Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = TE01δ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 118
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

32 pages, 11250 KiB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 495
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

14 pages, 3007 KiB  
Article
The Potential of a Thermoelectric Heat Dissipation System: An Analytical Study
by Xuechun Li, Rujie Shi and Kang Zhu
Energies 2025, 18(3), 555; https://doi.org/10.3390/en18030555 - 24 Jan 2025
Viewed by 960
Abstract
Thermoelectric heat dissipation systems offer unique advantages over conventional systems, including vibration-free operation, environmental sustainability, and enhanced controllability. This study examined the benefits of incorporating a thermoelectric cooler (TEC) into conventional heat sinks and investigated strategies to improve heat dissipation efficiency. A theoretical [...] Read more.
Thermoelectric heat dissipation systems offer unique advantages over conventional systems, including vibration-free operation, environmental sustainability, and enhanced controllability. This study examined the benefits of incorporating a thermoelectric cooler (TEC) into conventional heat sinks and investigated strategies to improve heat dissipation efficiency. A theoretical model introducing a dimensionless evaluation index (rq) is proposed to assess the system’s performance, which measures the ratio of the heat dissipation density of a conventional heat dissipation system to that of a thermoelectric heat dissipation system. Here, we subjectively consider 0.9 as a cutoff, and when rq<0.9, the thermoelectric heat dissipation system shows substantial superiority over conventional ones. In contrast, for rq>0.9, the advantage of the thermoelectric system weakens, making conventional systems more attractive. This analysis examined the effects of engineering leg length (L*), the heat transfer allocation ratio (rh), and temperature difference (ΔT) on heat dissipation capabilities. The results indicated that under a fixed heat source temperature, heat sink temperature, and external heat transfer coefficient, an optimal engineering leg length exists, maximizing the system’s heat dissipation performance. Furthermore, a detailed analysis revealed that the thermoelectric system demonstrated exceptional performance under small temperature differences, specifically when the temperature difference was below 32 K with the current thermoelectric (TE) materials. For moderate temperature differences between 32 K and 60 K, the system achieved optimal performance when rh2.4+1.37e0.019ΔT. This work establishes a theoretical foundation for applying thermoelectric heat dissipation systems and provides valuable insights into optimizing hybrid heat dissipation systems. Full article
(This article belongs to the Special Issue Recent Advances in Thermoelectric Energy Conversion)
Show Figures

Figure 1

27 pages, 13692 KiB  
Article
Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA
by Yuichi Morishita and Jamie R. Rogers
Minerals 2025, 15(1), 67; https://doi.org/10.3390/min15010067 - 12 Jan 2025
Viewed by 1128
Abstract
Pogo is identified as a deep-seated, intrusion-related gold deposit. Carbonate minerals have a close spatial relationship to hydrothermal gold mineralization in all of its principal ore zones. The carbon and oxygen isotopic ratios of carbonate minerals (siderite, ankerite, and calcite) present within the [...] Read more.
Pogo is identified as a deep-seated, intrusion-related gold deposit. Carbonate minerals have a close spatial relationship to hydrothermal gold mineralization in all of its principal ore zones. The carbon and oxygen isotopic ratios of carbonate minerals (siderite, ankerite, and calcite) present within the deposit illustrate the isotopic evolution of the ore-forming fluid. The initial hydrothermal fluid phase is interpreted to be magmatic in origin. The fluid evolution was characterized by a gradual decrease in δ18O and a slight increase in δ13C with decreasing temperature. The dominant carbon-bearing species was CO2, with methane introduced sporadically. Siderite is associated with early-stage mineralization and occurs with ankerite in main-stage ore assemblages. Calcite is recognized in the later stages of mineralization. Gold in the Pogo deposit occurs as native gold, Au-Bi-Te minerals, inclusions in sulfide minerals, or as “invisible gold”. The latter is found in pyrite, chalcopyrite, arsenopyrite, and quartz, based on ion microprobe analysis. The presence of invisible gold in these minerals has significant metallurgical implications for gold processing at the Pogo mine. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

