Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Stagonosporopsis cucurbitacearum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3462 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Elucidates the Defense Mechanisms of Pumpkin Against Gummy Stem Blight
by Qian Zhao, Liyan Zhang, Weibo Han, Ziyu Wang and Jianzhong Wu
Int. J. Mol. Sci. 2025, 26(6), 2586; https://doi.org/10.3390/ijms26062586 - 13 Mar 2025
Viewed by 633
Abstract
Gummy stem blight (GSB) is a pervasive disease that causes considerable economic losses in cucurbit crops and poses a significant threat to pumpkin production. However, the molecular interaction mechanisms between pumpkin and the pathogen remain largely unexplored. In our previous research, we isolated [...] Read more.
Gummy stem blight (GSB) is a pervasive disease that causes considerable economic losses in cucurbit crops and poses a significant threat to pumpkin production. However, the molecular interaction mechanisms between pumpkin and the pathogen remain largely unexplored. In our previous research, we isolated and identified Stagonosporopsis cucurbitacearum (Sc) as the primary causative agent of pumpkin stem blight in Northeast China. Through whole-genome analysis, we identified several pathogenic genes associated with Sc infection in pumpkins. In this study, we performed a comprehensive comparative transcriptomic and metabolomic analysis of unvaccinated and Sc-inoculated pumpkins. We observed distinct differences in gene expression profiles, with these genes being significantly enriched in pathways related to plant–pathogen interactions, phytohormone signal transduction, and metabolic processes, including phenylpropanoid biosynthesis. Joint analysis revealed that the phenylpropanoid biosynthesis pathway was activated in Sc-infected pumpkins. Notably, two metabolites involved in the phenylpropanoid and flavonoid biosynthesis pathways, p-coumaric acid and quercetin, exhibited significant upregulation, suggesting their potential roles in conferring resistance to GSB. These findings enhance our understanding of the molecular mechanisms underlying the defense response against GSB infection in pumpkins and may provide valuable insights for developing strategies to control GSB disease. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

17 pages, 5519 KiB  
Article
Long Noncoding RNA–Messenger RNA (lncRNA–mRNA) Network in Resistance to Gummy Stem Blight (Stagonosporopsis cucurbitacearum) of Melon Plant Introduction (PI) 420145
by Rui Zhang, Jing Chen, Yongbing Zhang, Xiumei Lu, Chunyan Cheng, Ji Li, Qunfeng Lou, Yuhui Wang and Chuntao Qian
Horticulturae 2025, 11(1), 31; https://doi.org/10.3390/horticulturae11010031 - 2 Jan 2025
Viewed by 970
Abstract
Gummy stem blight (GSB), caused by Stagonosporopsis cucurbitacearum (Didymella bryoniae), poses a growing threat to greenhouse melon production. Despite this, the defense mechanism of melon against S. cucurbitacearum remains poorly understood. In this study, by employing electron microscopy and transcriptome sequencing, [...] Read more.
Gummy stem blight (GSB), caused by Stagonosporopsis cucurbitacearum (Didymella bryoniae), poses a growing threat to greenhouse melon production. Despite this, the defense mechanism of melon against S. cucurbitacearum remains poorly understood. In this study, by employing electron microscopy and transcriptome sequencing, we investigated the cellular ultrastructure differences and gene expression dynamics of two melon accessions, PI 420145 (resistant to GSB) and ‘Baipicui’ (susceptible), pre- and post- inoculation. Our results revealed that PI 420145 exhibits a thicker waxy layer on the leaf surface and limited conidial germination without obvious signs of cell damage compared to ‘Baipicui’. The transcriptomic analysis identified a total of 23,078 differentially expressed genes (DEGs) and 974 differentially expressed long noncoding RNAs (DELs). Specifically, phenylpropanoid biosynthesis, cyanoamino acid metabolism, and MAPK signaling–plant and plant–pathogen interactions were enriched in PI 420145, while ‘Baipicui’ displayed enrichment in metabolism and autophagy. Additionally, through lncRNA–mRNA network construction, we identified a total of 38 lncRNA–mRNA targeted regulatory relationships in the four most significant KEGG pathways for disease resistance. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

