Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = SrCeO3 + Sr2CeO4 system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3668 KB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 797
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

22 pages, 5579 KB  
Article
Oxygen Nonstoichiometry, Electrical Conductivity, Chemical Expansion and Electrode Properties of Perovskite-Type SrFe0.9V0.1O3−δ
by Aleksei I. Ivanov, Sergey S. Nikitin, Mariya S. Dyakina, Ekaterina V. Tsipis, Mikhail V. Patrakeev, Dmitrii A. Agarkov, Irina I. Zverkova, Andrey O. Zhigachev, Victor V. Kedrov and Vladislav V. Kharton
Materials 2025, 18(3), 493; https://doi.org/10.3390/ma18030493 - 22 Jan 2025
Cited by 2 | Viewed by 1892
Abstract
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the [...] Read more.
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the Pm3¯m space group. The oxygen nonstoichiometry variations in SrFe0.9V0.1O3−δ, measured by coulometric titration in the oxygen partial pressure range of 10−21 to 0.5 atm at 1023–1223 K, can be adequately described using an ideal solution approximation with V5+ as the main oxidation state of vanadium cations. This approach was additionally validated by statistical thermodynamic modeling. The incorporation of vanadium decreases both oxygen deficiency and the average iron oxidation state with respect to undoped SrFeO3−δ. As a result, the electrical conductivity, thermal expansion and chemical expansivity associated with the oxygen vacancy formation all become lower compared to strontium ferrite. At 923 K, the conductivity of SrFe0.9V0.1O3−δ is 14% lower than that of SrFeO3−δ but 21% higher compared to SrFe0.9Ta0.1O3−δ. The area-specific polarization resistance of the porous SrFe0.9V0.1O3−δ electrode deposited onto 10 mol.% scandia- and 1 mol.% yttria-co-stabilized zirconia solid electrolyte with a protective Ce0.9Gd0.1O2−δ interlayer, was 0.34 Ohm×cm2 under open-circuit conditions at 1173 K in air. Full article
Show Figures

Figure 1

17 pages, 15255 KB  
Article
The Genesis of Cs-Rich Geyserite in the Chabu Geothermal Field in Southern Tibet
by Ruo-Ming Li, Yu-Bin Li, Chang-Jin Yang, Jin-Shu Zhang, Cong Shen, Lin Yuan, Can Yang, Guo-Miao Xu, Duo Liu, Lin-Chao Yang, Ze-Lin Zhang and Zhe-Wei Sun
Minerals 2025, 15(1), 36; https://doi.org/10.3390/min15010036 - 30 Dec 2024
Cited by 1 | Viewed by 1208
Abstract
Recent studies have shown that the geothermal systems in Tibet are rich in rare metal elements such as lithium (Li), boron (B), rubidium (Rb), and cesium (Cs). However, the understanding of the origin of Cs-rich geyserite formed by hot springs remains unclear. In [...] Read more.
Recent studies have shown that the geothermal systems in Tibet are rich in rare metal elements such as lithium (Li), boron (B), rubidium (Rb), and cesium (Cs). However, the understanding of the origin of Cs-rich geyserite formed by hot springs remains unclear. In this study, a detailed petrological, elemental geochemical, and strontium–neodymium (Sr–Nd) isotopic investigation on Cs-rich geyserite in the Chabu region revealed that opal was the main mineral component of Chabu geyserite; here, some samples were rich in terrigenous clastic material, and well-developed diatom fossils were also present. Chabu geyserite had high contents of SiO2 (78.95%–94.72%) and Al2O3 (3.02%–8.14%) and low contents of Fe2O3 (0.21%–1.94%), TiO2 (0.01%–0.20%), MnO (0.01%–0.15%); additionally, the Fe/Ti ratio, the Al/(Al + Fe) ratio, and the Al/(Al + Fe + Mn) ratio showed large variations. These results indicated different degrees of participation by the terrigenous materials, hydrothermal deposition, and biogenic processes. Chabu geyserite was depleted in transition metal elements (e.g., Sc, V, and Cr) and high field strength elements (e.g., Nb, Zr, and Hf), relatively enriched in large-ion lithophile elements (e.g., Li, Rb, Sr, and Ba), and strongly enriched in Cs, (by up to 100 times the Cs content in the upper crust); in addition, it had low V/Y (1.30–2.00) and U/Th ratios. Chabu geyserite exhibited a right-dipping rare earth element (REE) distribution pattern and had significant negative Eu anomalies (0.26–0.72) and no or weak positive Ce anomalies (0.97–1.36). These results further indicated the influence of terrigenous clastic materials and nonhydrothermal sedimentation factors. The Sr–Nd isotopic composition of Chabu geyserite was significantly different from that of the mantle, with relatively high 87Sr/86Sr ratios (0.7070–0.7076) and low 143Nd/144Nd ratios (0.512223–0.512314). These ratios were similar to those of the crust. Combined with previous studies, the results from this study indicated that Chabu geyserite was a Cs-rich geyserite and was formed in an intracontinental post-collisional orogenic environment, mainly from crustal material, with the participation of biological and hydrothermal processes. Full article
Show Figures