26 pages, 20145 KiB  
Article
In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China
by Qingqing Shang, Fengdi Ren, Qun Yang and Bin Wang
Minerals 2025, 15(1), 57; https://doi.org/10.3390/min15010057 - 7 Jan 2025
Cited by 2 | Viewed by 817
Abstract
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization [...] Read more.
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization in the ore district primarily occurs in gold-bearing quartz–sulfide veins. The gold ore occurs mainly as vein, veinlet, crumby, and disseminated structures. The hydrothermal process can be divided into three stages: stage I, characterized by quartz, arsenopyrite, and pyrite; stage II, featuring quartz, arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, and native gold; and stage III, consisting of quartz, pyrite, sphalerite, galena, electrum (a naturally occurring Au–Ag alloy), and calcite. Electrum and native gold primarily occur within the fissures of the polymetallic sulfides. To determine the enrichment mechanism of the Au element and the genetic types of ore deposits in the Erdaodianzi deposit, sourcing in situ trace element data, element mapping and sulfur isotope analysis were carried out on sphalerites from different stages using LA-ICP-MS. Minor invisible gold, in the form of Au–Ag alloy inclusions, is present within sphalerites, as revealed by time-resolved depth profiles. The LA-ICP-MS trace element data and mapping results indicate that trivalent or quadrivalent cations, such as Sb3+ and Te4+, exhibit a strong correlation with Au. This correlation can be explained by a coupled substitution mechanism, where these cations (Sb3+ and Te4+) replace zinc ions within the mineral structure, resulting in a strong association with Au. Similarly, the element Pb exhibits a close relationship with Au, which can be attributed to the incorporation of tetravalent cations like Te4+ into the mineral structure. The positive correlation between Hg and Au can be attributed to the formation of vacancies and defects within sphalerite, caused by the aforementioned coupled substitution mechanism. A slight positive relationship between Au and other divalent cations, including Fe2+, Mn2+, and Cd2+, may result from these cations simply replacing Zn within the sphalerite lattice. The crystallization temperatures of the sphalerite, calculated via the Fe/Zn ratio, range from 238 °C to 320 °C. The δ34S values are divided into two intervals: one ranging from −1.99 to −1.12‰ and the other varying from 10.96 to 11.48‰. The sulfur isotopic analysis revealed that the ore-forming materials originated from magmatic rock, with some incorporation of metamorphic rock. Comparative studies of the Erdaodianzi gold deposit and other gold deposits in the Jiapigou–Haigou gold belt have confirmed that they are all mesothermal magmatic–hydrothermal lode gold deposits formed at the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate during the Middle Jurassic. The Jiapigou–Haigou gold belt extends northwest to the Huadian area of Jilin province. This suggests potential for research on gold mineralization in the northwest of the belt and indicates a new direction for further gold prospecting in the region. Full article
Show Figures

Figure 1

19 pages, 12440 KiB  
Article
Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite
by Mengmeng Zhang, Junfeng Shen, Chenglu Li, M. Santosh, Kexin Xu, Gexue Zhao and Huajuan Gu
Minerals 2024, 14(10), 1014; https://doi.org/10.3390/min14101014 - 8 Oct 2024
Viewed by 1141
Abstract
The Sanhetun tellurium–gold (Te–Au) deposit, located in the Duobaoshan polymetallic metallogenic belt (DPMB) within the eastern section of the Central Asian Orogenic Belt (CAOB), is a newly discovered small-scale gold deposit. The mineralization, with a resource of ≥4 t Au, is mainly hosted [...] Read more.
The Sanhetun tellurium–gold (Te–Au) deposit, located in the Duobaoshan polymetallic metallogenic belt (DPMB) within the eastern section of the Central Asian Orogenic Belt (CAOB), is a newly discovered small-scale gold deposit. The mineralization, with a resource of ≥4 t Au, is mainly hosted in three NNE-trending alteration zones between Early Carboniferous granitic mylonite and Lower Cretaceous volcanogenic-sedimentary formations. The genesis of formation of this deposit is poorly constrained. Here, we report the results of petrographic studies, TESCAN Integrated Mineral Analyzer (TIMA), major and trace element concentrations, and in situ S isotopes of pyrite. The results show that there are four types of pyrite: coarse-grained euhedral Py1, fine-grained quartz-Py2 vein crosscutting Py1, anhedral aggregated Py3, and anhedral aggregated Py4. The pre-ore stage Py1 contains negligible Au, Te, and other trace elements and has a relatively narrow range of δ34S values ranging from −1.20 to −0.57‰. Py2 has higher concentrations of Au and Te and distinctly high concentrations of Mo, Sb, Zn, and Mn with markedly positive δ34S values of 4.67 to 14.43‰. The main-ore stage Py3 contains high Au and Te concentrations and shows narrow δ34S values ranging from −5.69 to 0.19‰. The post-ore stage Py4 displays low Au concentrations with the δ34S values ranging from 2.66 to 3.86‰. Tellurides are widespread in Py3 and Py4, consisting mainly of native tellurium, tetradymite, tsumoite, hessite, and petzite. Especially, tetradymite commonly coexists with native gold. This study highlights the role of Te–Bi–S melt as an important gold scavenger in As-deficient ore-forming fluids. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

