Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = TGO (thermally growth oxide)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5657 KiB  
Article
Crack Propagation Mechanism in Thermal Barrier Coatings Containing Different Residual Grit Particles Under Thermal Cycling
by Xin Shen, Zhiyuan Wei, Zhenghao Jiang, Jianpu Zhang, Dingjun Li, Xiufang Gong, Qiyuan Li, Fei Zhao, Jianping Lai and Jiaxin Yu
Coatings 2025, 15(7), 747; https://doi.org/10.3390/coatings15070747 - 23 Jun 2025
Viewed by 450
Abstract
Residual particles embedded at the bond coat/substrate (BC/SUB) interface after grit blasting can affect the failure behavior of thermal barrier coatings (TBCs) under thermal cycling. This study employed a 2D finite element model combining the cohesive zone method (CZM) and extended finite element [...] Read more.
Residual particles embedded at the bond coat/substrate (BC/SUB) interface after grit blasting can affect the failure behavior of thermal barrier coatings (TBCs) under thermal cycling. This study employed a 2D finite element model combining the cohesive zone method (CZM) and extended finite element method (XFEM) to analyze the effect of interfacial grit particles. Specifically, the CZM was used to simulate crack propagation at the BC/thermally grown oxide (TGO) interface, while XFEM was applied to model the arbitrary crack propagation within the BC layer. Three models were analyzed: no grit inclusion, 20 μm grit particles, and 50 μm grit particles at the BC/SUB interface. This systematic variation allowed isolating the influence of particle size on the location of crack propagation onset, stress distribution, and crack growth behavior. The results showed that grit particles at the SUB/BC interface had negligible influence on the crack propagation location and rate at the BC/TGO interface, due to their spatial separation. However, their presence significantly altered the radial tensile stress distribution within the BC layer. Larger grit particles induced more intense stress concentrations and promoted earlier and more extensive vertical crack propagation within the BC. However, due to plastic deformation and stress redistribution in the BC, the crack propagation was progressively suppressed in the later stages of thermal cycling. Overall, grit particles primarily promoted vertical crack propagation within the BC layer. Optimizing grit blasting to control grit particle size is crucial for improving the durability of TBCs. Full article
Show Figures

Figure 1

13 pages, 5403 KiB  
Article
First-Principles Analysis of Phase Stability and Transformation Suppression for Hydrogen-Doped Alumina
by Kun Lv, Shiyang Sun, Bo Yuan, Xiaofeng Guo, Weiao Song and Andrei A. Boiko
Coatings 2025, 15(5), 545; https://doi.org/10.3390/coatings15050545 - 2 May 2025
Cited by 1 | Viewed by 629
Abstract
Thermally grown oxide (TGO) layers—primarily alumina (Al2O3)—provide oxidation resistance and high-temperature protection for thermal barrier coatings. However, during their service in humid and hot environments, water vapor accelerates TGO degradation by stabilizing metastable alumina phases (e.g., θ-Al2O [...] Read more.
Thermally grown oxide (TGO) layers—primarily alumina (Al2O3)—provide oxidation resistance and high-temperature protection for thermal barrier coatings. However, during their service in humid and hot environments, water vapor accelerates TGO degradation by stabilizing metastable alumina phases (e.g., θ-Al2O3) and inhibiting their transformation to the thermodynamically stable α-Al2O3, a phenomenon which has been shown in numerous experimental studies. However, the microscopic mechanisms by which water vapor affects the phase stability and transformation of alumina remain unresolved. This study employs first-principles calculations to investigate hydrogen’s role in altering vacancy formation, aggregation, and atomic migration in θ- and α-Al2O3. The results reveal that hydrogen incorporation reduces the formation energies for aluminum and oxygen vacancies by up to 40%, promoting defect generation and clustering; increases aluminum migration barriers by 25–30% while lowering oxygen migration barriers by 15–20%, creating asymmetric diffusion kinetics; and stabilizes oxygen-deficient sublattices, disrupting the structural reorganization required for θ- to α-Al2O3 transitions. These effects collectively sustain metastable θ-Al2O3 growth and delay phase stabilization. By linking hydrogen-induced defect dynamics to macroscopic coating degradation, this work provides atomic-scale insights for designing moisture-resistant thermal barrier coatings through the targeted inhibition of vacancy-mediated pathways. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