Figure 1

22 pages, 8347 KB  
Article
Geochronology, Geochemistry, and In Situ Sr-Nd-Hf Isotopic Compositions of a Tourmaline-Bearing Leucogranite in Eastern Tethyan Himalaya: Implications for Tectonic Setting and Rare Metal Mineralization
by Yangchen Drolma, Kaijun Li, Yubin Li, Jinshu Zhang, Chengye Yang, Gen Zhang, Ruoming Li and Duo Liu
Minerals 2024, 14(8), 755; https://doi.org/10.3390/min14080755 - 26 Jul 2024
Viewed by 1775
Abstract
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in [...] Read more.
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in the eastern Tethyan Himalaya using LA-ICP-MS, X-ray fluorescence spectroscopy, and ICP-MS and LA-MC-ICP-MS, respectively. LA-ICP-MS U-Pb dating of zircon and monazite showed that it was emplaced at ~19 Ma. The leucogranite had high SiO2 and Al2O3 contents ranging from 73.16 to 73.99 wt.% and 15.05 to 15.24 wt.%, respectively. It was characterized by a high aluminum saturation index (1.14–1.19) and Rb/Sr ratio (3.58–6.35), which is characteristic of S-type granite. The leucogranite was enriched in light rare-earth elements (LREEs; e.g., La and Ce) and large ion lithophile elements (LILEs; e.g., Rb, K, and Pb) and depleted in heavy rare-earth elements (e.g., Tm, Yb, and Lu) and high field strength elements (HFSEs; e.g., Nb, Zr, and Ti). It was characterized by high I Sr (t) (0.7268–0.7281) and low ε Nd (t) (−14.6 to −13.2) and ε Hf (t) (−12.6 to −9.47), which was consistent with the isotopic characteristics of the Higher Himalayan Sequence. Petrogenetically, the origin of the leucogranite is best explained by the decompression-induced muscovite dehydration melting of an ancient metapelitic source within the Higher Himalayan Sequence during regional extension due to the movement of the South Tibetan Detachment System (STDS). The significantly high lithium and beryllium contents of the leucogranite and associated pegmatite suggest that Himalayan leucogranites possess huge potential for lithium and beryllium exploration. Full article
Show Figures