26 pages, 9058 KiB  
Article
Trace Element and Sulfur Isotope Signatures of Volcanogenic Massive Sulfide (VMS) Mineralization: A Case Study from the Sunnhordland Area in SW Norway
by Sabina Strmic Palinkas, Trond Fjellet, Håvard Hallås Stubseid, Xuan Liu, Jorge Enrique Spangenberg, Andrea Čobić and Rolf Birger Pedersen
Minerals 2024, 14(4), 384; https://doi.org/10.3390/min14040384 - 7 Apr 2024
Cited by 3 | Viewed by 2581
Abstract
The Sunnhordland area in SW Norway hosts more than 100 known mineral occurrences, mostly of volcanogenic massive sulfide (VMS) and orogeny Au types. The VMS mineralization is hosted by plutonic, volcanic and sedimentary lithologies of the Lower Ordovician ophiolitic complexes. This study presents [...] Read more.
The Sunnhordland area in SW Norway hosts more than 100 known mineral occurrences, mostly of volcanogenic massive sulfide (VMS) and orogeny Au types. The VMS mineralization is hosted by plutonic, volcanic and sedimentary lithologies of the Lower Ordovician ophiolitic complexes. This study presents new trace element and δ34S data from VMS deposits hosted by gabbro and basalt of the Lykling Ophiolite Complex and organic-rich sediments of the Langevåg Group. The Alsvågen gabbro-hosted VMS mineralization exhibits a significant Cu content (1.2 to >10 wt.%), with chalcopyrite and cubanite being the main Cu-bearing minerals. The enrichment of pyrite in Co, Se, and Te and the high Se/As and Se/Tl ratios indicate elevated formation temperatures, while the high Se/S ratio indicates a contribution of magmatic volatiles. The δ34S values of the sulfide phases also support a substantial influx of magmatic sulfur. Chalcopyrite from the Alsvågen VMS mineralization shows significant enrichment in Se, Ag, Zn, Cd and In, while pyrrhotite concentrates Ni and Co. The Lindøya basalt-hosted VMS mineralization consists mainly of pyrite and pyrrhotite. Pyrite is enriched in As, Mn, Pb, Sb, V, and Tl. The δ34S values of sulfides and the Se/S ratio in pyrite suggest that sulfur was predominantly sourced from the host basalt. The Litlabø sediment-hosted VMS mineralization is also dominated by pyrite and pyrrhotite. Pyrite is enriched in As, Mn, Pb, Sb, V and Tl. The δ34S values, which range from −19.7 to −15.7 ‰ VCDT, point to the bacterial reduction of marine sulfate as the main source of sulfur. Trace element characteristics of pyrite, especially the Tl, Sb, Se, As, Co and Ni concentrations, together with their mutual ratios, provide a solid basis for distinguishing gabbro-hosted VMS mineralization from basalt- and sediment-hosted types of VMS mineralization in the study area. The distinctive trace element features of pyrite, in conjunction with its sulfur isotope signature, have been identified as a robust tool for the discrimination of gabbro-, basalt- and sediment-hosted VMS mineralization. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Figure 1