16 pages, 11906 KiB  
Article
Effect of Microstructure on Oxidation Resistance and TGO Formation in FeCoNiCrAl HEA Coatings Deposited by Low-Temperature HVAF Spraying
by Hossein Shahbazi, Rogerio S. Lima, Pantcho Stoyanov and Christian Moreau
Materials 2025, 18(7), 1569; https://doi.org/10.3390/ma18071569 - 30 Mar 2025
Cited by 2 | Viewed by 487
Abstract
The effects of microstructure, density, and porosity of a FeCoNiCrAl high-entropy alloy (HEA) coating, fabricated using an internal diameter high-velocity air fuel (ID-HVAF) torch (model: i7 ID), on the isothermal oxidation behavior were investigated. This study pioneers the use of the ID-HVAF i7 [...] Read more.
The effects of microstructure, density, and porosity of a FeCoNiCrAl high-entropy alloy (HEA) coating, fabricated using an internal diameter high-velocity air fuel (ID-HVAF) torch (model: i7 ID), on the isothermal oxidation behavior were investigated. This study pioneers the use of the ID-HVAF i7 ID system for HEA bond coat manufacturing, achieving a highly dense microstructure because of its low-operating spray temperature technique. To elucidate these effects, the microstructure and chemistry of the coating, the growth of the thermally grown oxides (TGOs), the phase transformation of alumina, and the oxidation rate were investigated at different temperatures. After 50 h at 1000 °C, 1100 °C, and 1150 °C, a dense, uniform, and thin alumina TGO layer (1.8 μm) was observed. The results demonstrate that the oxidation resistance of the HEA coating is enhanced because of the dense microstructure achieved via HVAF-i7, characterized by low porosity and uniform phase distribution, which contribute to improved barrier properties against oxygen diffusion. The growth of the TGO layer is controlled, resulting in a dense and continuous TGO layer. However, with increasing temperature and time, the alumina TGO layer becomes spalled, which is attributed to the absence of reactive elements. Overall, this study reveals that the FeCoNiCrAl HEA exhibits significant potential for enhancing oxidation resistance at high temperatures. Full article
(This article belongs to the Special Issue High-Entropy Materials: From Principles to Applications)
Show Figures

Figure 1

19 pages, 7528 KiB  
Article
A Finite Element Analysis Framework for Assessing the Structural Integrity of Aero-Engine Ceramic Matrix Composite Component Coatings
by Giacomo Canale, Vitantonio Esperto and Felice Rubino
Metals 2025, 15(3), 328; https://doi.org/10.3390/met15030328 - 18 Mar 2025
Viewed by 717
Abstract
Ceramic Matrix Composites (CMCs), and, in particular, SiC/BN/SiC, are currently being investigated to replace Nickel alloys in the manufacturing of aero-engine high-pressure turbine system components. Although superior to traditional metallic solutions in terms of resistance to high temperatures, CMCs are prone to oxidation [...] Read more.
Ceramic Matrix Composites (CMCs), and, in particular, SiC/BN/SiC, are currently being investigated to replace Nickel alloys in the manufacturing of aero-engine high-pressure turbine system components. Although superior to traditional metallic solutions in terms of resistance to high temperatures, CMCs are prone to oxidation and environmental degradation. For this reason, a multi-layer coating system is used to protect the CMC substrate. The aim of this paper is to define a Finite Element (FE) thermo-mechanical procedure to assess the integrity of the multi-layer coating. Among the four main failure mechanisms, vertical transverse cracking (denoted as “mud cracking”) and the thermally grown oxide (TGO) formation were numerically investigated. The FE (Finite Elements) procedure described in this paper, fully automated with the auxilium of MATLAB and Abaqus, is holistic and offers a simplified tool for the preliminary lifing of coating systems. TGO growth in the bond layer leads to the failure of the coating after 15,200 h, when its thickness reaches 0.02 mm, circa 20% of the bond layer (BND), and the stiffness and the strength of the BND drop to zero. The procedures and outcomes from the work are relevant for aero-engine designers and system engineers. Full article
(This article belongs to the Special Issue Surface Modification and Coatings of Metallic Materials)
Show Figures