15 pages, 2313 KiB  
Article
Sodium Tetraborate Induces Systemic Resistance in Watermelon against Stagonosporopsis cucurbitacearum
by Nguyen Thi Thu Nga, Eigil de Neergaard, Hunthrike Shekar Shetty, Tran Thi Thu Thuy, Pham Van Kim and Hans Jørgen Lyngs Jørgensen
Agronomy 2024, 14(5), 979; https://doi.org/10.3390/agronomy14050979 - 7 May 2024
Cited by 3 | Viewed by 1422
Abstract
Imbibing watermelon seeds in 1 mM sodium tetraborate (Na2B4O7) for 24 h systemically protected plants against foliar infection by Stagonosporopsis cucurbitacearum in detached leaves and under greenhouse conditions. The treatment resulted in both a reduction in the [...] Read more.
Imbibing watermelon seeds in 1 mM sodium tetraborate (Na2B4O7) for 24 h systemically protected plants against foliar infection by Stagonosporopsis cucurbitacearum in detached leaves and under greenhouse conditions. The treatment resulted in both a reduction in the overall percentage of leaf infection as well as in the size of lesions. Studies of the mechanisms by which Na2B4O7 protected watermelon showed that there was no direct effect on the S. cucurbitacearum mycelium growth in vitro. On the other hand, plants raised from seeds primed with Na2B4O7 showed a higher frequency of fluorescent epidermal cells compared to the plants treated with water. This indicates that a higher number of cells expressed the hypersensitive response after Na2B4O7 priming. In addition, there was an increase in peroxidase activity and an enhanced accumulation of a 45 kDa acidic peroxidase isoform during the early stages of infection in plants treated with Na2B4O7 compared to plants treated with water and this was positively correlated to the reduction of leaf infection caused by the pathogen. These results indicate that Na2B4O7 is able to induce systemic resistance in watermelon against S. cucurbitacearum by activating the hypersensitive reaction at penetration sites, increasing peroxidase activity and altering the peroxidase isozyme profile. Although each individual response may only have had a minor effect, their combined effects had a reducing effect on the disease. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 1876 KiB  
Article
Infection Biology of Stagonosporopsis cucurbitacearum in Watermelon and Defence Responses in the Host
by Nguyen Thi Thu Nga, Eigil de Neergaard and Hans Jørgen Lyngs Jørgensen
Agriculture 2024, 14(3), 380; https://doi.org/10.3390/agriculture14030380 - 27 Feb 2024
Cited by 3 | Viewed by 2329
Abstract
Infection biology and defence responses of watermelon attacked by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae) were studied in two genotypes, accessions PI189225 (moderately resistant) and 232-0125/B (susceptible). On intact leaf surfaces, spores started to germinate 14 h after inoculation (hai) with one to [...] Read more.
Infection biology and defence responses of watermelon attacked by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae) were studied in two genotypes, accessions PI189225 (moderately resistant) and 232-0125/B (susceptible). On intact leaf surfaces, spores started to germinate 14 h after inoculation (hai) with one to three germ tubes, which subsequently developed and formed appressoria. Invasion of the host tissue started at 20 hai by direct penetration from appressoria or occasionally indirectly through stomata. In the susceptible accession, a significantly higher number of direct penetrations were observed than in the moderately resistant. After invasion, hyphal colonisation was restricted in the intercellular spaces in the moderately resistant accession, whereas they developed extensively, causing tissue decay, in the susceptible accession. Macroscopic symptoms were seen in leaves of the moderately resistant accession as small and dry lesions, whereas big, water-soaked lesions developed on the susceptible accession within 48 hai. Investigations of the defence responses of the two accessions showed accumulation of H2O2 at penetration sites beneath appressoria in the moderately resistant, but to a lesser extent in the susceptible accession. Such H2O2 accumulation correlated with a reduction in penetration frequency and a lower level of hyphal growth after infection in the moderately resistant accession. There was a rapid and early increase in total peroxidase as well as β-1,3-glucanase activity in the moderately resistant compared to the susceptible accession. These results indicate that fungal penetration and development in watermelon are inhibited by a consorted action of different responses including accumulation of H2O2, peroxidase and β-1,3-glucanase. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 3793 KiB  
Article
Diversity and Advantages of Culturable Endophytic Fungi from Tea (Camellia sinensis)
by Thanyarat Onlamun, Autchima Boonthavee and Siraprapa Brooks
J. Fungi 2023, 9(12), 1191; https://doi.org/10.3390/jof9121191 - 13 Dec 2023
Cited by 4 | Viewed by 2595
Abstract
Sordariomycetes, Dothideomycetes, and Eurotioycetes are three classes of endophytes that colocalize with tea (Camellia sinensis). Overall, the diversity indexes in this study indicated a greater abundance of fungal endophytes in roots and stems. Taking the production system into account, [...] Read more.
Sordariomycetes, Dothideomycetes, and Eurotioycetes are three classes of endophytes that colocalize with tea (Camellia sinensis). Overall, the diversity indexes in this study indicated a greater abundance of fungal endophytes in roots and stems. Taking the production system into account, conventional tea plantations exhibit lower diversity compared to organic tea plantations. Notably, the influence of agrochemicals had the largest impact on the fungal endophyte communities within roots and young leaves. Despite the limited fungal diversity in conventional plantations, three fungal endophytes were isolated from tea in this culture system: Diaporthe sp., YI-005; Diaporthe sp., SI-007; and Eurotium sp., RI-008. These isolated endophytes exhibited high antagonistic activity (93.00–97.00% inhibition of hypha growth) against Stagonosporopsis cucurbitacearum, the causal agent of gummy stem blight disease. On the other hand, endophytic fungi isolated from tea in an organic system—Pleosporales sp., SO-006 and Pleosporales sp., RO-013—established the ability to produce indole-3-acetic acid (IAA; 0.65 ± 0.06 µg/mL) and assist the solubilizing phosphorus (5.17 ± 1.03 µg/mL) from the soil, respectively. This suggested that the level of diversity, whether at the tissue level or within the farming system, did not directly correlate with the discovery of beneficial fungi. More importantly, these beneficial fungi showed the potential to develop into biological agents to control the devastating diseases in the cucurbit family and the potential for use as biofertilizers with a wide range of applications in plants. Therefore, it can be concluded that there are no restrictions limiting the use of fungal endophytes solely to the plant host from which they were originally isolated. Full article
(This article belongs to the Special Issue Fungal Plant Pathogens)
Show Figures