27 pages, 14617 KiB  
Article
Mineral and S-Isotope Compositions of Cu-Sulfide Deposits in Southern Siberia (Kodar–Udokan Region), Russia
by Bronislav Gongalsky, Tatyana Velivetskaya and Vladimir Taskaev
Minerals 2024, 14(3), 228; https://doi.org/10.3390/min14030228 - 24 Feb 2024
Cited by 2 | Viewed by 2708
Abstract
The Kodaro–Udokan region is a huge Cu metallogenic province in Southern Siberia, one of the largest on Earth. It contains world-class copper sandstone-hosted Udokan (Cu reserves of 26.7 Mt) and PGE-Ni-Cu Chineysky deposits related to gabbro–anorthosite pluton (Cu—10 Mt; Fe-Ti-V, 30 Gt of [...] Read more.
The Kodaro–Udokan region is a huge Cu metallogenic province in Southern Siberia, one of the largest on Earth. It contains world-class copper sandstone-hosted Udokan (Cu reserves of 26.7 Mt) and PGE-Ni-Cu Chineysky deposits related to gabbro–anorthosite pluton (Cu—10 Mt; Fe-Ti-V, 30 Gt of ore). Furthermore, there are many small deposits of sulfide ores in sedimentary and igneous rocks in this region as well. For many decades, their genesis has been hotly debated. We studied the mineral composition and the sulfur isotopes in several deposits located at different levels of the stratigraphic sequence and in gabbro intruded in sandstones of the Udokan complex. The differences in ore compositions were found. The Burpala and Skvoznoy deposits consisting of the chalcocite–bornite association are characterized only by negative δ34S. The δ34S values for the Udokan deposits are mostly <0 (up to −28‰). The positive δ34S data characterize the ores of the Chineysky and Luktursky intrusions. Two Cu sandstone-hosted deposits are characterized by complex ore composition, i.e., the Krasny deposit, comprising chalcopyrite–pyrrhotite ores, is enriched in Co, Ni, Bi, Sb, Mo, Pb, Zn, Se, Te, and U and has a wide range of δ34S = −8.1–+13.5‰, and the Pravoingamakitsky deposit (Basaltovy section), consisting of quartz–chalcopyrite veins, has high PGE contents in ores with δ34S = +2.9–+4.0‰. These deposits are located near the gabbro massifs, and it is supposed that their ore compositions were influenced by magmatic fluids. The general regularities of the localization of the deposits in rift zones, and the proximity of mineral and isotopic composition allow us to conclude that the main source of copper could be rocks of basic composition because only they contain high Cu contents. Fluids from deep zones could penetrate to the surface and form Cu sandstone-hosted deposits. Full article
Show Figures

Figure 1

18 pages, 4838 KiB  
Article
Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity
by Bruna de Souza Feitosa, Oberdan Oliveira Ferreira, Celeste de Jesus Pereira Franco, Himani Karakoti, Ravendra Kumar, Marcia Moraes Cascaes, Rahul D. Jawarkar, Suraj N. Mali, Jorddy Neves Cruz, Ilmarina Campos de Menezes, Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade
Molecules 2024, 29(5), 947; https://doi.org/10.3390/molecules29050947 - 21 Feb 2024
Cited by 6 | Viewed by 3329
Abstract
The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation [...] Read more.
The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0–5.6%), β-pinene (0–22.7%), limonene (0–19.3%), 35 linalool (0–5.3%), δ-elemene (0–10.1%), β-caryophyllene (0.5–21.9%), γ-elemene (7.5–33.9%), and curzerene (6.9–31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL−1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 μg mL−1) and spikes (LC50 6.44 μg mL−1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina. Full article
(This article belongs to the Special Issue Chemical Analyses and Applications of Essential Oils)
Show Figures