Figure 1

24 pages, 3497 KiB  
Article
Application of Machine Learning in Terahertz-Based Nondestructive Testing of Thermal Barrier Coatings with High-Temperature Growth Stresses
by Zhou Xu, Dongdong Ye, Changdong Yin, Yiwen Wu, Suqin Chen, Xin Ge, Peiyong Wang, Xinchun Huang and Qiang Liu
Coatings 2025, 15(1), 49; https://doi.org/10.3390/coatings15010049 - 4 Jan 2025
Cited by 1 | Viewed by 1146
Abstract
The gradual growth of oxides inside thermal barrier coatings is a key factor leading to the degradation of thermal barrier coating performance until its failure, and accurate monitoring of the growth stress during this process is crucial to ensure the long-term stable operation [...] Read more.
The gradual growth of oxides inside thermal barrier coatings is a key factor leading to the degradation of thermal barrier coating performance until its failure, and accurate monitoring of the growth stress during this process is crucial to ensure the long-term stable operation of engines. In this study, terahertz time-domain spectroscopy was introduced as a new method to characterize the growth stress in thermal barrier coatings. By combining metallographic analysis and scanning electron microscope (SEM) observation techniques, the real microstructure of the oxide layer was obtained, and an accurate simulation model of the oxide growth was constructed on this basis. The elastic solutions of the thermally grown oxide layer of thermal insulation coatings were obtained by using the controlling equations in the rate-independent theoretical model, and the influence of the thickness of the thermally grown oxide (TGO) layer on the stress distribution was explored. Based on experimental data, multidimensional 3D numerical models of thermal barrier coatings with different TGO thicknesses were constructed, and the terahertz time-domain responses of oxide coatings with different thicknesses were simulated using the time-domain finite difference method to simulate the actual inspection scenarios. During the simulation process, white noise with signal-to-noise ratios of 10 dB to 20 dB was embedded to approximate the actual detection environment. After adding the noise, wavelet transform (WT) was used to reduce the noise in the data. The results showed that the wavelet transform had excellent noise reduction performance. For the problems due to the large data volume and small sample data after noise reduction, local linear embedding (LLE) and kernel-based extreme learning machine (KELM) were used, respectively, and the kernel function was optimized using the gray wolf optimization (GWO) algorithm to improve the model’s immunity to interference. Experimental validation showed that the proposed LLE-GWO-KELM hybrid model performed well in predicting the TGO growth stress of thermal insulation coatings. In this study, a novel, efficient, nondestructive, online, and high-precision measurement method for the growth in TGO stress of thermal barrier coatings was developed, which provides reliable technical support for evaluating the service life of thermal barrier coatings. Full article
(This article belongs to the Special Issue Smart Coatings)
Show Figures

Figure 1

15 pages, 7402 KiB  
Article
Investigation of the Interface Diffusion Layer’s Impact on the Thermal Cycle Life of PS-PVD Thermal Barrier Coatings
by Qing He, Xinhui Li, Yusheng Zhang, Jianchao Li and Xiaoming You
Coatings 2025, 15(1), 13; https://doi.org/10.3390/coatings15010013 - 26 Dec 2024
Viewed by 930
Abstract
The behaviour of the interdiffusion layer between the ceramic layer and the metal bonding layer in thermal barrier coatings, resulting from high-energy beam coating deposition, is a critical factor influencing the thermal cycle life of these coatings. Given that the interdiffusion layer at [...] Read more.
The behaviour of the interdiffusion layer between the ceramic layer and the metal bonding layer in thermal barrier coatings, resulting from high-energy beam coating deposition, is a critical factor influencing the thermal cycle life of these coatings. Given that the interdiffusion layer at the interface of plasma spray-physical vapour deposition (PS-PVD) coatings has been relatively underexplored and its influencing mechanisms remain unclear, this study investigates how different pre-oxidation layer states affect the thermal cycle life of PS-PVD coatings. Under conditions conducive to effective pre-oxidation film formation and minimal interdiffusion between NiCrAlYSi and 8YSZ, we observed an increase in thermal cycle life from 1000 h at 1100 °C to 2150 h. The application of high-heat flux jets, along with coupling factors related to preheating and pre-oxidation processes, can modulate interdiffusion at the interface. A thinner interdiffusion layer not only reduces oxidation rates but also enhances the longevity of the coating’s thermal cycle. Ultimately, cracks may develop within the composite oxide film, leading to coating failure. The Al-rich component present in both the interdiffusion composite oxide diffusion layer and initially deposited gas phase 8YSZ contributes to a reduction in TGO growth rate, as well as interface stress levels. In scenarios involving high-heat flux jet preheating coupled with coating deposition processes, the oxygen ion concentration emerges as a pivotal factor regulating interdiffusion dynamics. This research holds significant implications for elucidating the formation mechanisms underlying interdiffusion layers while simultaneously enhancing PS-PVD coating lifespans. Full article
Show Figures