Figure 1

15 pages, 3268 KB  
Article
Mo-Doped LSCF as a Novel Coke-Resistant Anode for Biofuel-Fed SOFC
by Kimia Y. Javan, Massimiliano Lo Faro, Sebastian Vecino-Mantilla and Vincenzo M. Sglavo
Materials 2024, 17(4), 869; https://doi.org/10.3390/ma17040869 - 13 Feb 2024
Cited by 4 | Viewed by 2018
Abstract
Climate change and damage to the environment, as well as the limitations of fossil fuels, have pushed governments to explore infinite renewable energy options such as biofuels. Solid Oxide Fuel Cell (SOFC) is a sustainable energy device that transforms biofuels into power and [...] Read more.
Climate change and damage to the environment, as well as the limitations of fossil fuels, have pushed governments to explore infinite renewable energy options such as biofuels. Solid Oxide Fuel Cell (SOFC) is a sustainable energy device that transforms biofuels into power and heat. It is now being researched to function at intermediate temperatures (600–700 °C) in order to prevent material deterioration and improve system life span. However, one of the major disadvantages of reducing the temperature is that carbon deposition impairs the electrochemical performance of the cell with a Ni-YSZ traditional anode. Here, molybdenum was doped into La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCFMo) as an innovative anode material with higher coke resistance and better phase stability under reducing conditions. X-ray diffraction (XRD) analysis showed increasing phase stability by increasing the Mo dopant. Electrochemical measurements proved that the LSCFMo anode is an active catalyst towards the methanol oxidation even at low temperatures as 600 °C, with an open circuit voltage (OCV) of 0.55 V, while GDC10 (Ga0.9Ce0.1O1.95) is used as the electrolyte. As an insightful result, no trace of any carbon deposition was found on the anode side after the tests. The combination of phase composition, morphological, and electrochemical studies demonstrate that LSCFMo is a suitable anode material for SOFCs fed by biofuels. Full article
(This article belongs to the Special Issue Advanced Materials for Solid Oxide Fuel Cells (SOFCs))
Show Figures

Graphical abstract

15 pages, 6688 KB  
Article
Phase Structures and Dielectric Properties of (n + 1)SrO − nCeO2 (n = 2) Microwave Ceramic Systems with TiO2 Addition
by Qi Su, Jingjing Qu, Fei Liu, Changlai Yuan, Xiao Liu, Mingwei Su, Liufang Meng and Guohua Chen
Crystals 2023, 13(6), 955; https://doi.org/10.3390/cryst13060955 - 15 Jun 2023
Cited by 2 | Viewed by 1905
Abstract
Ti4+-ion-doped (n + 1)SrO − nCeO2 (n = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behaviors, microstructures and microwave dielectric properties of these [...] Read more.
Ti4+-ion-doped (n + 1)SrO − nCeO2 (n = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behaviors, microstructures and microwave dielectric properties of these ceramic systems were investigated in detail as a function of TiO2 content. The analytical results of the XRD patterns show that the pure (n + 1)SrO − nCeO2 (n = 2) system is a composite-phase ceramic system with coexisting SrCeO3 and Sr2CeO4 phases (represented as a SrCeO3 + Sr2CeO4 system), which belong to the orthogonal structures of the Pmcn (62) and Pbam (55) space groups, respectively. For the xTiO2-(1 − x) (SrCeO3 + Sr2CeO4) (x = 0.1–0.4) ceramic samples, the secondary phase Sr2TiO4 can also be detected within the range of the investigated components. Meanwhile, the Raman spectroscopy, SEM-EDS, and HRTEM (SAED) analysis results also verified the correctness and consistency of the phase structures and compositions for all the given specimens. In addition, complex impedance spectroscopy was used to detect the conductive behavior of these compound ceramic systems, and the calculation results show that the appropriate addition of Ti4+-ions can make the SrCeO3 + Sr2CeO4 system have better thermal stability. The composition of x = 0.2 multiphase structural ceramic sample sintered at 1330 °C for 4 h has a near zero τf value of ~−4.6 ppm/°C, a moderate εr of ~40.3 and a higher Q × f~44,020 GHz (at 6.56 GHz). The relatively superior-performing ceramics developed in this work are expected to provide a promising microwave dielectric material for communication components. Full article
(This article belongs to the Special Issue Microwave Dielectric Ceramics)
Show Figures

