Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = TAAR2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1823 KiB  
Article
Transcriptomic Analysis of Taar5 Expression and Co-Expression Networks in the Cerebellum During Perinatal Development
by Anastasia N. Vaganova, Ramilya Z. Murtazina, Anna B. Volnova, Vassiliy Tsytsarev, Alena B. Karaseva, Evgeniya V. Efimova and Raul R. Gainetdinov
Brain Sci. 2025, 15(8), 791; https://doi.org/10.3390/brainsci15080791 - 25 Jul 2025
Viewed by 300
Abstract
Background: Dopamine participates in the cognitive cerebellar role and in cerebellum development. The trace amine-associated receptor (TAARs, TAAR1-TAAR9) system contributes to dopamine signaling tuning. So, the aim of the present study is the analysis of the TAARs’ gene expression and functional associations in [...] Read more.
Background: Dopamine participates in the cognitive cerebellar role and in cerebellum development. The trace amine-associated receptor (TAARs, TAAR1-TAAR9) system contributes to dopamine signaling tuning. So, the aim of the present study is the analysis of the TAARs’ gene expression and functional associations in prenatal and neonatal mouse cerebellums. Methods: The transcriptomic data represented in the GEO repository was performed to identify Taars expression and co-expression patterns in embrionic and postnatal mouse cerebellum. Results: Open transcriptomic data analysis showed cerebellar expression of the Taar5 gene mRNA both in prenatal and early postnatal samples. The identified Taar5 expression was confirmed by RT-PCR in P5 mice. We identified the association between Taar5 expression and the expression of proliferation-related genes in late prenatal E13.5 samples, which was replaced by co-expression with genes involved in metabolism in P5–6 samples. These associations are suggested to mirror the previously identified Taar5 expression in Purkinje cells, which proliferate at the E13.5 and mature in the postnatal period. However, the analysis of TAAR5 co-expression with markers of different cell populations revealed the pronounced co-expression of TAAR5 in the P5–6 cerebellum with microglial markers, which is shifted to the association with astroglial markers in P10. Conclusions: The Taar5 gene was found to be active in the cerebellum samples taken around birth, and its co-expression pattern differs in the embryo stage and the early days after birth. We suggest that the Taar5 receptor may be involved in cerebellum development; however, further research is necessary to elucidate its role in this process. Full article
Show Figures

Figure 1

21 pages, 2147 KiB  
Article
TAAR8 in the Brain: Implications for Dopaminergic Function, Neurogenesis, and Behavior
by Taisiia S. Shemiakova, Alisa A. Markina, Evgeniya V. Efimova, Ramilya Z. Murtazina, Anna B. Volnova, Aleksandr A. Veshchitskii, Elena I. Leonova and Raul R. Gainetdinov
Biomedicines 2025, 13(6), 1391; https://doi.org/10.3390/biomedicines13061391 - 6 Jun 2025
Cited by 1 | Viewed by 576
Abstract
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other [...] Read more.
Background/Objectives: G protein-coupled trace amine-associated receptors (TAARs) belong to a family of biogenic amine-sensing receptors. TAAR1 is the best-investigated receptor of this family, and TAAR1 agonists are already being tested in clinical studies for the treatment of schizophrenia, anxiety, and depression. Meanwhile, other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 in humans) are mostly known for their olfactory function, sensing innate odors. At the same time, there is growing evidence that these receptors may also be involved in brain function. TAAR8 is the least studied TAAR family member, and currently, there is no data on its function in the mammalian central nervous system. Methods: We generated triple knockout (tTAAR8-KO) mice lacking all murine Taar8 isoforms (Taar8a, Taar8b, and Taar8c) using CRISPR-Cas9 technology. In this study, we performed the first phenotyping of tTAAR8-KO mice for behavioral, electrophysiological, and neurochemical characteristics. Results: During the study, we found a number of alterations specific to tTAAR8-KO mice compared to controls. tTAAR8-KO mice demonstrated better short-term memory, more depressive-like behavior, and higher body temperature. Also, we observed changes in the dopaminergic system, brain electrophysiological activity, and adult neurogenic functions in mice lacking Taar8 isoforms. Conclusions: Based on the data obtained, it can be assumed that the physiological TAAR8 role is not limited only to the innate olfactory function, as previously proposed. TAAR8 could be involved in brain function, in particular in dopamine function regulation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

