Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples Preparation
2.3. Oil Fatty Acid Composition
2.4. Oil Tocopherol Determination
2.5. Determination of Total Polyphenol Content (TPC)
2.6. Evaluation of DPPH• Antiradical Activity (AAC)
2.7. Determination of Total Carotenoids Content (TCC)
2.8. Oil Stability Tests
2.8.1. Peroxide Value (PV) Assay
2.8.2. Thiobarbituric Acid Reactive Substances (TBARS) Assay
2.8.3. p-Anisidine Value (p-AV) Assay
2.8.4. Conjugated Dienes (CD) and Trienes (CT) Determination
2.8.5. Totox Value (TV) Assay
2.9. Statistical Analysis
3. Results & Discussion
3.1. Oil Fatty Acid Composition
3.2. Oil Tocopherol Determination
3.3. Polyphenol Content, Carotenoids Content and Antioxidant Activity
3.4. Oxidative Status Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poonam, V.; Raunak; Kumar, G.; Reddy, L.C.S.; Jain, R.; Sharma, S.K.; Prasad, A.K.; Parmar, V.S. Chemical Constituents of the Genus Prunus and Their Medicinal Properties. Curr. Med. Chem. 2012, 18, 3758–3824. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Huang, C.H.; Hu, Y.; Wen, J.; Li, S.; Yi, T.; Chen, H.; Xiang, J.; Ma, H. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication. Mol. Biol. Evol. 2017, 34, 262–281. [Google Scholar] [CrossRef]
- Mariette, S.; Tavaud, M.; Arunyawat, U.; Capdeville, G.; Millan, M.; Salin, F. Population Structure and Genetic Bottleneck in Sweet Cherry Estimated with SSRs and the Gametophytic Self-Incompatibility Locus. BMC Genet. 2010, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Usenik, V.; Fabčič, J.; Štampar, F. Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Mratinić, E.; Popovski, B.; Milošević, T.; Popovska, M. Evaluation of Apricot Fruit Quality and Correlations between Physical and Chemical Attributes. Czech J. Food Sci. 2011, 29, 161–170. [Google Scholar] [CrossRef]
- Kalyoncu, I.H.; Ersoy, N.; Yilmaz, M. Some Physico-Chemical Properties and Mineral Contents of Sweet Cherry (Prunus avium L.) Type Grown in Konya. Afr. J. Biotechnol. 2009, 8, 2744–2749. [Google Scholar]
- Jawad, M.A.; Mohammed, A.A.W.; Sahib, H.B.; Abbood, M.S.; Shakir, W.Q. Effect of Alcohol Extract of Prunus Avium on In Vitro Sperm Activation of Human Semen Samples. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 65–68. [Google Scholar]
- Singh, J.; Kumar, M.; Sharma, A.; Pandey, G.; Chae, K.; Lee, S. Flowering of Sweet Cherries “Prunus Avium” in Tunisia. Intech 2016, 11, 13. [Google Scholar]
- Serrano, M.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical Constituents and Antioxidant Activity of Sweet Cherry at Different Ripening Stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Usenik, V.; Štampar, F.; Šturm, K.; Fajt, N. Rootstocks Affect Leaf Mineral Composition and Fruit Quality of “Lapins” Sweet Cherry. Acta Hortic. 2005, 667, 247–252. [Google Scholar] [CrossRef]
- Saeed, R.A.; Khan, M.I.; Butt, M.S.; Faisal, M.N. Phytochemical Screening of Prunus avium for Its Antioxidative and Anti-Mutagenic Potential against DMBA-Induced Hepatocarcinogenesis. Front. Nutr. 2023, 10, 1132356. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterisation of Phenolic Compounds in Wild Fruits from Northeastern Portugal. Food Chem. 2013, 141, 3721–3730. [Google Scholar] [CrossRef] [PubMed]