Figure 1

13 pages, 5145 KiB  
Article
The Effect of Trichoderma harzianum Hypovirus 1 (ThHV1) and Its Defective RNA ThHV1-S on the Antifungal Activity and Metabolome of Trichoderma koningiopsis T-51
by Jiaqi You, Zheng Hu, Chaohan Li, Hongjuan Yang, Lihua Zhu, Biting Cao, Ronghao Song and Weihong Gu
J. Fungi 2023, 9(2), 175; https://doi.org/10.3390/jof9020175 - 28 Jan 2023
Cited by 4 | Viewed by 2816
Abstract
Mycoviruses widely exist in filamentous fungi and sometimes cause phenotypic changes in hosts. Trichoderma harzianum hypovirus 1 (ThHV1) and its defective RNA ThHV1-S were found in T. harzianum and exhibited high transmissibility. In our previous study, ThHV1 and ThHV1-S were transferred to an [...] Read more.
Mycoviruses widely exist in filamentous fungi and sometimes cause phenotypic changes in hosts. Trichoderma harzianum hypovirus 1 (ThHV1) and its defective RNA ThHV1-S were found in T. harzianum and exhibited high transmissibility. In our previous study, ThHV1 and ThHV1-S were transferred to an excellent biological control agent T. koningiopsis T-51 to form a derivative strain 51-13. In this study, we assessed the metabolic changes in strain 51-13 and antifungal activity of its culture filtrate (CF) and volatile organic compounds (VOCs). The antifungal activity of CF and VOCs of T-51 and 51-13 was different. Compared with the CF of T-51, that of 51-13 exhibited high inhibitory activity against B. cinerea, Sclerotinia sclerotiorum, and Stagonosporopsis cucurbitacearum but low inhibitory activity against Leptosphaeria biglobosa and Villosiclava virens. The VOCs of 51-13 exhibited high inhibitory activity against F. oxysporum but low inhibitory activity against B. cinerea. The transcriptomes of T-51 and 51-13 were compared; 5531 differentially expressed genes (DEGs) were identified in 51-13 with 2904 up- and 2627 downregulated genes. In KEGG enrichment analysis, 1127 DEGs related to metabolic pathways (57.53%) and 396 DEGs related to biosynthesis of secondary metabolites (20.21%) were clearly enriched. From the CF of T-51 and 51-13, 134 differential secondary metabolites (DSMs) were detected between T-51 and 51-13 with 39 up- and 95 downregulated metabolites. From these, 13 upregulated metabolites were selected to test their antifungal activity against B. cinerea. Among them, indole-3-lactic acid and p-coumaric acid methyl ester (MeCA) exhibited strong antifungal activity. The IC50 of MeCA was 657.35 μM and four genes possibly related to the synthesis of MeCA exhibited higher expression in 51-13 than in T-51. This study revealed the mechanism underlying the increase in antifungal activity of T-51 because of the mycovirus and provided novel insights in fungal engineering to obtain bioactive metabolites via mycoviruses. Full article
(This article belongs to the Special Issue Fungal Metabolism in Filamentous Fungi)
Show Figures