Figure 1

14 pages, 3582 KiB  
Article
Nonlinear Oxidation Behavior at Interfaces in Coated Steam Dual-Pipe with Initial Waviness and Cooling Temperature
by Bo Yuan, Ke Wang, Xiaofeng Guo, Junxiang Gao and Pengfei Chen
Coatings 2024, 14(12), 1478; https://doi.org/10.3390/coatings14121478 - 22 Nov 2024
Viewed by 807
Abstract
A numerical simulation method is proposed to investigate the nonlinear growth of thermally grown oxide (TGO) on a novel coated steam dual-pipe system operating at 700 °C. Utilizing oxidation kinetics data from high-temperature water vapor experiments, the study examines interface stresses and morphology [...] Read more.
A numerical simulation method is proposed to investigate the nonlinear growth of thermally grown oxide (TGO) on a novel coated steam dual-pipe system operating at 700 °C. Utilizing oxidation kinetics data from high-temperature water vapor experiments, the study examines interface stresses and morphology evolution, considering initial surface waviness and cooling temperature effects. The findings indicate that the parabolic law accurately describes the nonlinear growth of TGO during high-temperature water vapor oxidation, with the TGO growth oxidation rate constant being 4.5×104μm2/h. The growth rate of TGO thickness decreases with increasing oxidation duration. Stress concentrations are found to develop at TGO interfaces, particularly in regions with high curvature, and those with elevated wavy amplitudes. The primary factor influencing stress redistribution and morphology evolution is the wavy amplitude of the TGO. Additionally, variations in cooling temperature affect interface stresses along the axial direction of the pipe system during nonlinear oxidation, resulting in relatively minor changes in morphology. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

12 pages, 4831 KiB  
Article
Lifetime Extension of Atmospheric and Suspension Plasma-Sprayed Thermal Barrier Coatings in Burner Rig Tests by Pre-Oxidizing the CoNiCrAlY Bond Coats
by Jens Igel, Walter Sebastian Scheld, Daniel Emil Mack, Olivier Guillon and Robert Vaßen
Coatings 2024, 14(7), 793; https://doi.org/10.3390/coatings14070793 - 26 Jun 2024
Cited by 1 | Viewed by 2018
Abstract
Oxidation of the bond coat during turbine operation leads to additional stresses in the thermal barrier coating (TBC) system that promotes spalling of the thermal insulation. Therefore, the oxidation behavior of a TBC system plays an important role in the thermal cycling of [...] Read more.
Oxidation of the bond coat during turbine operation leads to additional stresses in the thermal barrier coating (TBC) system that promotes spalling of the thermal insulation. Therefore, the oxidation behavior of a TBC system plays an important role in the thermal cycling of a TBC system. To delay the loss of thermal insulation, research has typically focused for a long time on the composition and microstructure of the ceramic topcoats and metallic bond coats. More recently, heat treatment for the diffusion annealing of the bond coat has also become a focus of research. Several studies have shown that pre-oxidation of the bond coat prior to the application of the ceramic topcoat slows down the subsequent oxidation of the bond coat in service. The improved thermal cyclability has been demonstrated in studies for systems with atmospheric plasma-sprayed (APS), suspension plasma-sprayed (SPS) or electron beam physical vapor deposition (EB-PVD) top coatings. However, no study has directly compared the effects of pre-oxidation on different topcoats. Therefore, this study compared the effect of pre-oxidation on APS and SPS coatings with the same bond coat. For both topcoats, pre-oxidation slowed the subsequent TGO growth and thus increased the lifetime of the coatings. The improvement in lifetime was particularly pronounced for the systems with an SPS topcoat. Overall, the lifetime of the coatings with an APS topcoat was higher as the critical energy release rate within the coating was not exceeded in these coatings. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