Figure 1

13 pages, 2374 KB  
Article
Characterization and Differentiation of Wild and Cultivated Berries Based on Isotopic and Elemental Profiles
by Gabriela Cristea, Adriana Dehelean, Romulus Puscas, Florina-Dorina Covaciu, Ariana Raluca Hategan, Csilla Müller Molnár and Dana Alina Magdas
Appl. Sci. 2023, 13(5), 2980; https://doi.org/10.3390/app13052980 - 25 Feb 2023
Cited by 3 | Viewed by 2987
Abstract
The isotopic content (δ13C, δ2H, δ18O) and concentrations of 30 elements (Li, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Ag, Cd, Ba, Pb, La, Ce, Pr, Nd, [...] Read more.
The isotopic content (δ13C, δ2H, δ18O) and concentrations of 30 elements (Li, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Ag, Cd, Ba, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, and Tb) were determined in different wild and cultivated berries (raspberry, seaberry, blackberry, cranberry, and blueberry). Partial least squares discriminant analysis (PLS-DA) was applied in order to develop models for differentiating berries according to their botanical origin and growing system. δ13C, δ2H, δ18O, Li, Na, Mg, P, Ca, V, Mn, Co, Ni, Zn, As, Rb, Sr, Ba, and Eu were identified as significant elements for the differentiation of berry species, based on which an 85% PLS-DA model accuracy was obtained. Similarly, the PLS-DA model developed for the growing system differentiation correctly classified 94.4% of the cultivated berries and 77.2% of the wild ones, based on the main predictors: δ13C, δ18O, Li, Na, Ca, Cr, Mn, Ni, Rb, and Ba. The developed PLS-DA model for the discrimination of wild blueberries from cultivated ones showed excellent levels of sensitivity (100%), specificity (100%), and accuracy (100%). Full article
(This article belongs to the Special Issue Emerging Technologies in Food and Beverages Authentication)
Show Figures

Figure 1

17 pages, 4707 KB  
Article
Trace and Rare Earth Element (REE) Geochemistry of Recently Formed Stromatolites at Lake Salda, SW Turkey
by Mustafa Kaya, Belgin Aydin Yildirim, Mustafa Kumral and Ahmet Sasmaz
Water 2023, 15(4), 733; https://doi.org/10.3390/w15040733 - 12 Feb 2023
Cited by 6 | Viewed by 4830
Abstract
Stromatolites are the oldest recognized fossil recordings of life on Earth. Therefore, their study of them represents one of the most interesting topic that investigates the physio-chemical environmental conditions (formations and precipitations) at which the stromatolites formed. This work deals with the rare [...] Read more.
Stromatolites are the oldest recognized fossil recordings of life on Earth. Therefore, their study of them represents one of the most interesting topic that investigates the physio-chemical environmental conditions (formations and precipitations) at which the stromatolites formed. This work deals with the rare earth elements (REEs) geochemical characteristics and the redox-sensitive trace elements behavior of the stromatolites newly formed in Salda Lake, a closed system alkaline lake surrounded by serpentinite rocks in SW Turkey. The representative stromatolite samples collected from Salda Lake show higher contents of MgO (up to 41.5 wt.%), CO2+OH (up to 56.6 wt.%), and MgO/CaO ratio (up to 42.2 wt.%) referring to the stromatolites had been controlled by microorganisms and deposited in subtidal areas having hydro-magnesite and aragonite mineralogy. The average trace element contents of the stromatolites are 8.4 ppm V, 0.09 ppm Cr, 3.50 ppm Co, 95.6 ppm Ni, 0.73 ppm Cu, 1.55 ppm Rb, 37.6 ppm Sr, 0.59 ppm Y, 17.7 ppm Zr, 3.60 ppm Nb, 21 ppm Ba, 0.05 ppm Hf, 3.5 ppm As, 0.02 ppm Cd, 0.05 ppm U, 0.05 ppm Th, 2.85 ppm Pb, and 6.60 ppm Zn. The Post-Archean Australian Shale (PAAS)-normalized REE patterns of the stromatolites reveal that the heavy REEs (HREEs) are enriched relative to the light REEs (LREEs) with highly negative Y and Ce-anomalies and positive Eu-anomalies. This refers to the stromatolites formed in predominantly oxidizing environmental conditions at partially warm lake waters. In addition, the hydromagnesite composition of the Salda Lake stromatolites indicates that they were precipitated from the waters influenced by Mg-rich meteoric waters fed from the serpentinite rocks around the Lake. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 3232 KB  
Article
BaCO3 Nanoparticles-Modified Composite Cathode with Improved Electrochemical Oxygen Reduction Kinetics for High-Performing Ceramic Fuel Cells
by Halefom G. Desta, Quan Yang, Dong Tian, Shiyue Zhu, Xiaoyong Lu, Kai Song, Yang Yang, Yonghong Chen, Baihai Li and Bin Lin
Catalysts 2022, 12(9), 1046; https://doi.org/10.3390/catal12091046 - 14 Sep 2022
Cited by 8 | Viewed by 2834
Abstract
The effects of the electrochemical oxygen reduction reaction (ORR) on the surface of single-phase perovskite cathodes are well understood, but its potential for use in a complex system consisting of different material types is unexplored. Herein, we report how BaCO3 nanoparticles-modified La [...] Read more.
The effects of the electrochemical oxygen reduction reaction (ORR) on the surface of single-phase perovskite cathodes are well understood, but its potential for use in a complex system consisting of different material types is unexplored. Herein, we report how BaCO3 nanoparticles-modified La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.2Ce0.8O2-δ (LSCF–GDC)-composite cathodes improved the electrochemical oxygen reduction kinetics for high-performing ceramic fuel cells. Both X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies reveal that BaCO3 is stable, and that it does not show any solid-state reaction with LSCF–GDC at SOFCs’ required operating temperature. The electrochemical conductivity relaxation (ECR) study reveals that during the infiltration of BaCO3 nanoparticles into LSCF–GDC, the surface exchange kinetics (Kchem) are enhanced up to a factor of 26.73. The maximum power density of the NiO-YSZ anode-support cell is increased from 1.08 to 1.48 W/cm2 via surface modification at 750 °C. The modified cathode also shows an ultralow polarization resistance (Rp) of 0.027 Ω.cm2, which is ~4.4 times lower than that of the bare cathode (~0.12 Ω.cm2) at 750 °C. Such enhancement can be attributed to the accelerated oxygen surface exchange process, possibly through promoting the dissociation of oxygen molecules via the infiltration of BaCO3 nanoparticles. The density functional theory (DFT) illustrates the interaction mechanism between oxygen molecules and the BaCO3 surface. Full article
(This article belongs to the Special Issue Featured Papers in Electrochemistry and Electrocatalysis in China)
Show Figures