Figure 1

14 pages, 1907 KiB  
Article
Potential Action Mechanism and Inhibition Efficacy of Morinda citrifolia Essential Oil and Octanoic Acid against Stagonosporopsis cucurbitacearum Infestations
by Mateus S. Dalcin, Bruna L. Dias, Luis O. Viteri Jumbo, Ana C. S. S. Oliveira, Sabrina H. C. Araújo, Wellington S. Moura, Dalmarcia S. C. Mourão, Talita P. S. Ferreira, Fabricio S. Campos, Alex Sander R. Cangussu, Marcos V. G. Alves, Bruno S. Andrade, Javier G. Mantilla-Afanador, Raimundo W. A. Aguiar, Eugênio E. Oliveira and Gil R. Santos
Molecules 2022, 27(16), 5173; https://doi.org/10.3390/molecules27165173 - 13 Aug 2022
Cited by 8 | Viewed by 3122
Abstract
The use of plant-based products has been shown to efficiently inhibit fungi-mediated diseases in agricultural crops. Here, we extracted and evaluated the composition of noni, Morinda citrifolia L., essential oil and assessed its activities against Stagonosporopsis cucurbitacearum in Cucumis melo L. Using in [...] Read more.
The use of plant-based products has been shown to efficiently inhibit fungi-mediated diseases in agricultural crops. Here, we extracted and evaluated the composition of noni, Morinda citrifolia L., essential oil and assessed its activities against Stagonosporopsis cucurbitacearum in Cucumis melo L. Using in silico molecular approaches, potential interactions between the essential oil major components and S. cucurbitacearum tyrosine–tRNA ligase were predicted. Finally, we also measured the potential interference of plant physiology (the stomatal conductance and net photosynthesis) mediated by the application of the M. citrifolia essential oil. Chromatographic analysis revealed that octanoic acid (75.8%), hexanoic acid (12.8%), and isobutyl pent-4-enyl carbonate (3.1%) were the major essential oil compounds. Octanoic acid and noni essential oil, when used as preventive measures, reduce fungal mycelial growth at a concentration of 5 mg/mL without causing significant damage to the treated leaves, which reinforces their efficacies as preventive tools against S. cucurbitacearum. Molecular docking analyses predicted very stable interactions between the major essential oil constituents and S. cucurbitacearum tyrosine–tRNA ligase, suggesting the interference of these plant-based molecules upon enzyme activation. Octanoic acid and M. citrifolia essential oil at concentrations of 20 mg/mL decreased the stomatal conductance and net photosynthesis rate of melon plants, resulting in robust phytotoxicity. Collectively, our findings indicated that despite the phytotoxicity risks at higher concentrations, M. citrifolia essential oil and octanoic acid, have potential as alternative tools for the integrative management of S. cucurbitacearum. Full article
(This article belongs to the Special Issue Essential Oil Research and Product Development)
Show Figures

