at three critical time points in hair follicle development, and lipid metabolism proteins are common core DEP nodes during yak HF growth and degeneration. The expression of Sfrp1 and Ppard in yak hair follicles at different periods showed they are related to yak hair cycle control. This study showed that the protein regulatory network of the yak HF growth cycle is complex and dynamically changing and revealed key candidate proteins that may affect yak hair follicle development. These findings provided detailed data for further understanding of the plateau adaptation mechanism of the yak, which is of great significance to make better use of the yak livestock resources and enhance their economic value. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop