Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (425)

Search Parameters:
Keywords = Spike Neural Network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 228
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

23 pages, 3863 KiB  
Review
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing
by Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen and Xiaojun Jia
Nanomaterials 2025, 15(14), 1130; https://doi.org/10.3390/nano15141130 - 21 Jul 2025
Viewed by 538
Abstract
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including [...] Read more.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including oscillatory, leaky integrate-and-fire (LIF), Hodgkin–Huxley (H-H), and stochastic dynamics—and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges—such as stochastic switching origins, device variability, and endurance limits—and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

17 pages, 434 KiB  
Article
Exploiting Spiking Neural Networks for Click-Through Rate Prediction in Personalized Online Advertising Systems
by Albin Uruqi and Iosif Viktoratos
Forecasting 2025, 7(3), 38; https://doi.org/10.3390/forecast7030038 - 18 Jul 2025
Viewed by 560
Abstract
This study explores the application of spiking neural networks (SNNs) for click-through rate (CTR) prediction in personalized online advertising systems, introducing a novel hybrid model, the Temporal Rate Spike with Attention Neural Network (TRA–SNN). By leveraging the biological plausibility and energy efficiency of [...] Read more.
This study explores the application of spiking neural networks (SNNs) for click-through rate (CTR) prediction in personalized online advertising systems, introducing a novel hybrid model, the Temporal Rate Spike with Attention Neural Network (TRA–SNN). By leveraging the biological plausibility and energy efficiency of SNNs, combined with attention-based mechanisms, the TRA–SNN model captures temporal dynamics and rate-based patterns to achieve performance comparable to state-of-the-art Artificial Neural Network (ANN)-based models, such as Deep & Cross Network v2 (DCN-V2) and FinalMLP. The models were trained and evaluated on the Avazu and Digix datasets, using standard metrics like AUC-ROC and accuracy. Through rigorous hyperparameter tuning and standardized preprocessing, this study ensures fair comparisons across models, highlighting SNNs’ potential for scalable, sustainable deployment in resource-constrained environments like mobile devices and large-scale ad platforms. This work is the first to apply SNNs to CTR prediction, setting a new benchmark for energy-efficient predictive modeling and opening avenues for future research in hybrid SNN–ANN architectures across domains like finance, healthcare, and autonomous systems. Full article
Show Figures

Figure 1

13 pages, 3647 KiB  
Article
Near-Infrared Synaptic Responses of WSe2 Artificial Synapse Based on Upconversion Luminescence from Lanthanide Doped Nanoparticles
by Yaxian Lu, Chuanwen Chen, Qi Sun, Ni Zhang, Kun Lv, Zhiling Chen, Yuelan He, Haowen Tang and Ping Chen
Inorganics 2025, 13(7), 236; https://doi.org/10.3390/inorganics13070236 - 10 Jul 2025
Viewed by 367
Abstract
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly [...] Read more.
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly NIR synapse was fabricated based on lanthanide-doped upconversion nanoparticles (UCNPs) and two-dimensional (2D) WSe2 via solution spin coating technology. Biological synaptic functions were simulated successfully through 975 nm laser regulation, including paired-pulse facilitation (PPF), spike rate-dependent plasticity, and spike timing-dependent plasticity. Handwritten digital images were also recognized by an artificial neural network based on device characteristics with a high accuracy of 97.24%. In addition, human and animal identification in foggy and low-visibility surroundings was proposed by the synaptic response of the device combined with an NIR laser and visible simulation. These findings might provide promising strategies for developing a 24/7 visual response of humanoid robots. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

21 pages, 9172 KiB  
Article
Spike-Driven Channel-Temporal Attention Network with Multi-Scale Convolution for Energy-Efficient Bearing Fault Detection
by JinGyo Lim and Seong-Eun Kim
Appl. Sci. 2025, 15(13), 7622; https://doi.org/10.3390/app15137622 - 7 Jul 2025
Viewed by 283
Abstract
Real-time bearing fault diagnosis necessitates highly accurate, computationally efficient, and energy-conserving models suitable for deployment on resource-constrained edge devices. To address these demanding requirements, we propose the Spike Convolutional Attention Network (SpikeCAN), a novel spike-driven neural architecture tailored explicitly for real-time industrial diagnostics. [...] Read more.
Real-time bearing fault diagnosis necessitates highly accurate, computationally efficient, and energy-conserving models suitable for deployment on resource-constrained edge devices. To address these demanding requirements, we propose the Spike Convolutional Attention Network (SpikeCAN), a novel spike-driven neural architecture tailored explicitly for real-time industrial diagnostics. SpikeCAN utilizes the inherent sparsity and event-driven processing capabilities of spiking neural networks (SNNs), significantly minimizing both computational load and power consumption. The SpikeCAN integrates a multi-dilated receptive field (MDRF) block and a convolution-based spike attention module. The MDRF module effectively captures extensive temporal dependencies from signals across various scales. Simultaneously, the spike-based attention mechanism dynamically extracts spatial-temporal patterns, substantially improving diagnostic accuracy and reliability. We validate SpikeCAN on two public bearing fault datasets: the Case Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). The proposed model achieves 99.86% accuracy on the four-class CWRU dataset through five-fold cross-validation and 99.88% accuracy with a conventional 70:30 train–test random split. For the more challenging ten-class classification task on the same dataset, it achieves 97.80% accuracy under five-fold cross-validation. Furthermore, SpikeCAN attains a state-of-the-art accuracy of 96.31% on the fifteen-class MFPT dataset, surpassing existing benchmarks. These findings underscore a significant advancement in fault diagnosis technology, demonstrating the considerable practical potential of spike-driven neural networks in real-time, energy-efficient industrial diagnostic applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

27 pages, 2053 KiB  
Article
Modeling the Effect of Prior Knowledge on Memory Efficiency for the Study of Transfer of Learning: A Spiking Neural Network Approach
by Mojgan Hafezi Fard, Krassie Petrova, Nikola Kirilov Kasabov and Grace Y. Wang
Big Data Cogn. Comput. 2025, 9(7), 173; https://doi.org/10.3390/bdcc9070173 - 30 Jun 2025
Viewed by 577
Abstract
The transfer of learning (TL) is the process of applying knowledge and skills learned in one context to a new and different context. Efficient use of memory is essential in achieving successful TL and good learning outcomes. This study uses a cognitive computing [...] Read more.
The transfer of learning (TL) is the process of applying knowledge and skills learned in one context to a new and different context. Efficient use of memory is essential in achieving successful TL and good learning outcomes. This study uses a cognitive computing approach to identify and explore brain activity patterns related to memory efficiency in the context of learning a new programming language. This study hypothesizes that prior programming knowledge reduces cognitive load, leading to improved memory efficiency. Spatio-temporal brain data (STBD) were collected from a sample of participants (n = 26) using an electroencephalogram (EEG) device and analyzed by applying a spiking neural network (SNN) approach and the SNN-based NeuCube architecture. The findings revealed the neural patterns demonstrating the effect of prior knowledge on memory efficiency. They showed that programming learning outcomes were aligned with specific theta and alpha waveband spike activities concerning prior knowledge and cognitive load, indicating that cognitive load was a feasible metric for measuring memory efficiency. Building on these findings, this study proposes that the methodology developed for examining the relationship between prior knowledge and TL in the context of learning a programming language can be extended to other educational domains. Full article
Show Figures

Figure 1

26 pages, 4959 KiB  
Article
Damage Resistance of an fMRI-Spiking Neural Network Based on Speech Recognition Against Stochastic Attack
by Lei Guo, Huan Liu, Yihua Song and Nancheng Ma
Biomimetics 2025, 10(7), 415; https://doi.org/10.3390/biomimetics10070415 - 26 Jun 2025
Viewed by 404
Abstract
Brain-like models are commonly used for pattern recognition, but they face significant performance degradation in neuromorphic hardware when exposed to complex electromagnetic environments. The human brain has adaptability to the exterior attack, and we expect that incorporating bio-plausibility into a brain-like model will [...] Read more.
Brain-like models are commonly used for pattern recognition, but they face significant performance degradation in neuromorphic hardware when exposed to complex electromagnetic environments. The human brain has adaptability to the exterior attack, and we expect that incorporating bio-plausibility into a brain-like model will enhance its robustness. However, brain-like models currently lack bio-plausibility. Therefore, we construct a spiking neural network (SNN) whose topology is constrained by human brain functional Magnetic Resonance Imaging (fMRI), called fMRI-SNN. To certify its damage resistance, we investigate speech recognition accuracy against stochastic attack. To reveal its damage-resistant mechanism, we explore the neural electrical features, adaptive modulation of synaptic plasticity, and topological features against stochastic attack. Research shows that fMRI-SNN surpasses SNNs with distinct topologies in recognition accuracy against stochastic attack, notably maintaining similar accuracy levels before and after stochastic attacks when the damage proportion is below 30%, demonstrating that our method improves the damage resistance of brain-like models. In addition, the change in neural electrical activity serves as interior manifestation, corresponding to the damage resistance of SNNs for recognition tasks, while the synaptic plasticity serves as the inherent determinant of the damage resistance, and the topology serves as a determinant impacting the damage resistance. Full article
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 617
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
Benchmarking Accelerometer and CNN-Based Vision Systems for Sleep Posture Classification in Healthcare Applications
by Minh Long Hoang, Guido Matrella, Dalila Giannetto, Paolo Craparo and Paolo Ciampolini
Sensors 2025, 25(12), 3816; https://doi.org/10.3390/s25123816 - 18 Jun 2025
Viewed by 451
Abstract
Sleep position recognition plays a crucial role in diagnosing and managing various health conditions, such as sleep apnea, pressure ulcers, and musculoskeletal disorders. Accurate monitoring of body posture during sleep can provide valuable insights for clinicians and support the development of intelligent healthcare [...] Read more.
Sleep position recognition plays a crucial role in diagnosing and managing various health conditions, such as sleep apnea, pressure ulcers, and musculoskeletal disorders. Accurate monitoring of body posture during sleep can provide valuable insights for clinicians and support the development of intelligent healthcare systems. This research presents a comparative analysis of sleep position recognition using two distinct approaches: image-based deep learning and accelerometer-based classification. There are five classes: prone, supine, right side, left side, and wake up. For the image-based method, the Visual Geometry Group 16 (VGG16) convolutional neural network was fine-tuned with data augmentation strategies including rotation, reflection, scaling, and translation to enhance model generalization. The image-based model achieved an overall accuracy of 93.49%, with perfect precision and recall for “right side” and “wakeup” positions, but slightly lower performance for “left side” and “supine” classes. In contrast, the accelerometer-based method employed a feedforward neural network trained on features extracted from segmented accelerometer data, such as signal sum, standard deviation, maximum, and spike count. This method yielded superior performance, reaching an accuracy exceeding 99.8% across most sleep positions. The “wake up” position was particularly easy to detect due to the absence of body movements such as heartbeat or respiration when the person is no longer in bed. The results demonstrate that while image-based models are effective, accelerometer-based classification offers higher precision and robustness, particularly in real-time and privacy-sensitive scenarios. Further comparisons of the system characteristics, data size, and training time are also carried out to offer crucial insights for selecting the appropriate technology in clinical, in-home, or embedded healthcare monitoring applications. Full article
(This article belongs to the Special Issue Advances in Sensing Technologies for Sleep Monitoring)
Show Figures

Figure 1

20 pages, 355 KiB  
Article
NeuHH: A Neuromorphic-Inspired Hyper-Heuristic Framework for Solving the Capacitated Single-Allocation p-Hub Location Routing Problem
by Kassem Danach, Hassan Harb, Semaan Amine and Mariem Belhor
Vehicles 2025, 7(2), 61; https://doi.org/10.3390/vehicles7020061 - 17 Jun 2025
Viewed by 524
Abstract
This paper introduces a novel neuromorphic-inspired hyper-heuristic framework (NeuHH) for solving the Capacitated Single-Allocation p-Hub Location Routing Problem (CSAp-HLRP), a challenging combinatorial optimization problem that jointly addresses hub location decisions, capacity constraints, and vehicle routing. The proposed framework employs Spiking Neural Networks (SNNs) [...] Read more.
This paper introduces a novel neuromorphic-inspired hyper-heuristic framework (NeuHH) for solving the Capacitated Single-Allocation p-Hub Location Routing Problem (CSAp-HLRP), a challenging combinatorial optimization problem that jointly addresses hub location decisions, capacity constraints, and vehicle routing. The proposed framework employs Spiking Neural Networks (SNNs) as the decision-making core, leveraging their temporal dynamics and spike-timing-dependent plasticity (STDP) to guide the real-time selection and adaptation of low-level heuristics. Unlike conventional learning-based hyper-heuristics, NeuHH provides biologically plausible, event-driven learning with improved scalability and interpretability. Experimental results on benchmark instances demonstrate that NeuHH outperforms classical metaheuristics, Lagrangian relaxation methods, and reinforcement learning-based hyper-heuristics. Specifically, NeuHH achieves superior performance in total cost minimization (up to 13.6% reduction), load balance improvement (achieving a load balance factor of as low as 1.04), and heuristic adaptability (reflected by higher heuristic switching frequency). These results highlight the framework’s potential for real-time and energy-efficient logistics optimization in large-scale dynamic networks. Full article
(This article belongs to the Special Issue Sustainable Traffic and Mobility)
Show Figures

Figure 1

15 pages, 2573 KiB  
Article
Hysteresis in Neuron Models with Adapting Feedback Synapses
by Sebastian Thomas Lynch and Stephen Lynch
AppliedMath 2025, 5(2), 70; https://doi.org/10.3390/appliedmath5020070 - 13 Jun 2025
Viewed by 963
Abstract
Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, [...] Read more.
Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research. Full article
Show Figures

Figure 1

25 pages, 5666 KiB  
Article
Implementation of a Neural Network for Adaptive PID Tuning in a High-Temperature Thermal System
by Juan Carlos Almachi, Ramiro Vicente, Edwin Bone, Jessica Montenegro, Edgar Cando and Salvatore Reina
Energies 2025, 18(12), 3113; https://doi.org/10.3390/en18123113 - 13 Jun 2025
Viewed by 1022
Abstract
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 [...] Read more.
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 kW retrofitted Blue-M furnace, the system was characterized by second-order transfer functions for heating and forced convection cooling. A dataset of 9702 samples was built from eight fixed PID configurations tested under a multi-ramp thermal profile. The selected 3-64-64-32-2 ANN, executed in Python and interfaced with LabVIEW, computes optimal gains in 0.054 ms while preserving real-time monitoring capabilities. Experimental results show that the ANN-assisted PID reduces the mean absolute error to 5.08 °C, limits overshoot to 41% (from 53%), and shortens settling time by 20% compared to the best fixed-gain loop. It also outperforms a fuzzy controller and remains stable under ±5% signal noise. Notably, gain reversals during cooling prevent temperature spikes, improving transient response. Relying on commodity hardware and open-source tools, this approach offers a cost-effective solution for legacy furnace upgrades and provides a replicable model for adaptive control in high-temperature, safety-critical environments like metal processing, battery cycling, and nuclear systems. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

25 pages, 2109 KiB  
Review
Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture
by Omar Garcia-Palencia, Justin Fernandez, Vickie Shim, Nicola Kirilov Kasabov, Alan Wang and the Alzheimer’s Disease Neuroimaging Initiative
Bioengineering 2025, 12(6), 628; https://doi.org/10.3390/bioengineering12060628 - 9 Jun 2025
Viewed by 818
Abstract
Artificial intelligence (AI) is revolutionising neuroimaging by enabling automated analysis, predictive analytics, and the discovery of biomarkers for neurological disorders. However, traditional artificial neural networks (ANNs) face challenges in processing spatiotemporal neuroimaging data due to their limited temporal memory and high computational demands. [...] Read more.
Artificial intelligence (AI) is revolutionising neuroimaging by enabling automated analysis, predictive analytics, and the discovery of biomarkers for neurological disorders. However, traditional artificial neural networks (ANNs) face challenges in processing spatiotemporal neuroimaging data due to their limited temporal memory and high computational demands. Spiking neural networks (SNNs), inspired by the brain’s biological processes, offer a promising alternative. SNNs use discrete spikes for event-driven communication, making them energy-efficient and well suited for the real-time processing of dynamic brain data. Among SNN architectures, NeuCube stands out as a powerful framework for analysing spatiotemporal neuroimaging data. It employs a 3D brain-like structure to model neural activity, enabling personalised modelling, disease classification, and biomarker discovery. This paper explores the advantages of SNNs and NeuCube for multimodal neuroimaging analysis, including their ability to handle complex spatiotemporal patterns, adapt to evolving data, and provide interpretable insights. We discuss applications in disease diagnosis, brain–computer interfaces, and predictive modelling, as well as challenges such as training complexity, data encoding, and hardware limitations. Finally, we highlight future directions, including hybrid ANN-SNN models, neuromorphic hardware, and personalised medicine. Our contributions in this work are as follows: (i) we give a comprehensive review of an SNN applied to neuroimaging analysis; (ii) we present current software and hardware platforms, which have been studied in neuroscience; (iii) we provide a detailed comparison of performance and timing of SNN software simulators with a curated ADNI and other datasets; (iv) we provide a roadmap to select a hardware/software platform based on specific cases; and (v) finally, we highlight a project where NeuCube has been successfully used in neuroscience. The paper concludes with discussions of challenges and future perspectives. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

16 pages, 1903 KiB  
Article
Enhancing Legged Robot Locomotion Through Smooth Transitions Using Spiking Central Pattern Generators
by Horacio Rostro-Gonzalez, Erick I. Guerra-Hernandez, Patricia Batres-Mendoza, Andres A. Garcia-Granada, Miroslava Cano-Lara and Andres Espinal
Biomimetics 2025, 10(6), 381; https://doi.org/10.3390/biomimetics10060381 - 7 Jun 2025
Viewed by 564
Abstract
In this work, we propose the integration of a mechanism to enable smooth transitions between different locomotion patterns in a hexapod robot. Specifically, we utilize a spiking neural network (SNN) functioning as a Central Pattern Generator (CPG) to generate three distinct locomotion patterns, [...] Read more.
In this work, we propose the integration of a mechanism to enable smooth transitions between different locomotion patterns in a hexapod robot. Specifically, we utilize a spiking neural network (SNN) functioning as a Central Pattern Generator (CPG) to generate three distinct locomotion patterns, or gaits: walk, jog, and run. This network produces coordinated spike trains, mimicking those generated in the brain, which are translated into synchronized robot movements via PWM signals. Subsequently, these spike trains are compared using a similarity metric known as SPIKE-synchronization to identify the optimal point for transitioning from one gait to another. This approach aims to achieve three main objectives: first, to maintain the robot’s balance during transitions; second, to ensure that gait transitions are almost imperceptible; and third, to improve energy efficiency by reducing abrupt changes in the robot’s actuators (servomotors). To validate our proposal, we incorporated FSR sensors on the robot’s legs to detect the rigidity of the terrain it navigates. Based on the terrain’s rigidity, the robot dynamically transitions between gaits. The system was tested in real time on a physical hexapod robot across four different types of terrain. Although the method was validated exclusively on a hexapod robot, it can be extended to any legged robot. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

12 pages, 2708 KiB  
Article
Starch–Glycerol-Based Hydrogel Memristors for Bio-Inspired Auditory Neuron Applications
by Jiachu Xie, Yuehang Ju, Zhenwei Zhang, Dianzhong Wen and Lu Wang
Gels 2025, 11(6), 423; https://doi.org/10.3390/gels11060423 - 1 Jun 2025
Viewed by 453
Abstract
In the era of artificial intelligence, the demand for rapid and efficient data processing is growing, and traditional computing architectures are increasingly struggling to meet these needs. Against this backdrop, memristor devices, capable of mimicking the computational functions of brain neural networks, have [...] Read more.
In the era of artificial intelligence, the demand for rapid and efficient data processing is growing, and traditional computing architectures are increasingly struggling to meet these needs. Against this backdrop, memristor devices, capable of mimicking the computational functions of brain neural networks, have emerged as key components in neuromorphic systems. Despite this, memristors still face many challenges in biomimetic functionality and circuit integration. In this context, a starch–glycerol-based hydrogel memristor was developed using starch as the dielectric material. The starch–glycerol–water mixture employed in this study has been widely recognized in literature as a physically cross-linked hydrogel system with a three-dimensional network, and both high water content and mechanical flexibility. This memristor demonstrates a high current switching ratio and stable threshold voltage, showing great potential in mimicking the activity of biological neurons. The device possesses the functionality of auditory neurons, not only achieving artificial spiking neuron discharge but also accomplishing the spatiotemporal summation of input information. In addition, we demonstrate the application capabilities of this artificial auditory neuron in gain modulation and in the synchronization detection of sound signals, further highlighting its potential in neuromorphic engineering applications. These results suggest that starch-based hydrogel memristors offer a promising platform for the construction of bio-inspired auditory neuron circuits and flexible neuromorphic systems. Full article
Show Figures

Graphical abstract

Back to TopTop