19 pages, 5130 KiB  
Article
An Oxide Growth-Coupled Viscoplasticity Model and Its Application to Interfacial Stress Analysis near an Air Hole within a Thermal Barrier Coating
by Pengfei Chen, Bo Yuan, Xiaofeng Guo, Zhiqiang Wan and Wei Sun
Coatings 2024, 14(3), 362; https://doi.org/10.3390/coatings14030362 - 19 Mar 2024
Viewed by 1287
Abstract
Strength assessment for thermal barrier coatings (TBCs) is vital in the safety design of hot-section components in engines. However, several crucial factors, including thermally grown oxide (TGO) growth and creep–plasticity interaction, have been less considered in thermo-mechanical analyses for TBCs near air holes. [...] Read more.
Strength assessment for thermal barrier coatings (TBCs) is vital in the safety design of hot-section components in engines. However, several crucial factors, including thermally grown oxide (TGO) growth and creep–plasticity interaction, have been less considered in thermo-mechanical analyses for TBCs near air holes. In this study, a unified viscoplastic constitutive model incorporating TGO growth is developed and integrated into a finite element framework. The model considers multiple factors, including TGO growth, creep–plasticity interaction, interface undulation, and temperature gradient. Additionally, an analytical solution for the non-uniform temperature field of a TBC is derived. The model is then applied to calculate interfacial stresses and accumulated strain energies in the TBC near an air hole, which promote interface debonding. The obtained results can be utilized to investigate the mechanisms of hole edge delamination in TBCs, considering the combined effects of multiple complex factors. A competition for the potential failure initiation location is revealed between the first oxide layer and the evolving TGO/bond coat interface. The developed viscoplasticity model demonstrates effective capability in modelling a range of dynamic behaviors that collectively contribute to hole edge delamination failure. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

20 pages, 44457 KiB  
Article
Comprehensive Understanding of the Effect of TGO Growth Modes on Thermal Barrier Coating Failure Based on a Simulation
by Da Qiao, Jixin Man, Wengao Yan, Beirao Xue, Xiangde Bian and Wu Zeng
Materials 2024, 17(1), 180; https://doi.org/10.3390/ma17010180 - 28 Dec 2023
Cited by 7 | Viewed by 1795
Abstract
The growth stress induced by thermally grown oxide (TGO) is one of the main reasons for the failure of thermal barrier coatings (TBCs). In this study, the failure behavior of TBCs was examined based on different growth modes of TGO. A TBC thermo-mechanical [...] Read more.
The growth stress induced by thermally grown oxide (TGO) is one of the main reasons for the failure of thermal barrier coatings (TBCs). In this study, the failure behavior of TBCs was examined based on different growth modes of TGO. A TBC thermo-mechanical model with a simplified sinusoidal interface morphology was established by the secondary development of a numerical simulation. The plasticity and creep behavior of materials were considered. Based on the subroutine development, the non-uniform growth of the TGO layer was realized. Cohesive elements were also applied to the TC/TGO interface. The stress distribution and evolution at the TC/TGO interface were investigated. Then, the cracking behavior near the interface was studied. The results show that lateral growth causes the off-valley site to replace the previous off-peak site as a vulnerable site. The non-uniform growth accelerates damage in the off-valley site, which leads to a change in the failure behavior. These results will provide significant guidance for understanding the TBC failure and the development of advanced TBCs. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

16 pages, 10468 KiB  
Article
Mechanical Loading Effect on Stress States and Failure Behavior in Thermal Barrier Coatings
by Da Qiao, Wengao Yan, Wu Zeng, Jixin Man, Beirao Xue and Xiangde Bian
Crystals 2024, 14(1), 2; https://doi.org/10.3390/cryst14010002 - 19 Dec 2023
Cited by 3 | Viewed by 2129
Abstract
Under service conditions, apart from the harsh temperature environment, mechanical loading also seriously affects the life of thermal barrier coatings (TBCs). A comprehensive understanding of the combined effects of thermo-mechanical loads can help to further reveal the failure mechanism of TBCs. In this [...] Read more.
Under service conditions, apart from the harsh temperature environment, mechanical loading also seriously affects the life of thermal barrier coatings (TBCs). A comprehensive understanding of the combined effects of thermo-mechanical loads can help to further reveal the failure mechanism of TBCs. In this work, a portion of a thin-walled circular pipe is intercepted for numerical analysis, and the interface is simplified as a sinusoidal curve. The dynamic growth of thermally grown oxide (TGO) is included into the model. A cohesive model is used for interfacial cracking analysis. The results show that the effects of tensile and compressive loads on the normal stress of the coating are not significant, while the effect on the shear stress of the coating is more obvious. In addition, the in-phase load will delay the occurrence of interfacial failure behavior, while an out-of-phase load can promote the failure. These results will help to better understand the effects of the coupling of mechanical and temperature loads and to provide support and guidance for the design of new TBCs structures in the future. Full article
Show Figures

Figure 1

12 pages, 20976 KiB  
Article
Failure Mechanism of Thermal Barrier Coatings on Nozzle Guide Vanes Fabricated from Nickel-Based Single-Crystal Superalloy under Gas Thermal Shock Conditions
by Yufeng Wang, Qiangang Fu, Chenxi Yang, Hui Peng and Hua Zhang
Coatings 2023, 13(12), 2062; https://doi.org/10.3390/coatings13122062 - 9 Dec 2023
Cited by 1 | Viewed by 1560
Abstract
The objective of this study was to investigate the early failure behavior of thermal barrier coatings on single-crystal nozzle guide vanes under gas thermal shock conditions. The microstructure and mechanical properties of the thermal barrier coating before and after the gas thermal shock [...] Read more.
The objective of this study was to investigate the early failure behavior of thermal barrier coatings on single-crystal nozzle guide vanes under gas thermal shock conditions. The microstructure and mechanical properties of the thermal barrier coating before and after the gas thermal shock tests were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and microhardness testing. The results indicate the presence of a mixed layer containing Ni, Cr, Al, Zr, and O at the base of the ceramic layer, and reveal failure behavior in the thermal barrier coating. The analysis suggests that the incomplete formation of the thermal growth oxide layer between the ceramic layer and the bonding layer, before the deposition of the YSZ ceramic layer, led to the easy diffusion of elements from the bonding layer into the root of the ceramic layer during the gas thermal shock process, resulting in the formation of a mixed layer. In the test environment, significant thermal stress was generated in the mixed layer, leading to transverse cracks and ultimately causing early failure of the thermal barrier coating. Consequently, the “incomplete initial TGO layer” model is proposed. Full article
Show Figures

Figure 1

18 pages, 8186 KiB  
Article
Effect of Interface Curvature on Local Growth Behavior and Stress of Thermal Barrier Coatings
by Lulu Wang, Jun Yu, Tao Zhang, Zhe Wang and Kunying Ding
Coatings 2023, 13(9), 1618; https://doi.org/10.3390/coatings13091618 - 15 Sep 2023
Cited by 1 | Viewed by 1470
Abstract
It is well known that coating spalling often occurs between the top ceramic coating (TC) and the metal bonding coating (BC) during the working process where the thermal mismatch stress between the layers plays a key role. Dynamic changes in the thermally grown [...] Read more.
It is well known that coating spalling often occurs between the top ceramic coating (TC) and the metal bonding coating (BC) during the working process where the thermal mismatch stress between the layers plays a key role. Dynamic changes in the thermally grown oxide (TGO) between the facing and bonding layers during thermal cycling increase the thermal mismatch at the interface. The effect of oxide thickening on localized mismatch stresses under thermal cycling with different interfacial curvatures is quantitatively investigated using numerical methods in this paper. A dynamic growth model of the oxide was developed based on the consideration of the composition and morphology of the thermally grown oxide. The results show that TGO growth behavior, local stress evolution, crack initiation location, and crack propagation length are influenced by the interface curvature at the same aspect ratio. The interface between the oxide layer and the bonding layer gradually developed significant tensile to dangerous stresses during thermal cycling. These tensile stresses are predominantly distributed at the crest during the early stages of thermal exposure and gradually transferred to the near-peak (the region near the peak) and ramp regions (the region in between the peak and the valley) as the oxidation process progressed. The crack initiation and propagation phenomenon can be observed at various regions during thermal exposure. Increasing interface curvature leads to an earlier dangerous stress moment in the ramp area due to higher maximum tensile stress. Therefore, the small changes in the interface curvature severely affected the location and time of crack initiation and the crack length. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology)
Show Figures