- Abraão, A.S.; Fernandes, N.; Silva, A.M.; Domínguez-Perles, R.; Barros, A. Prunus Lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants 2022, 11, 1738. [Google Scholar] [CrossRef] [PubMed]
- Kurtto, A.; Sennikov, A.; Lampinen, R. Atlas Florae Europaeae: Distribution of Vascular Plants in Europe; The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo: Helsinki, Finland, 2013; Volume 16, pp. 115–146. [Google Scholar]
- Celik, F.; Gundogdu, M.; Alp, S.; Muradoglu, F.; Ercişli, S.; Gecer, M.K.; Canan, I. Determination of Phenolic Compounds, Antioxidant Capacity and Organic Acids Contents of Prunus domestica L., Prunus cerasifera Ehrh. and Prunus spinosa L. Fruits by HPLC. Acta Chromatogr. 2017, 29, 507–510. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- María Ruiz-Rodríguez, B.; De Ancos, B.; Sánchez-Moreno, C.; Fernández-Ruiz, V.; De Cortes Sánchez-Mata, M.; Cámara, M.; Tardío, J. Les Fruits Du Prunellier Sauvage (Prunus spinosa L.) et Delâaubãpine (Crataegus monogyna Jacq.) Sont de Prãcieuses Sourcesdâantioxydants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Sircelj, H. Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. J. Food Sci. 2016, 81, C1928–C1937. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, L.; Fraternale, D.; Di Giacomo, B.; Mari, M.; Albertini, M.C.; Gordillo, B.; Rocchi, M.B.L.; Sisti, D.; Coppari, S.; Semprucci, F.; et al. Chemical Composition, Antioxidant, Antimicrobial and Anti-Inflammatory Activity of Prunus spinosa L. Fruit Ethanol Extract. J. Funct. Foods 2020, 67, 103885. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Ždero Pavlović, R.; Mićić, N.; Bijelić, S.; Bogdanović, B.; Mišan, A.; Duarte, C.M.M.; Serra, A.T. Comparison between Polyphenol Profile and Bioactive Response in Blackthorn (Prunus spinosa L.) Genotypes from North Serbia-from Raw Data to PCA Analysis. Food Chem. 2020, 302, 125373. [Google Scholar] [CrossRef]
- Prame Kumar, K.; Nicholls, A.J.; Wong, C.H.Y. Partners in Crime: Neutrophils and Monocytes/Macrophages in Inflammation and Disease. Cell Tissue Res. 2018, 371, 551–565. [Google Scholar] [CrossRef]
- Marchelak, A.; Owczarek, A.; Matczak, M.; Pawlak, A.; Kolodziejczyk-Czepas, J.; Nowak, P.; Olszewska, M.A. Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, pro-Inflammatory Enzymes Inhibition and Protective Effects against Oxidative Stress in Vitro. Front. Pharmacol. 2017, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Dursun Capar, T.; Dedebas, T.; Yalcin, H.; Ekici, L. Extraction Method Affects Seed Oil Yield, Composition, and Antioxidant Properties of European Cranberrybush (Viburnum opulus). Ind. Crops Prod. 2021, 168, 113632. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of Hemp Seed Oils Stability under Accelerated Storage Test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef]
- Shao, Y.; He, T.; Fisher, G.J.; Voorhees, J.J.; Quan, T. Molecular Basis of Retinol Anti-Aging Properties in Naturally Aged Human Skin in vivo. Int. J. Cosmet. Sci. 2017, 39, 56–65. [Google Scholar] [CrossRef] [PubMed]
- European Union Commission. COMMISSION REGULATION (EC) No 796/2002 of 6 May 2002 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Pomace Oil and on the Relevant Methods of Analysis and the Additional Notes in the Annex to Council Regulation (EEC) No 2658/87 on the Tariff and Statistical Nomenclature and on the Common Customs Tariff; European Union Commission: Brussels, Belgium, 2002.