Figure 1

26 pages, 1906 KiB  
Article
Emergent Flow Signal and the Colour String Fusion
by Daria Prokhorova and Evgeny Andronov
Physics 2024, 6(1), 264-289; https://doi.org/10.3390/physics6010019 - 20 Feb 2024
Cited by 2 | Viewed by 1692
Abstract
In this study, we develop the colour string model of particle production, based on the multi-pomeron exchange scenario, to address the controversial origin of the flow signal measured in proton–proton inelastic interactions. Our approach takes into account the string–string interactions but does not [...] Read more.
In this study, we develop the colour string model of particle production, based on the multi-pomeron exchange scenario, to address the controversial origin of the flow signal measured in proton–proton inelastic interactions. Our approach takes into account the string–string interactions but does not include a hydrodynamic phase. We consider a comprehensive three-dimensional dynamics of strings that leads to the formation of strongly heterogeneous string density in an event. The latter serves as a source of particle creation. The string fusion mechanism, which is a major feature of the model, modifies the particle production and creates azimuthal anisotropy. Model parameters are fixed by comparing the model distributions with the ATLAS experiment proton–proton data at the centre-of-mass energy s=13 TeV. The results obtained for the two-particle angular correlation function, C(Δη,Δϕ), with Δη and Δϕ differences in, respectively, pseudorapidities and azimuthal angles between two particles, reveal the resonance contributions and the near-side ridge. Model calculations of the two-particle cumulants, c2{2}, and second order flow harmonic, v2{2}, also performed using the two-subevent method, are in qualitative agreement with the data. The observed absence of the away-side ridge in the model results is interpreted as an imperfection in the definition of the time for the transverse evolution of the string system. Full article
(This article belongs to the Special Issue Jean Cleymans A Life for Physics)
Show Figures

Figure 1

13 pages, 8319 KiB  
Article
Antioxidant Activity and Volatile Oil Analysis of Ethanol Extract of Phoebe zhennan S. Lee et F. N. Wei Leaves
by Liping Yu, Wang Cheng, Meifen Tian, Zhigang Wu, Xiaoli Wei, Xing Cheng, Mingwei Yang and Xuan Ma
Forests 2024, 15(2), 236; https://doi.org/10.3390/f15020236 - 26 Jan 2024
Cited by 2 | Viewed by 1852
Abstract
The medicinal value of P. zhennan has been documented in traditional Chinese medicine books. The aim of this paper was to study the antioxidant activity of alcoholic extracts of P. zhennan leavesusing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-phenyl-4,4,5,5-tetramethylimidazolineoxyl-1-oxyl-3-oxide (PTIO) radical scavenging and ferric ion reducing [...] Read more.
The medicinal value of P. zhennan has been documented in traditional Chinese medicine books. The aim of this paper was to study the antioxidant activity of alcoholic extracts of P. zhennan leavesusing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-phenyl-4,4,5,5-tetramethylimidazolineoxyl-1-oxyl-3-oxide (PTIO) radical scavenging and ferric ion reducing antioxidant power (FRAP) assays. The active components of the leaves were identified via headspace solid-phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC-MS). The results showed that the scavenging rate of DPPH was 94.67%with an EC50 value of 0.674 mg/mL at a concentration of 2 mg/mL. The maximum scavenging rate was 47.40% at a Trolox equivalent of 0.33 mg TE/mL for PTIO radicals. The FRAP reached 84.80% at 0.20 mg/mL concentration. The results confirmed the strong antioxidant activity of the extracts. Furthermore, 44 compounds, mostly terpenoids, obtained from the alcoholic extracts of P. zhennan leaves were analyzed using HS-SPME-GC-MS and 15 of these compounds had a relative content exceeding 1%. The strong antioxidant activity of the alcoholic extracts of P. zhennan leaves could be attributed to the presence of copaene (33.97%), β-caryophyllene (4.42%), δ-cadinene (11.04%), γ-muurolene (4.78%), cis-calamenene (2.02%), linalool (1.04%), α-pinene (1.46%), borneol acetate (1.5%), and γ-terpinene (0.66%). This study demonstrates the potential medicinal value of alcoholic extracts of P. zhennan leaves. Full article
Show Figures