13 pages, 7585 KiB  
Article
Harnessing Odorant Receptor Activation to Suppress Real Malodor
by Reina Kanemaki, Kahori Kishigami, Mei Saito, Masafumi Yohda and Yosuke Fukutani
Int. J. Mol. Sci. 2025, 26(4), 1566; https://doi.org/10.3390/ijms26041566 - 13 Feb 2025
Viewed by 1234
Abstract
Mammals, including humans, sense smell by the responses of odorant receptors (ORs) to odor molecules. We have developed an effective method to identify novel antagonists capable of suppressing the pungent odor of cat urine by targeting specific ORs. Since odors are typically complex [...] Read more.
Mammals, including humans, sense smell by the responses of odorant receptors (ORs) to odor molecules. We have developed an effective method to identify novel antagonists capable of suppressing the pungent odor of cat urine by targeting specific ORs. Since odors are typically complex mixtures of multiple volatile compounds, olfactory perception can vary depending on the composition. We analyzed the response of ORs to cat urine odor using vapor stimulation assays to identify the responding ORs. Gas chromatography–mass spectrometry was then performed to identify compounds eliciting responses from these ORs. Trace-amine-associated receptor 5 (TAAR5) demonstrated a significant response associated with the odor intensity of cat urine, identifying trimethylamine as a major contributor to the strong odor. From hundreds of candidate compounds, we identified several novel antagonists that exhibited greater efficacy than a known TAAR5 antagonist. These compounds not only reduced the responses of TAAR5-expressing cells to cat urine odor but also significantly reduced odor intensity and improved sensory pleasantness in human tests. Our findings suggest that targeting ORs responsive to specific odors, without isolating their individual components, is a promising strategy for developing deodorizing agents against complex malodors like cat urine odor. This study emphasizes the value of using real odor mixtures to enhance our understanding of odor perception. Full article
(This article belongs to the Special Issue Membrane Proteins: Structure, Function, and Drug Discovery)
Show Figures

Graphical abstract

16 pages, 2783 KiB  
Article
Functional Analysis of TAAR1 Expression in the Intestine Wall and the Effect of Its Gene Knockout on the Gut Microbiota in Mice
by Anastasia N. Vaganova, Ilya S. Zhukov, Taisiia S. Shemiakova, Konstantin A. Rozhkov, Lyubov S. Alferova, Alena B. Karaseva, Elena I. Ermolenko and Raul R. Gainetdinov
Int. J. Mol. Sci. 2024, 25(23), 13216; https://doi.org/10.3390/ijms252313216 - 9 Dec 2024
Cited by 2 | Viewed by 1555
Abstract
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce [...] Read more.
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota. The purpose of this present study was to clarify the TAAR1 function in the intestinal wall and estimate the TAAR1 gene knockout effect on gut microbiota composition. By analyzing public transcriptomic data of the GEO repository, we identified TAAR1 expression in enterocytes, enteroendocrine cells, tuft cells, and myenteric neurons in mice. The analysis of genes co-expressed with TAAR1 in enteroendocrine cells allows us to suggest the TAAR1 involvement in enteroendocrine cell maturation. Also, in myenteric neurons, we identified the co-expression of TAAR1 with calbindin, which is specific for sensory neurons. The 16S rRNA gene-based analysis of fecal microbiota revealed a slight but significant impact of TAAR1 gene knockout in mice on the gut microbial community, which manifests in the higher diversity, accompanied by low between-sample variability and reorganization of the microbial co-occurrence network. Full article
Show Figures

Figure 1

16 pages, 1928 KiB  
Article
Knocking Out TAAR5: A Pathway to Enhanced Neurogenesis and Dopamine Signaling in the Striatum
by Anastasia N. Vaganova, Zoia S. Fesenko, Evgeniya V. Efimova, Sergei A. Chekrygin, Daria D. Shafranskaya, Andrey D. Prjibelski, Nataliia V. Katolikova and Raul R. Gainetdinov
Cells 2024, 13(22), 1910; https://doi.org/10.3390/cells13221910 - 19 Nov 2024
Cited by 1 | Viewed by 1936
Abstract
The member of trace-amine associated receptor family, TAAR5 receptor was suggested to recognize tertiary amines, mostly in the olfactory system; however, knocking out the receptor TAAR5 in mice showed an enhancing effect on adult neurogenesis and dopamine neurotransmission in the striatum. To estimate [...] Read more.
The member of trace-amine associated receptor family, TAAR5 receptor was suggested to recognize tertiary amines, mostly in the olfactory system; however, knocking out the receptor TAAR5 in mice showed an enhancing effect on adult neurogenesis and dopamine neurotransmission in the striatum. To estimate the role of the TAAR5, we performed gene expression profiling of striatal samples from TAAR5 knockout (KO) mice and their wild-type littermates. The higher expression of several genes involved in dopaminergic signaling and the downregulation of genes associated with gliogenesis were revealed in TAAR5-KO mice. Meanwhile, the upregulating effect of TAAR5 knockout on genes was associated with neurogenesis and synaptogenesis. The estimation of cell-type relative abundance through the deconvolution of RNA sequencing data demonstrated that TAAR5-KO striatum samples contain more D2 dopamine receptor-expressing medium spiny neurons but fewer astrocytes than wild-type mice. Our findings indicate that previously identified improvement in cognitive functions and motor coordination in TAAR5-KO mice may activate genes involved in neurogenesis, synaptogenesis, and synapse organization in the striatum. These data suggest that the pharmaceutical targeting of TAAR5 may improve striatum-dependent cognitive or motor functions. At the same time, a more detailed investigation of future TAAR5 antagonists’ effect on glia development is necessary. Full article
Show Figures

Figure 1

20 pages, 3871 KiB  
Article
Diversity of Neurotransmitter-Producing Human Skin Commensals
by Samane Rahmdel, Moushumi Purkayastha, Mulugeta Nega, Elisa Liberini, Ningna Li, Arif Luqman, Holger Brüggemann and Friedrich Götz
Int. J. Mol. Sci. 2024, 25(22), 12345; https://doi.org/10.3390/ijms252212345 - 17 Nov 2024
Viewed by 1934
Abstract
Recent findings indicate that human microbiota can excrete trace amines, dopamine, and serotonin. These neurotransmitters (NTs) can either affect classical neurotransmitter signaling or directly trigger trace amine-associated receptors (TAARs), with still unclear consequences for host physiology. Compared to gut microbiota, less information is [...] Read more.
Recent findings indicate that human microbiota can excrete trace amines, dopamine, and serotonin. These neurotransmitters (NTs) can either affect classical neurotransmitter signaling or directly trigger trace amine-associated receptors (TAARs), with still unclear consequences for host physiology. Compared to gut microbiota, less information is available on the role of skin microbiota in NT production. To explore this, 1909 skin isolates, mainly from the genera Staphylococcus, Bacillus, and Corynebacterium, were tested for NT production. Only 6.7% of the isolates were capable of producing NTs, all of which belonged to the Staphylococcus genus. Based on substrate specificity, we identified two distinct profiles among the NT producers. One group primarily produced tryptamine (TRY) and phenylethylamine (PEA), while the other mainly produced tyramine (TYM) and dopamine (Dopa). These differing production profiles could be attributed to the activity of two distinct aromatic amino acid decarboxylase enzymes, SadA and TDC, responsible for generating the TRY/PEA and TYM/Dopa product spectra, respectively. SadA and TDC orthologues differ in structure and size; SadA has approximately 475 amino acids, whereas the TDC type consists of about 620 amino acids. The genomic localization of the respective genes also varies: tdc genes are typically found in small, conserved gene clusters, while sadA genes are not. The heterologous expression of sadA and tdc in Escherichia coli yielded the same product spectrum as the parent strains. The possible effects of skin microbiota-derived NTs on neuroreceptor signaling in the human host remain to be investigated. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Microbe–Skin Interactions)
Show Figures

Figure 1

15 pages, 1903 KiB  
Article
Wakefulness Induced by TAAR1 Partial Agonism in Mice Is Mediated Through Dopaminergic Neurotransmission
by Sunmee Park, Jasmine Heu, Marius C. Hoener and Thomas S. Kilduff
Int. J. Mol. Sci. 2024, 25(21), 11351; https://doi.org/10.3390/ijms252111351 - 22 Oct 2024
Cited by 1 | Viewed by 1049
Abstract
Trace amine-associated receptor 1 (TAAR1) is a negative regulator of dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in rodents and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake regulation were [...] Read more.
Trace amine-associated receptor 1 (TAAR1) is a negative regulator of dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in rodents and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake regulation were due, in part, to DA release. Male C57BL6/J mice (n = 8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R + D2R antagonists, or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle per os. EEG, EMG, subcutaneous temperature, and activity were recorded across the 8 treatments and sleep architecture was analyzed for 6 h post-dosing. As described previously, RO5263397 increased wakefulness and delayed NREM and REM sleep onset. D1, D2, and D1 + D2 pretreatment reduced RO5263397-induced wakefulness for 1–2 h after dosing but only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected the TAAR1-mediated suppression of REM sleep. These results suggest that, whereas the TAAR1 effects on wakefulness are mediated, in part, through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. In contrast, the TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms. Full article
(This article belongs to the Special Issue Biological Research of Rhythms in the Nervous System)
Show Figures

Figure 1

7 pages, 888 KiB  
Brief Report
TAAR8 Mediates Increased Migrasome Formation by Cadaverine in RPE Cells
by Joon Bum Kim, Ji-Eun Bae, Na Yeon Park, Yong Hwan Kim, Seong Hyun Kim, Hyejin Hyung, Eunbyul Yeom, Dong Kyu Choi, Kwiwan Jeong and Dong-Hyung Cho
Curr. Issues Mol. Biol. 2024, 46(8), 8658-8664; https://doi.org/10.3390/cimb46080510 - 7 Aug 2024
Cited by 2 | Viewed by 1570
Abstract
Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described [...] Read more.
Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

47 pages, 22815 KiB  
Review
Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands
by Naomi Scarano, Stefano Espinoza, Chiara Brullo and Elena Cichero
Int. J. Mol. Sci. 2024, 25(15), 8226; https://doi.org/10.3390/ijms25158226 - 27 Jul 2024
Viewed by 2474
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the [...] Read more.
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1–ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed. Full article
Show Figures

Figure 1

13 pages, 2343 KiB  
Article
Dopamine Receptors and TAAR1 Functional Interaction Patterns in the Duodenum Are Impaired in Gastrointestinal Disorders
by Anastasia N. Vaganova, Alisa A. Markina, Aleksandr M. Belousov, Karina V. Lenskaia and Raul R. Gainetdinov
Biomedicines 2024, 12(7), 1590; https://doi.org/10.3390/biomedicines12071590 - 17 Jul 2024
Viewed by 1542
Abstract
Currently, there is a growing amount of evidence for the involvement of dopamine receptors and the functionally related trace amine-associated receptor, TAAR1, in upper intestinal function. In the present study, we analyzed their expression in the duodenum using publicly accessible transcriptomic data. We [...] Read more.
Currently, there is a growing amount of evidence for the involvement of dopamine receptors and the functionally related trace amine-associated receptor, TAAR1, in upper intestinal function. In the present study, we analyzed their expression in the duodenum using publicly accessible transcriptomic data. We revealed the expression of DRD1, DRD2, DRD4, DRD5, and TAAR1 genes in different available datasets. The results of the gene ontology (GO) enrichment analysis for DRD2 and especially TAAR1 co-expressed genes were consistent with the previously described localization of D2 and TAAR1 in enteric neurons and secretory cells, respectively. Considering that co-expressed genes are more likely to be involved in the same biological processes, we analyzed genes that are co-expressed with TAAR1, DRD2, DRD4, and DRD5 genes in healthy mucosa and duodenal samples from patients with functional dyspepsia (FD) or diabetes-associated gastrointestinal symptoms. Both pathological conditions showed a deregulation of co-expression patterns, with a high discrepancy between DRDs and TAAR1 co-expressed gene sets in normal tissues and patients’ samples and a loss of these genes’ functional similarity. Meanwhile, we discovered specific changes in co-expression patterns that may suggest the involvement of TAAR1 and D5 receptors in pathologic or compensatory processes in FD or diabetes accordingly. Despite our findings suggesting the possible role of TAAR1 and dopamine receptors in functional diseases of the upper intestine, underlying mechanisms need experimental exploration and validation. Full article
(This article belongs to the Special Issue Physiopathology and Pharmacology of the Gastrointestinal Tract)
Show Figures

Figure 1

40 pages, 2408 KiB  
Article
G Protein-Coupled Receptor–Ligand Pose and Functional Class Prediction
by Gregory L. Szwabowski, Makenzie Griffing, Elijah J. Mugabe, Daniel O’Malley, Lindsey N. Baker, Daniel L. Baker and Abby L. Parrill
Int. J. Mol. Sci. 2024, 25(13), 6876; https://doi.org/10.3390/ijms25136876 - 22 Jun 2024
Viewed by 2045
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate [...] Read more.
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand–receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives. Full article
(This article belongs to the Special Issue Application and Latest Progress of Bioinformatics in Drug Discovery)
Show Figures

Graphical abstract

15 pages, 1025 KiB  
Review
TAARs as Novel Therapeutic Targets for the Treatment of Depression: A Narrative Review of the Interconnection with Monoamines and Adult Neurogenesis
by Taisiia S. Shemiakova, Evgeniya V. Efimova and Raul R. Gainetdinov
Biomedicines 2024, 12(6), 1263; https://doi.org/10.3390/biomedicines12061263 - 6 Jun 2024
Cited by 8 | Viewed by 3023
Abstract
Depression is a common mental illness of great concern. Current therapy for depression is only suitable for 80% of patients and is often associated with unwanted side effects. In this regard, the search for and development of new antidepressant agents remains an urgent [...] Read more.
Depression is a common mental illness of great concern. Current therapy for depression is only suitable for 80% of patients and is often associated with unwanted side effects. In this regard, the search for and development of new antidepressant agents remains an urgent task. In this review, we discuss the current available evidence indicating that G protein-coupled trace amine-associated receptors (TAARs) might represent new targets for depression treatment. The most frequently studied receptor TAAR1 has already been investigated in the treatment of schizophrenia, demonstrating antidepressant and anxiolytic properties. In fact, the TAAR1 agonist Ulotaront is currently undergoing phase 2/3 clinical trials testing its safety and efficacy in the treatment of major depressive disorder and generalized anxiety disorder. Other members of the TAAR family (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) are not only involved in the innate olfaction of volatile amines, but are also expressed in the limbic brain areas. Furthermore, animal studies have shown that TAAR2 and TAAR5 regulate emotional behaviors and thus may hold promise as potential antidepressant targets. Of particular interest is their connection with the dopamine and serotonin systems of the brain and their involvement in the regulation of adult neurogenesis, known to be affected by the antidepressant drugs currently in use. Further non-clinical and clinical studies are necessary to validate TAAR1 (and potentially other TAARs) as novel therapeutic targets for the treatment of depression. Full article
Show Figures

Figure 1

18 pages, 3341 KiB  
Article
In Vitro Activation of Human Adrenergic Receptors and Trace Amine-Associated Receptor 1 by Phenethylamine Analogues Present in Food Supplements
by Nicole E. T. Pinckaers, W. Matthijs Blankesteijn, Anastasiya Mircheva, Xiao Shi, Antoon Opperhuizen, Frederik-Jan van Schooten and Misha F. Vrolijk
Nutrients 2024, 16(11), 1567; https://doi.org/10.3390/nu16111567 - 22 May 2024
Cited by 5 | Viewed by 2723
Abstract
Pre-workout supplements are popular among sport athletes and overweight individuals. Phenethylamines (PEAs) and alkylamines (AA) are widely present in these supplements. Although the health effects of these analogues are not well understood yet, they are hypothesised to be agonists of adrenergic (ADR) and [...] Read more.
Pre-workout supplements are popular among sport athletes and overweight individuals. Phenethylamines (PEAs) and alkylamines (AA) are widely present in these supplements. Although the health effects of these analogues are not well understood yet, they are hypothesised to be agonists of adrenergic (ADR) and trace amine-associated receptors (TAARs). Therefore, we aimed to pharmacologically characterise these compounds by investigating their activating properties of ADRs and TAAR1 in vitro. The potency and efficacy of the selected PEAs and AAs was studied by using cell lines overexpressing human ADRα1A1B1D2a2B12 or TAAR1. Concentration–response relationships are expressed as percentages of the maximal signal obtained by the full ADR agonist adrenaline or the full TAAR1 agonist phenethylamine. Multiple PEAs activated ADRs (EC50 = 34 nM–690 µM; Emax = 8–105%). Almost all PEAs activated TAAR1 (EC50 = 1.8–92 µM; Emax = 40–104%). Our results reveal the pharmacological profile of PEAs and AAs that are often used in food supplements. Several PEAs have strong agonistic properties on multiple receptors and resemble potencies of the endogenous ligands, indicating that they might further stimulate the already activated sympathetic nervous system in exercising athletes via multiple mechanisms. The use of supplements containing one, or a combination of, PEA(s) may pose a health risk for their consumers. Full article
(This article belongs to the Special Issue Sport Supplementation for Performance and Health (Volume II))
Show Figures

Figure 1

12 pages, 2724 KiB  
Review
Trace Amine-Associated Receptors’ Role in Immune System Functions
by Vyacheslav I. Moiseenko, Vera A. Apryatina, Raul R. Gainetdinov and Sergey A. Apryatin
Biomedicines 2024, 12(4), 893; https://doi.org/10.3390/biomedicines12040893 - 18 Apr 2024
Cited by 9 | Viewed by 2598
Abstract
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated [...] Read more.
Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs’ role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs’ involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions. Full article
(This article belongs to the Section Immunology and Immunotherapy)
26 pages, 11845 KiB  
Article
Discovery of a Novel Chemo-Type for TAAR1 Agonism via Molecular Modeling
by Giancarlo Grossi, Naomi Scarano, Francesca Musumeci, Michele Tonelli, Evgeny Kanov, Anna Carbone, Paola Fossa, Raul R. Gainetdinov, Elena Cichero and Silvia Schenone
Molecules 2024, 29(8), 1739; https://doi.org/10.3390/molecules29081739 - 11 Apr 2024
Cited by 6 | Viewed by 2234
Abstract
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to [...] Read more.
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a “Y-shape” conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a10a, leading to the identification of derivatives 1a3a (hTAAR1 EC50 = 526.3–657.4 nM) as promising novel TAAR1 agonists. Full article
Show Figures

Figure 1

Back to TopTop