Figure 1

12 pages, 2422 KB  
Article
Effect of the Composition of the Ceramics (MCeMgSr)O2-δ (M = Y, Sm) on the Microstructure, Mechanical and Electrical Properties for Solid Electrolyte
by Irina Vasilevna Sudzhanskaya, Yulia Sergeevna Nekrasova and Alexander Sergeevich Kubankin
Crystals 2022, 12(9), 1198; https://doi.org/10.3390/cryst12091198 - 25 Aug 2022
Viewed by 1603
Abstract
The samples of ceramics (Y,Ce,Mg,Sr)O2-δ; 10YCe3Mg5Sr; 10SmCe3Mg5Sr were obtained by the method of standard solid-state reaction. According to X-ray analysis, all systems have the fluorite cubic structure, but in the (Y,Ce,Mg,Sr)O2-δ system, the presence of the second orthorhombic phase was [...] Read more.
The samples of ceramics (Y,Ce,Mg,Sr)O2-δ; 10YCe3Mg5Sr; 10SmCe3Mg5Sr were obtained by the method of standard solid-state reaction. According to X-ray analysis, all systems have the fluorite cubic structure, but in the (Y,Ce,Mg,Sr)O2-δ system, the presence of the second orthorhombic phase was observed. The microstructure of powders and synthesized tablets were characterized by electron-microscopy. The average particle size of the powder was shown to be 23.88 nm; 22.32 nm; and 13.4 nm for the compositions (Y,Ce,Mg,Sr)O2-δ; 10YCe3Mg5Sr; and 10SmCe3Mg5Sr, respectively. After the sintering at temperature 1450 °C; the grain size increased to 5.1 μm; 3.95 μm; 5.07 μm for (Y,Ce,Mg,Sr)O2-δ; 10YCe5Mg5Sr; and 10SmCe5Mg5Sr, respectively. The ionic conduction of the obtained samples was defined by ac impedance spectroscopy. The activation energy was then calculated. The 10SmCe5Mg5Sr system was found to have the highest electrical conductivity, reaching 20.5 mS/cm at a temperature of 700 °C. The activation energy was 0.62 eV in the temperature range of 600–800 °C. The results of the density, microhardness, and crack resistance measurements of the solid solutions under investigation were obtained. Full article
Show Figures