Figure 1

14 pages, 36958 KiB  
Article
Fusiform versus Saccular Intracranial Aneurysms—Hemodynamic Evaluation of the Pre-Aneurysmal, Pathological, and Post-Interventional State
by Jana Korte, Laurel M. M. Marsh, Sylvia Saalfeld, Daniel Behme, Alberto Aliseda and Philipp Berg
J. Clin. Med. 2024, 13(2), 551; https://doi.org/10.3390/jcm13020551 - 18 Jan 2024
Cited by 2 | Viewed by 2229
Abstract
Minimally-invasive therapies are well-established treatment methods for saccular intracranial aneurysms (SIAs). Knowledge concerning fusiform IAs (FIAs) is low, due to their wide and alternating lumen and their infrequent occurrence. However, FIAs carry risks like ischemia and thus require further in-depth investigation. Six patient-specific [...] Read more.
Minimally-invasive therapies are well-established treatment methods for saccular intracranial aneurysms (SIAs). Knowledge concerning fusiform IAs (FIAs) is low, due to their wide and alternating lumen and their infrequent occurrence. However, FIAs carry risks like ischemia and thus require further in-depth investigation. Six patient-specific IAs, comprising three position-identical FIAs and SIAs, with the FIAs showing a non-typical FIA shape, were compared, respectively. For each model, a healthy counterpart and a treated version with a flow diverting stent were created. Eighteen time-dependent simulations were performed to analyze morphological and hemodynamic parameters focusing on the treatment effect (TE). The stent expansion is higher for FIAs than SIAs. For FIAs, the reduction in vorticity is higher (Δ35–75% case 2/3) and the reduction in the oscillatory velocity index is lower (Δ15–68% case 2/3). Velocity is reduced equally for FIAs and SIAs with a TE of 37–60% in FIAs and of 41–72% in SIAs. Time-averaged wall shear stress (TAWSS) is less reduced within FIAs than SIAs (Δ30–105%). Within this study, the positive TE of FDS deployed in FIAs is shown and a similarity in parameters found due to the non-typical FIA shape. Despite the higher stent expansion, velocity and vorticity are equally reduced compared to identically located SIAs. Full article
Show Figures

Figure 1

16 pages, 341 KiB  
Article
Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability
by Vassilis Athanasiadis, Theodoros Chatzimitakos, Konstantina Kotsou, Dimitrios Kalompatsios, Eleni Bozinou and Stavros I. Lalas
Biomass 2024, 4(1), 49-64; https://doi.org/10.3390/biomass4010003 - 2 Jan 2024
Cited by 7 | Viewed by 2944
Abstract
Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel [...] Read more.
Prunus avium L. and Prunus spinosa L. are valuable fruit-bearing trees known for their bioactive compounds and medicinal properties. However, limited research exists regarding their kernel oils. This study aimed to compare the chemical composition, quality parameters, and bioactive potential of the kernel oils extracted from Prunus avium L. and Prunus spinosa L. The kernel oils’ fatty acid and tocopherol profiles were characterized, and the presence of bioactive compounds were identified and quantified. Total polyphenol content (TPC) and antioxidant activity (AAC) were also measured, indicating the presence of bioactive compounds in both oils. Additionally, the main quality parameters, including oxidative status, were evaluated. The fatty acid analysis revealed a higher proportion of polyunsaturated fatty acids compared to monounsaturated fatty acids in both kernel oil samples. Linoleic acid (57–64%) and oleic acid (18–29%) were the major fatty acids in both Prunus avium L. and Prunus spinosa L. kernel oils. α-Eleostearic acid (11.87%) was quantified only in Prunus avium kernel oil. Furthermore, the α-, β-, γ-, and δ-tocopherol content were determined, and it was found that both kernel oils contained γ-tocopherol as the major tocopherol (~204–237 mg/Kg). TPC in Prunus avium L. kernel oil was measured at 9.5 mg gallic acid equivalents (GAE)/Kg and recorded as ~316% higher TPC than Prunus spinosa L. kernel oil. However, the recorded AAC were 11.87 and 14.22 μmol Trolox equivalent (TE)/Kg oil, respectively. Both oils recorded low peroxide values (~1.50 mmol H2O2/Kg), and low TBARS value (~0.4 mmol malondialdehyde equivalents, MDAE/Kg oil), but high p-anisidine value (23–32). The results indicated that both Prunus avium L. and Prunus spinosa L. kernel oils exhibited unique chemical compositions. Full article
(This article belongs to the Special Issue Food Science and Emerging Technologies in Biomass Processing)
13 pages, 34550 KiB  
Article
Single Crystal Growth and Nano-Structure Study in a Topological Dirac Metal, CoTe2-δ
by Lei Chen, Weiyao Zhao and Ren-Kui Zheng
Crystals 2024, 14(1), 46; https://doi.org/10.3390/cryst14010046 - 28 Dec 2023
Cited by 1 | Viewed by 2217
Abstract
A single crystal of a topological material, CoTe2-δ, has been grown via the chemical vapor transport method for a structural and electronic transport study. Single-crystal X-ray diffraction, powder X-ray diffraction, and high-resolution scanning electron microscope measurements confirm the high quality of [...] Read more.
A single crystal of a topological material, CoTe2-δ, has been grown via the chemical vapor transport method for a structural and electronic transport study. Single-crystal X-ray diffraction, powder X-ray diffraction, and high-resolution scanning electron microscope measurements confirm the high quality of the as-grown single crystals. In a high-resolution scanning electron microscopy study, a clear layered feature of the trigonal CoTe2-δ crystal was observed. Fractal features and mosaic-type nanostructures were observed on the as-grown surface and cleaved surface, respectively. The trigonal CoTe2-δ demonstrates a metallic ground state in transport measurements, with a typical carrier’s concentration in a 1021 cm−3 magnitude and a residual resistivity ratio of 1.6. Below 10 K, trigonal CoTe2-δ contains quite complicated magnetoresistance behavior as a result of the competing effect between Dirac states and possible spin fluctuations. Full article
Show Figures