Graphical abstract

11 pages, 3492 KiB  
Article
Trichoderma asperelloides PSU-P1 Induced Expression of Pathogenesis-Related Protein Genes against Gummy Stem Blight of Muskmelon (Cucumis melo) in Field Evaluation
by Warin Intana, Prisana Wonglom, Nakarin Suwannarach and Anurag Sunpapao
J. Fungi 2022, 8(2), 156; https://doi.org/10.3390/jof8020156 - 4 Feb 2022
Cited by 23 | Viewed by 3093
Abstract
Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two crops. Spore suspension at a [...] Read more.
Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two crops. Spore suspension at a concentration of 1 × 106 spores/mL of T. asperelloides PSU-P1 was applied to muskmelon to investigate gene expression. The expression of PR genes including chitinase (chi) and β-1,3-glucanase (glu) were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme activity was assayed by the DNS method. The effects of T. asperelloides PSU-P1 on growth, yield, and postharvest quality of muskmelon fruit were measured. A spore suspension at a concentration of 1 × 106 spore/mL of T. asperelloides PSU-P1 and S. cucurbitacearum was applied to muskmelons to determine the reduction in disease severity. The results showed that the expression of chi and glu genes in T. asperelloides PSU-P1-treated muskmelon plants was 7–10-fold higher than that of the control. The enzyme activities of chitinase and β-1,3-glucanase were 0.15–0.284 and 0.343–0.681 U/mL, respectively, which were higher than those of the control (pathogen alone). Scanning electron microscopy revealed crude metabolites extracted from T. asperelloides PSU-P1-treated muskmelon plants caused wilting and lysis of S. cucurbitacearum hyphae, confirming the activity of cell-wall-degrading enzymes (CWDEs). Application of T. asperelloides PSU-P1 increased fruit weight and fruit width; sweetness and fruit texture were not significantly different among treated muskmelons. Application of T. asperelloides PSU-P1 reduced the disease severity scale of gummy stem blight to 1.10 in both crops, which was significantly lower than that of the control (2.90 and 3.40, respectively). These results revealed that application of T. asperelloides PSU-P1 reduced disease severity against gummy stem blight by overexpressed PR genes and elevated enzyme activity in muskmelon plants. Full article
(This article belongs to the Special Issue The Role of Fungi in Plant Defense Mechanisms)
Show Figures

Figure 1

12 pages, 1479 KiB  
Article
Evaluation of Seven Essential Oils as Seed Treatments against Seedborne Fungal Pathogens of Cucurbita maxima
by Marwa Moumni, Mohamed Bechir Allagui, Kaies Mezrioui, Hajer Ben Amara and Gianfranco Romanazzi
Molecules 2021, 26(8), 2354; https://doi.org/10.3390/molecules26082354 - 18 Apr 2021
Cited by 18 | Viewed by 4549
Abstract
Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata [...] Read more.
Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata, Fusarium fujikuro, Fusarium solani, Paramyrothecium roridum, Albifimbria verrucaria, Curvularia spicifera, and Rhizopus stolonifer. The seeds were treated with essential oils from Cymbopogon citratus, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and Origanum majorana (#1 and #2). Incidence of S. cucurbitacearum was reduced, representing a range between 67.0% in L. nobilis to 84.4% in O. majorana #2. Treatments at 0.5 mg/mL essential oils did not affect seed germination, although radicles were shorter than controls, except with C. citratus and O. majorana #1 essential oils. Four days after seeding, seedling emergence was 20%, 30%, and 10% for control seeds and seeds treated with C. citratus essential oil (0.5 mg/mL) and fungicides (25 g/L difenoconazole plus 25 g/L fludioxonil). S. cucurbitacearum incidence was reduced by ~40% for plantlets from seeds treated with C. citratus essential oil. These data show the effectiveness of this essential oil to control the transmission of S. cucurbitacearum from seeds to plantlets, and thus define their potential use for seed decontamination in integrated pest management and organic agriculture. Full article
Show Figures

Figure 1

16 pages, 3534 KiB  
Article
Antifungal Activity and Chemical Composition of Seven Essential Oils to Control the Main Seedborne Fungi of Cucurbits
by Marwa Moumni, Gianfranco Romanazzi, Basma Najar, Luisa Pistelli, Hajer Ben Amara, Kaies Mezrioui, Olfa Karous, Ikbal Chaieb and Mohamed Bechir Allagui
Antibiotics 2021, 10(2), 104; https://doi.org/10.3390/antibiotics10020104 - 22 Jan 2021
Cited by 46 | Viewed by 6219
Abstract
Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis [...] Read more.
Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Essential Oils)
Show Figures

Figure 1

Back to TopTop