Figure 1

26 pages, 7421 KB  
Article
The Early Cretaceous Granitoids and Microgranular Mafic Enclaves of Sanguliu Pluton, the Liaodong Peninsula: Implications for Magma Mixing and Decratonic Gold Mineralization in the Eastern North China Craton
by Taotao Wu, Cong Chen, Dongtao Li, Yan Zhao, Chunqiang Zhao and Yongheng Zhou
Minerals 2022, 12(8), 1004; https://doi.org/10.3390/min12081004 - 9 Aug 2022
Cited by 3 | Viewed by 2960
Abstract
Some Early Cretaceous granitoids characterized by abundant mafic microgranular enclaves (MMEs) formed by magma mixing have been associated with gold deposits in the eastern North China Craton (NCC). However, the genetic connection of magma mixing with gold mineralization remains unclear. The zircon U–Pb [...] Read more.
Some Early Cretaceous granitoids characterized by abundant mafic microgranular enclaves (MMEs) formed by magma mixing have been associated with gold deposits in the eastern North China Craton (NCC). However, the genetic connection of magma mixing with gold mineralization remains unclear. The zircon U–Pb ages and in situ Lu-Hf isotopic compositions, whole-rock major- and trace-element and Sr–Nd–Pb isotopic compositions, as well as EPMA biotite compositions, were presented for the Sanguliu granodiorite and enclaves in the Liaodong Peninsula in order to obtain insights into the spatial and temporal distribution, and internal connection of magma mixing with the decratonic gold deposits in the eastern NCC. The Sanguliu granodiorite yielded coeval formation ages with the enclaves (~123 Ma), and their acicular apatites and plagioclase megacrysts suggest that the enclaves were formed by mixing between mafic and felsic magmas. Geochemically, the Sanguliu granodiorite is high-K calc-alkaline I-type granite, with an initial 87Sr/86Sr ratio of 0.70552 to 0.71470 and strongly negative εNd(t) (−11.4 to −21.3) and zircon in situ εHf(t) values (−15.1 to −25.4), indicating that the felsic magmas were ancient lower crust with the involvement of mantle-derived materials. Meanwhile, the enclaves have high MgO (4.18 to 6.17 wt.%), Cr (45.91 to 290.04 ppm), and Ni (19.65 to 88.18 ppm) contents, with high Mg# values of 50 to 57 at intermediate SiO2 contents (53.68 to 55.78 wt.%), highly negative εNd(t) values (mostly −18.42 to −22.03), and in situ zircon εHf(t) values (−18.6 to −22.7), indicating that the mafic magma was mainly derived from the enriched lithospheric mantle. Furthermore, the biotites from the Sanguliu granodiorite clustered between the MH and NNO buffers in the Fe2+–Fe3+–Mg diagram. This, combined with the high Ce/Ce* ratios (1.30 to 107.18) of the zircons, indicates that the primary magmas forming the Sanguliu granodiorite had a high oxygen fugacity, which is favorable for gold mineralization. These findings, together with previous studies of the Early Cretaceous granitoids with enclaves in the eastern NCC, suggest that magma mixing commonly occurred during 110–130 Ma and is temporally, spatially, and genetically related to decratonic gold systems in eastern NCC. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