- Lalas, S.; Athanasiadis, V.; Gortzi, O.; Bounitsi, M.; Giovanoudis, I.; Tsaknis, J.; Bogiatzis, F. Enrichment of Table Olives with Polyphenols Extracted from Olive Leaves. Food Chem. 2011, 127, 1521. [Google Scholar] [CrossRef]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and Radical-scavenging Activity of Heated Olive Oil and Other Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene Content Differs among Red-Fleshed Watermelon Cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- International IDF (International Dairy Federation) Standards. IDF-Square Vergote 41, Brussels, Sec. 74A:1991; IDF: Brussels, Belgium, 1991. [Google Scholar]
- Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of Protein Type on Oxidation and Digestibility of Fish Oil-in-Water Emulsions: Gliadin, Caseinate, and Whey Protein. Food Chem. 2015, 175, 249–257. [Google Scholar] [CrossRef]
- Pegg, R.B. Measurement of Primary Lipid Oxidation Products. Curr. Protoc. Food Anal. Chem. 2001, 00, D2.1.1–D2.1.15. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Charalambous, Z.; Galanakis, I.M. Polyphenols Recovered from Olive Mill Wastewater as Natural Preservatives in Extra Virgin Olive Oils and Refined Olive Kernel Oils. Environ. Technol. Innov. 2018, 10, 62–70. [Google Scholar] [CrossRef]
- Baum, S.J.; Kris-Etherton, P.M.; Willett, W.C.; Lichtenstein, A.H.; Rudel, L.L.; Maki, K.C.; Whelan, J.; Ramsden, C.E.; Block, R.C. Fatty Acids in Cardiovascular Health and Disease: A Comprehensive Update. J. Clin. Lipidol. 2012, 6, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Hu, F.B. Plant-Based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.-M.; Surh, J. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress. Prev. Nutr. Food Sci. 2012, 17, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [PubMed]
- Paszczyk, B.; Polak-Śliwińska, M.; Łuczyńska, J. Fatty Acids Profile, Trans Isomers, and Lipid Quality Indices in Smoked and Unsmoked Cheeses and Cheese-Like Products. Int. J. Environ. Res. Public. Health 2019, 17, 71. [Google Scholar] [CrossRef]
- Sealls, W.; Gonzalez, M.; Brosnan, M.J.; Black, P.N.; DiRusso, C.C. Dietary Polyunsaturated Fatty Acids (C18:2 Ω6 and C18:3 Ω3) Do Not Suppress Hepatic Lipogenesis. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2008, 1781, 406–414. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Białek, A. Conjugated Linolenic Acid (CLnA) Isomers as New Bioactive Lipid Compounds in Ruminant-Derived Food Products. A Review. J. Anim. Feed Sci. 2017, 26, 3–17. [Google Scholar] [CrossRef]
- Churruca, I.; Fernández-Quintela, A.; Portillo, M.P. Conjugated Linoleic Acid Isomers: Differences in Metabolism and Biological Effects. BioFactors 2009, 35, 105–111. [Google Scholar] [CrossRef]
- Atik, I.; Karasu, S.; Sevik, R. Physicochemical and Bioactive Properties of Cold Press Wild Plum (Prunus spinosa) and Sour Cherry (Prunus cerasus) Kernel Oils: Fatty Acid, Sterol and Phenolic Profile. Riv. Ital. Sostanze Grasse 2022, 991, 13–20. [Google Scholar]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef] [PubMed]
- Abril, D.; Mirabal-Gallardo, Y.; González, A.; Marican, A.; Durán-Lara, E.F.; Silva Santos, L.; Valdés, O. Comparison of the Oxidative Stability and Antioxidant Activity of Extra-Virgin Olive Oil and Oils Extracted from Seeds of Colliguaya integerrima and Cynara cardunculus Under Normal Conditions and after Thermal Treatment. Antioxid. Basel Switz. 2019, 8, 470. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.-S. Tocopherols and Tocotrienols in Plants and Their Products: A Review on Methods of Extraction, Chromatographic Separation, and Detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R. Bioactivity of Vitamin E. Nutr. Res. Rev. 2006, 19, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Aqil, Y.; Ouassor, I.; Belmaghraoui, W.; Hajjaji, S.E. Prunus avium Kernel Oil Characterization: A Comparative Study of Four Varieties from Sefrou, Morocco. OCL 2020, 27, 24. [Google Scholar] [CrossRef]
- Fraga, C.G. Plant Polyphenols: How to Translate Their in Vitro Antioxidant Actions to in Vivo Conditions. IUBMB Life 2007, 59, 308–315. [Google Scholar] [CrossRef]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In Vitro and In Vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- García-Conesa, M.-T.; Larrosa, M. Polyphenol-Rich Foods for Human Health and Disease. Nutrients 2020, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Willig, G.; Brunissen, F.; Brunois, F.; Godon, B.; Magro, C.; Monteux, C.; Peyrot, C.; Ioannou, I. Phenolic Compounds Extracted from Cherry Tree (Prunus avium) Branches: Impact of the Process on Cosmetic Properties. Antioxidants 2022, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.; Domokos, E.; Fogarasi, E.; Steanesu, R.; Fülöp, I.; Croitoru, M.D.; Laczkó-Zöld, E. Polyphenolic compounds analysis and antioxidant activity in fruits of Prunus spinosa L. Acta Pharm. Hung. 2017, 87, 19–25. [Google Scholar] [PubMed]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–336. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Mantzourani, C.; Chatzilazarou, A.; Makris, D.P.; Lalas, S.I. Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil. Separations 2023, 10, 332. [Google Scholar] [CrossRef]
- Guzmán, F.A.; Segura-Ledesma, S.D.; Almaguer-Vargas, G. Black Cherry (Prunus serotina Ehrh.): A Multipurpose Tree with Forestry Potential in Mexico. Madera Bosques 2020, 26, e2611866. [Google Scholar] [CrossRef]
- Gallardo-Rivera, C.T.; Lu, A.; Treviño-Garza, M.Z.; García-Márquez, E.; Amaya-Guerra, C.; Aguilera, C.; Báez-González, J.G. Valorization of Almond (Prunus serotina) by Obtaining Bioactive Compounds. Front. Nutr. 2021, 8, 663953. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Jayathilaka, N.; Seneviratne, K.N. Phenolic Antioxidants in Coconut Oil: Factors Affecting the Quantity and Quality. A Review. Grasas Aceites 2022, 73, e466. [Google Scholar] [CrossRef]
- Carvalho, L.M.J.; Ortiz, D.G.; Ribeiro, E.M.G.; Smiderle, L.; Pereira, E.J.; Carvalho, J.L.V. Beta-Carotene: Functions, Health Benefits, Adverse Effects and Applications. In Beta-Carotene: Functions, Health Benefits and Adverse Effects, UK ed.; Lefevre, M., Ed.; Nova Biomedical: New York, NY, USA, 2013; pp. 59–79. ISBN 978-1-62417-173-4. [Google Scholar]
- Bakó, E.; Deli, J.; Tóth, G. HPLC Study on the Carotenoid Composition of Calendula Products. J. Biochem. Biophys. Methods 2002, 53, 241–250. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Stryjecka, M.; Kiełtyka-Dadasiewicz, A.; Michalak, M.; Rachoń, L.; Głowacka, A. Chemical Composition and Antioxidant Properties of Oils from the Seeds of Five Apricot (Prunus armeniaca L.) Cultivars. J. Oleo Sci. 2019, 68, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Borguini, R.G.; Pacheco, S.; Chávez, D.W.H.; Couto, G.A.; Wilhelm, A.E.; de Santiago, M.C.P.A.; da Silva de Mattos do Nascimento, L.; de Jesus, M.S.C.; de Oliveira Godoy, R.L. Carotenoid Extraction Using Edible Vegetable Oil: An Enriched Provitamin A Product. Sci. Agric. 2020, 78, e20190332. [Google Scholar] [CrossRef]