Figure 1

30 pages, 6637 KiB  
Review
Enrichment Characteristics and Mechanisms of Critical Metals in Marine Fe-Mn Crusts and Nodules: A Review
by Sucheng Huang and Yazhou Fu
Minerals 2023, 13(12), 1532; https://doi.org/10.3390/min13121532 - 9 Dec 2023
Cited by 11 | Viewed by 3553
Abstract
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. [...] Read more.
Marine Co-rich ferromanganese crusts and polymetallic nodules, which are widely distributed in oceanic environments, are salient potential mineral resources that are enriched with many critical metals. Many investigations have achieved essential progress and findings regarding critical metal enrichment in Fe-Mn crusts and nodules. This study systematically reviews the research findings of previous investigations and elaborates in detail on the enrichment characteristics, enrichment processes and mechanisms and the influencing factors of the critical metals enriched in Fe-Mn crusts and nodules. The influencing factors of critical metal enrichments in Fe-Mn crusts and nodules mainly include the growth rate, water depth, post-depositional phosphatization and structural uptake of adsorbents. The major enrichment pathways of critical metals in marine Fe-Mn (oxy)hydroxides are primarily as follows: direct substitution on the surface of δ-MnO2 for Ni, Cu, Zn and Li; oxidative substitution on the δ-MnO2 surface for Co, Ce and Tl; partition between Mn and Fe phases through surface complexation according to electro-species attractiveness for REY (except for Ce), Cd, Mo, W and V; combined Mn-Fe phases enrichment for seawater anionic Te, Pt, As and Sb, whose low-valence species are mostly oxidatively enriched on δ-MnO2, in addition to electro-chemical adsorption onto FeOOH, while high-valence species are likely structurally incorporated by amorphous FeOOH; and dominant sorption and incorporation by amorphous FeOOH for Ti and Se. The coordination preferences of critical metals in the layered and tunneled Mn oxides are primarily as follows: metal incorporations in the layer/tunnel-wall for Co, Ni and Cu; triple-corner-sharing configurations above the structural vacancy for Co, Ni, Cu, Zn and Tl; double-corner-sharing configurations for As, Sb, Mo, W, V and Te; edge-sharing configurations at the layer rims for corner-sharing metals when they are less competitive in taking up the corner-sharing position or under less oxidizing conditions when the metals are less feasible for reactions with layer vacancy; and hydrated interlayer or tunnel-center sorption for Ni, Cu, Zn, Cd, Tl and Li. The major ore-forming elements (e.g., Co, Ni, Cu and Zn), rare earth elements and yttrium, platinum-group elements, dispersed elements (e.g., Te, Tl, Se and Cd) and other enriched critical metals (e.g., Li, Ti and Mo) in polymetallic nodules and Co-rich Fe-Mn crusts of different geneses have unique and varied enrichment characteristics, metal occurrence states, enrichment processes and enrichment mechanisms. This review helps to deepen the understanding of the geochemical behaviors of critical metals in oceanic environments, and it also bears significance for understanding the extreme enrichment and mineralization of deep-sea critical metals. Full article
Show Figures

Figure 1

Back to TopTop