45 pages, 21137 KB  
Article
Dolomitization of Paleozoic Successions, Huron Domain of Southern Ontario, Canada: Fluid Flow and Dolomite Evolution
by Ihsan S. Al-Aasm, Richard Crowe and Marco Tortola
Water 2021, 13(17), 2449; https://doi.org/10.3390/w13172449 - 6 Sep 2021
Cited by 12 | Viewed by 4939
Abstract
Integrated petrographic, isotopic, fluid inclusion microthermometry, and geochemical analyses of Paleozoic carbonate successions from multiple boreholes within the Huron Domain, southern Ontario were conducted to characterize the diagenetic history and fluid composition, on a regional scale, and evaluate the nature and origin of [...] Read more.
Integrated petrographic, isotopic, fluid inclusion microthermometry, and geochemical analyses of Paleozoic carbonate successions from multiple boreholes within the Huron Domain, southern Ontario were conducted to characterize the diagenetic history and fluid composition, on a regional scale, and evaluate the nature and origin of dolomitized beds. Multiple generations of non-stochiometric dolomite have been observed. These dolomites occur as both replacement (D1 and D2) and cement (saddle dolomite; SD) and formed either at near-surface to shallow burial zone (D1) or intermediate burial (D2 and SD). Petrographic and geochemical data of dolomite types and calcite cement suggest that these carbonates have experienced multiple fluid events that affected dolomite formation and other diagenetic processes. Cambrian and Ordovician strata have two possibly isolated diagenetic fluid systems; an earlier fluid system that is characterized by a pronounced negative shift in oxygen and carbon isotopic composition, more radiogenic Sr ratios, warm and saline signatures, higher average ∑REE compared to warm water marine brachiopods, negative La anomaly, and positive Ce anomaly; and a later Ordovician system, characterized by less negative shifts in oxygen and carbon isotopes, comparable Th, hypersaline, a less radiogenic, less negative La anomaly, and primarily positive Ce anomaly but also higher average ∑REE compared to warm water marine brachiopods. Ordovician, Silurian, and Devonian Sr isotopic ratios, however, show seawater composition of their respective age as the primary source of diagenetic fluids with minor rock/water interactions. In contrast, the isotopic data of the overlying Silurian and Devonian carbonates show overlaps between δ13C and δ18O values. However, δ18O values show evidence of dolomite recrystallization. D2 shows wide Th values and medium to high salinity values. Higher Th and salinity are observed in SD in the Silurian carbonates, which suggest the involvement of localized fluxes of hydrothermal fluids during its formation during Paleozoic orogenesis. Geochemical proxies suggest that in both age groups the diagenetic fluids were originally of coeval seawater composition, subsequently modified via water-rock interaction possibly related to brines, which were modified by the dissolution of Silurian evaporites from the Salina series. The integration of the obtained data in the present study demonstrates the linkage between fluid flux history, fluid compartmentalization, and related diagenesis during the regional tectonic evolution of the Michigan Basin. Full article
Show Figures

Figure 1

16 pages, 2059 KB  
Article
Measures to Reduce the N2O Formation at Perovskite-Based Lean NOx Trap Catalysts under Lean Conditions
by Sabrina I. Ecker, Jürgen Dornseiffer, Stefan Baumann, Olivier Guillon, Henny J. M. Bouwmeester and Wilhelm A. Meulenberg
Catalysts 2021, 11(8), 917; https://doi.org/10.3390/catal11080917 - 29 Jul 2021
Cited by 4 | Viewed by 3010
Abstract
The net oxidising atmosphere of lean burn engines requires a special after-treatment catalyst for NOx removal from the exhaust gas. Lean NOx traps (LNT) are such kind of catalysts. To increase the efficiency of LNTs at low temperatures platinised perovskite-based infiltration [...] Read more.
The net oxidising atmosphere of lean burn engines requires a special after-treatment catalyst for NOx removal from the exhaust gas. Lean NOx traps (LNT) are such kind of catalysts. To increase the efficiency of LNTs at low temperatures platinised perovskite-based infiltration composites La0.5Sr0.5Fe1-xMxO3-δ/Al2O3 with M = Nb, Ti, Zr have been developed. In general, platinum based LNT catalysts show an undesired, hazardous formation of N2O in the lean operation mode due to a competing C3H6-selective catalytic reduction (SCR) at the platinum sites. To reduce N2O emissions an additional Rh-coating, obtained by incipient wetness impregnation, besides the Pt coating and a two-layered oxidation catalyst (2 wt.% Pd/20 wt.% CeO2/alumina)-LNT constitution, has been investigated. Though the combined Rh-Pt coating shows a slightly increased NOx storage capacity (NSC) at temperatures above 300 °C, it does not decrease N2O formation. The layered oxidation catalyst-LNT system shows a decrease in N2O formation of up to 60% at 200 °C, increasing the maximum NSC up to 176 µmol/g. Furthermore, the NSC temperature range is broadened compared to that of the pure LNT catalyst, now covering a range of 250–300 °C. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