- Radenkovs, V.; Feldmane, D. Profile of Lipophilic Antioxidants in the By-Products Recovered from Six Cultivars of Sour Cherry (Prunus cerasus L.). Nat. Prod. Res. 2017, 31, 2549–2553. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. IJBS 2008, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Brudzyńska, P.; Kurzawa, M.; Sionkowska, A.; Grisel, M. Antioxidant Activity of Plant-Derived Colorants for Potential Cosmetic Application. Cosmetics 2022, 9, 81. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef]
- Telichowska, A.; Kobus-Cisowska, J.; Stuper-Szablewska, K.; Ligaj, M.; Tichoniuk, M.; Szymanowska, D.; Szulc, P. Exploring Antimicrobial and Antioxidant Properties of Phytocomponents from Different Anatomical Parts of Prunus padus L. Int. J. Food Prop. 2020, 23, 2097–2109. [Google Scholar] [CrossRef]
- Farhoosh, R.; Hoseini-Yazdi, S.-Z. Evolution of Oxidative Values during Kinetic Studies on Olive Oil Oxidation in the Rancimat Test. J. Am. Oil Chem. Soc. 2014, 91, 281–293. [Google Scholar] [CrossRef]
- Analysis and Detection of Edible Oil Oxidation. Lipid Technol. 2016, 28, 145–148. [CrossRef]
- Guéraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P.M.; Huc, L.; Jouanin, I.; Siems, W.; Uchida, K. Chemistry and Biochemistry of Lipid Peroxidation Products. Free Radic. Res. 2010, 44, 1098–1124. [Google Scholar] [CrossRef]
- Zuo, W.; Hu, X.; Yang, Y.; Jiang, L.; Ren, L.; Huang, H. Development of an Improved Method to Determine Saturated Aliphatic Aldehydes in Docosahexaenoic Acid-Rich Oil: A Supplement to p-Anisidine Value. Eur. J. Lipid Sci. Technol. 2017, 119, 1700243. [Google Scholar] [CrossRef]
- Gordon, M.H. 7-Factors Affecting Lipid Oxidation. In Understanding and Measuring the Shelf-Life of Food; Steele, R., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2004; pp. 128–141. ISBN 978-1-85573-732-7. [Google Scholar]
- AtiK, İ.; Şevik, R.; Karasu, S. Physicochemical Properties of Cold Pressed Cherry (Prunus avium) Seed Spring, Fatty Acid, Sterol, Tocopherol and Phenolic Component Characterization. Eur. J. Sci. Technol. 2019, 17, 959–965. [Google Scholar] [CrossRef]
- Cao, J.; Li, H.; Xia, X.; Zou, X.-G.; Li, J.; Zhu, X.-M.; Deng, Z.-Y. Effect of Fatty Acid and Tocopherol on Oxidative Stability of Vegetable Oils with Limited Air. Int. J. Food Prop. 2015, 18, 808–820. [Google Scholar] [CrossRef]
- Summo, C.; Caponio, F.; Paradiso, V.M.; Pasqualone, A.; Gomes, T. Vacuum-Packed Ripened Sausages: Evolution of Oxidative and Hydrolytic Degradation of Lipid Fraction during Long-Term Storage and Influence on the Sensory Properties. Meat Sci. 2010, 84, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ramesh, M.; Kalghatgi, A. Design of Optimized CPW Fed Monopole Antenna for UWB Applications. In 2005 Asia-Pacific Microwave Conference Proceedings; IEEE: New York, NY, USA, 2006; ISBN 978-0-7803-9433-9. [Google Scholar]
- Koh, E.; Surh, J. Food Types and Frying Frequency Affect the Lipid Oxidation of Deep Frying Oil for the Preparation of School Meals in Korea. Food Chem. 2015, 174, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Cabo, N. Fourier Transform Infrared Spectra Data versus Peroxide and Anisidine Values to Determine Oxidative Stability of Edible Oils. Food Chem. 2002, 77, 503–510. [Google Scholar] [CrossRef]