Figure 1

19 pages, 4248 KiB  
Article
Multi-Scale Analysis of Terahertz Time-Domain Spectroscopy for Inversion of Thermal Growth Oxide Thickness in Thermal Barrier Coatings
by Rui Li, Dongdong Ye, Jianfei Xu and Jiabao Pan
Coatings 2023, 13(7), 1294; https://doi.org/10.3390/coatings13071294 - 24 Jul 2023
Cited by 5 | Viewed by 2062
Abstract
To address the inverse problem of thermal growth oxide (TGO) thickness in thermal barrier coatings (TBCs), a novel multi-scale analysis (MSA) method based on terahertz time-domain spectroscopy (THz-TDS) is introduced. The proposed method involves a MSA technique based on four wavelet basis functions [...] Read more.
To address the inverse problem of thermal growth oxide (TGO) thickness in thermal barrier coatings (TBCs), a novel multi-scale analysis (MSA) method based on terahertz time-domain spectroscopy (THz-TDS) is introduced. The proposed method involves a MSA technique based on four wavelet basis functions (db4, sym3, haar, coif3). Informative feature parameters characterizing the TGO thickness were extracted by performing continuous wavelet transform (CWT) and max-pooling operations on representative wavelet coefficients. Subsequently, multi-linear regression and machine learning regression models were employed to predict and assess the wavelet feature parameters. Experimental results revealed a discernible trend in the wavelet feature parameters obtained through CWT and max-pooling in the MSA, wherein the visual representation of TGO thickness initially increases and then gradually decreases. Significant variations in these feature parameters with changes in both thickness and scale enabled the effective inversion of TGO thickness. Building upon this, multi-linear regression and machine learning regression prediction were performed using multi-scale data based on four wavelet basis functions. Partial-scale data were selected for multi-linear regression, while full-scale data were selected for machine learning regression. Both methods demonstrated high accuracy prediction performance. In particular, the haar wavelet basis function exhibited excellent predictive performance, as evidenced by regression coefficients of 0.9763 and 0.9840, further confirming the validity of MSA. Hence, this study effectively presents a feasible method for the inversion problem of TGO thickness, and the analysis confirms the promising application potential of terahertz time-domain spectroscopy’s multi-scale analysis in the field of TBCs evaluation. These findings provide valuable insights for further reference. Full article
Show Figures

Figure 1

13 pages, 2726 KiB  
Article
Oxidation Behavior of NiCoCrAlY Coatings Deposited by Vacuum Plasma Spraying and High-Velocity Oxygen Fuel Processes
by Junseong Kim, Janghyeok Pyeon, Bong-Gu Kim, Tserendorj Khadaa, Hyeryang Choi, Lu Zhe, Tejesh Dube, Jing Zhang, Byung-il Yang, Yeon-gil Jung and SeungCheol Yang
Coatings 2023, 13(2), 319; https://doi.org/10.3390/coatings13020319 - 1 Feb 2023
Cited by 6 | Viewed by 4146
Abstract
To reduce the formation of detrimental complex oxides, bond coatings in the thermal barrier coatings for gas turbines are typically fabricated using vacuum plasma spraying (VPS) or the high-velocity oxygen fuel (HVOF) process. Herein, VPS and HVOF processes were applied using NiCoCrAlY + [...] Read more.
To reduce the formation of detrimental complex oxides, bond coatings in the thermal barrier coatings for gas turbines are typically fabricated using vacuum plasma spraying (VPS) or the high-velocity oxygen fuel (HVOF) process. Herein, VPS and HVOF processes were applied using NiCoCrAlY + HfSi-based powder to assess the oxidation behavior of the bond coatings for both coating processes. Each coated sample was subjected to 50 cyclic heat treatments at 950 °C for 23 h and cooling for 1 h at 20 °C with nitrogen gas, and the weight change during the heat treatment was measured to evaluate the oxidation behavior. After the oxidation test, the coating layer was analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The VPS coating exhibited faster weight gain than the HVOF coating because the alumina particles generated during the initial formation of the HVOF coating inhibited oxidation and diffusion. The VPS coating formed a dense and thick thermal growth oxide (TGO) layer until the middle of the oxidation test and remained stable until the end of the evaluation. However, the HVOF coating demonstrated rapid weight loss during the final 20 cycles. Alumina within the bond coat suppressed the diffusion of internal elements and prevented the Al from being supplied to the surface. The isolation of the Al accelerated the growth of spinel TGO due to the oxidation of Ni, Co, and Cr near the surface. The as-coated VPS coating showed higher hardness and lower interfacial bonding strength than the HVOF did. Diffusion induced by heat treatment after the furnace cyclic test (FCT) led to a similar internal hardness and bonding strengths in both coating layers. To improve the quality of the HVOF process, the densification of the coating layer, suppression of internal oxide formation, and formation of a dense and uniform alumina layer on the surface must be additionally implemented. Full article
(This article belongs to the Special Issue Science and Technology of Thermal Barrier Coatings II)
Show Figures

Figure 1

Back to TopTop