22 pages, 31042 KB  
Article
Conductivity Transitions of La0.7Sr0.3MnOδ and La0.6Sr0.4Co0.2Fe0.8O3−δ in Ce0.9Gd0.1O2−δ Matrix for Dual-Phase Oxygen Transport Membranes
by Thuy Linh Pham, Ji Haeng Yu and Jong-Sook Lee
Crystals 2021, 11(6), 712; https://doi.org/10.3390/cryst11060712 - 21 Jun 2021
Cited by 5 | Viewed by 3170
Abstract
Using van der Pauw method, the conductivity of disk samples of La0.7Sr0.3MnO3±δ (LSM) and La0.6Sr0.4Co0.2Fe0.8O3δ (LSCF) in a [...] Read more.
Using van der Pauw method, the conductivity of disk samples of La0.7Sr0.3MnO3±δ (LSM) and La0.6Sr0.4Co0.2Fe0.8O3δ (LSCF) in a Ce0.9Gd0.1O2δ (GDC) matrix was accurately quasi-continuously measured over 800 °C to −73 °C, and the transition points in Arrhenius behavior were systematically obtained from the extremum points of the second derivatives. While LSM-containing samples showed reproducible conductivity trajectories, the LSCF system exhibited unsystematic changes which may be related to the substantial oxidation/reduction reactions accompanying the ferroelastic–paraelastic transitions with a substantial thermal hysteresis at 650 °C to 750 °C, corresponding to conductivity maxima. A sudden decrease in activation energies on cooling corresponds to the para-to-ferromagnetic, weak insulator–metal transitions and the Curie temperature of LSM appears to gradually decrease in composites to 90 °C, while LSCF composites exhibit blurred transitions at approximately 40 °C. Relatively insulating paramagnetic phases are characterized by activation energy values ~0.2 eV, change to the high temperature phase exhibiting activation energy 0.1 eV for small polaron hopping mechanisms at 300 °C to 500 °C with increasing GDC content in the LSM composites and by two transitions at 60 °C and 245 °C for the LSCF composites. LSCF single phase shows distinctly lower transition points which appear to match with the singularly large c lattice parameter whereas the composites exhibit decreasing c with LSCF amount together with increasing lattice parameter of GDC. Van der Pauw conductivity is a feasible and sensitive in situ tool for monitoring the status of oxygen transport membranes. Full article
Show Figures

Figure 1

15 pages, 5957 KB  
Review
Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press
by Javier Gainza, Federico Serrano-Sánchez, João Elias F. S. Rodrigues, Norbert Marcel Nemes, José Luis Martínez and José Antonio Alonso
Materials 2021, 14(8), 1946; https://doi.org/10.3390/ma14081946 - 13 Apr 2021
Cited by 10 | Viewed by 3566
Abstract
In this review, we describe different families of metastable materials, some of them with relevant technological applications, which can be stabilized at moderate pressures 2–3.5 GPa in a piston-cylinder press. The synthesis of some of these systems had been previously reported under higher [...] Read more.
In this review, we describe different families of metastable materials, some of them with relevant technological applications, which can be stabilized at moderate pressures 2–3.5 GPa in a piston-cylinder press. The synthesis of some of these systems had been previously reported under higher hydrostatic pressures (6–10 GPa), but can be accessed under milder conditions in combination with reactive precursors prepared by soft-chemistry techniques. These systems include perovskites with transition metals in unusual oxidation states (e.g., RNiO3 with Ni3+, R = rare earths); double perovskites such as RCu3Mn4O12 with Jahn–Teller Cu2+ ions at A sites, pyrochlores derived from Tl2Mn2O7 with colossal magnetoresistance, pnictide skutterudites MxCo4Sb12 (M = La, Yb, Ce, Sr, K) with thermoelectric properties, or metal hydrides Mg2MHx (M = Fe, Co, Ni) and AMgH3 (A: alkali metals) with applications in hydrogen storage. The availability of substantial amounts of sample (0.5–1.5 g) allows a complete characterization of the properties of interest, including magnetic, transport, thermoelectric properties and so on, and the structural characterization by neutron or synchrotron X-ray diffraction techniques. Full article
(This article belongs to the Special Issue High Pressure Synthesis in Materials Science)
Show Figures

Figure 1

Back to TopTop