- Siddique, A.; Anwar, F.; Maleeha, M.; Fatima, A. Antioxidant Activity of Different Solvent Extracts of Moringa oleifera Leaves under Accelerated Storage of Sunflower Oil. Asian J. Plant Sci. 2005, 4, 630–635. [Google Scholar] [CrossRef]
- Naz, S.; Sheikh, H.; Siddiqi, R.; Asad Sayeed, S. Oxidative Stability of Olive, Corn and Soybean Oil under Different Conditions. Food Chem. 2004, 88, 253–259. [Google Scholar] [CrossRef]
- Villavicencio, J.D.; Zoffoli, J.P.; Plotto, A.; Contreras, C. Aroma Compounds Are Responsible for an Herbaceous Off-Flavor in the Sweet Cherry (Prunus avium L.) Cv. Regina during Fruit Development. Agronomy 2021, 11, 2020. [Google Scholar] [CrossRef]
- Calder, P.C.; Adolph, M.; Deutz, N.E.; Grau, T.; Innes, J.K.; Klek, S.; Lev, S.; Mayer, K.; Michael-Titus, A.T.; Pradelli, L.; et al. Lipids in the Intensive Care Unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018, 37, 1–18. [Google Scholar] [CrossRef]
- Ben-Ali, M.; Dhouib, K.; Damak, M.; Allouche, N. Stabilization of Sunflower Oil During Accelerated Storage: Use of Basil Extract as a Potential Alternative to Synthetic Antioxidants. Int. J. Food Prop. 2014, 17, 1547–1559. [Google Scholar] [CrossRef]
Fatty Acids (%) | PSKO | PAKO |
---|---|---|
C16:0 | 6.04 ± 0.15 b | 7.34 ± 0.5 a |
C18:1 | 29.35 ± 1.29 a | 18.57 ± 0.97 b |
C18:2 (ω-6) | 64.4 ± 3.28 a | 57.86 ± 2.37 b |
C20:0 | nd * | 2.78 ± 0.06 |
C18:3 (ω-3) | 0.21 ± 0.01 b | 1.42 ± 0.07 a |
C18:3 (ω-3) isomer | nd | 11.87 ± 0.58 |
C22:0 | nd | 0.16 ± 0 |
∑ SFA 1 | 6.04 ± 0.15 b | 10.28 ± 0.56 a |
∑ MUFA 2 | 29.35 ± 1.29 a | 18.57 ± 0.97 b |
∑ PUFA 3 | 64.61 ± 3.29 a | 71.15 ± 3.02 a |
∑ UFA 4 | 93.96 ± 4.58 a | 89.72 ± 3.99 a |
PUFA: SFA ratio | 10.7 ± 0.28 a | 6.92 ± 0.09 b |
MUFA: PUFA ratio | 0.45 ± 0 a | 0.26 ± 0 b |
ω-6:3 ratio | 303.69 ± 3.96 a | 4.36 ± 0.04 b |
COX 5 | 6.97 ± 0.35 a | 9.02 ± 0.39 b |
Tocopherols (mg/Kg) | PSKO | PAKO |
---|---|---|
α-tocopherol | 30.6 ± 2.1 a | 16.2 ± 0.7 b |
β-tocopherol | not detected | not detected |
γ-tocopherol | 204.5 ± 10.2 b | 237.3 ± 11.9 a |
δ-tocopherol | 4.8 ± 0.3 b | 6 ± 0.1 a |
Total | 239.9 ± 12.6 a | 259.5 ± 12.7 a |
6.8 ± 0.1 b | 15.1 ± 0.1 a |
Index | PSKO | PAKO |
---|---|---|
TPC (mg GAE/Kg oil) | 2.28 ± 0.82 b | 9.5 ± 1.47 a |
TCC (mg CtE/Kg oil) | 218.62 ± 2.75 a | 40.78 ± 1.94 b |
AAC (μmol TE/Kg oil) | 14.22 ± 0.74 a | 11.87 ± 0.35 b |
Index | PSKO | PAKO |
---|---|---|
PV (mmol H2O2/Kg oil) | 1.48 ± 0.05 a | 1.53 ± 0.06 a |
TBARS (mmol MDE/Kg oil) | 0.46 ± 0.01 a | 0.34 ± 0.03 b |
p-AV | 23.23 ± 0.55 b | 32.76 ± 0.51 a |
6.81 ± 0.01 b | 68.94 ± 0.22 a | |
0.64 ± 0.01 b | 151.11 ± 1.85 a | |
TV | 26.19 ± 0.56 b | 35.83 ± 0.63 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability. Biomass 2024, 4, 49-64. https://doi.org/10.3390/biomass4010003
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability. Biomass. 2024; 4(1):49-64. https://doi.org/10.3390/biomass4010003
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Konstantina Kotsou, Dimitrios Kalompatsios, Eleni Bozinou, and Stavros I. Lalas. 2024. "Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability" Biomass 4, no. 1: 49-64. https://doi.org/10.3390/biomass4010003
APA StyleAthanasiadis, V., Chatzimitakos, T., Kotsou, K., Kalompatsios, D., Bozinou, E., & Lalas, S. I. (2024). Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability. Biomass, 4(1), 49-64. https://doi.org/10.3390/biomass4010003