Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = South Caspian Sea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5993 KiB  
Article
Quantifying Threats to Fish Biodiversity of the South Caspian Basin in Iran
by Gohar Aghaie, Asghar Abdoli and Thomas H. White
Diversity 2025, 17(7), 480; https://doi.org/10.3390/d17070480 - 11 Jul 2025
Viewed by 245
Abstract
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is [...] Read more.
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is to precisely identify these threats. While such threats are often categorized qualitatively, there is a lack of a comparative quantitative assessment of their severity. This means that although we may have a general understanding of the threats, we do not have a clear picture of how serious they are relative to one another. This study aimed to quantify and prioritize these threats using a modified quantitative “SWOT” (Strengths, Weaknesses, Opportunities, Threats) analysis. Twenty multidisciplinary experts identified and evaluated 26 threats, and we used multivariate cluster analysis to categorize them as “High”, “Medium”, and “Low” based on their quantitative contributions to overall threat. Invasive non-native species and global warming emerged as the most significant threats, followed by resource exploitation, habitat destruction, and pollution. We then used this information to develop a “Situation Model” and “Results Chains” to guide responses to the threats. According to the Situation Model, these threats are interconnected, driven by factors such as population growth, unsustainable resource use, and climate change. To address these challenges, we propose the Results Chains, including two strategies focused on scientific research, land-use planning, public awareness, and community engagement. Prioritizing these actions is crucial for conserving the Caspian Sea’s unique fish fauna and ensuring the region’s ecological and economic sustainability. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 614
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

13 pages, 12987 KiB  
Article
Environmental Suitability of Kazakhstan to Highly Pathogenic Avian Influenza Using Data on Eurasian Outbreaks, 2020–2024
by Asem Zh. Abenova, Yersyn Y. Mukhanbetkaliyev, Ablaikhan S. Kadyrov, Igor I. Sytnik, Alexander B. Shevtsov, Fedor I. Korennoy, Irene Iglesias Martin, Andres M. Perez and Sarsenbay K. Abdrakhmanov
Viruses 2025, 17(4), 574; https://doi.org/10.3390/v17040574 - 16 Apr 2025
Viewed by 962
Abstract
Highly pathogenic avian influenza (HPAI) is a highly contagious disease of domestic, synanthropic, and wild birds that has demonstrated a sharp rise globally since 2020. This study intends to examine environmental and demographic factors most significantly associated with HPAI (H5N1 and H5N8) outbreaks [...] Read more.
Highly pathogenic avian influenza (HPAI) is a highly contagious disease of domestic, synanthropic, and wild birds that has demonstrated a sharp rise globally since 2020. This study intends to examine environmental and demographic factors most significantly associated with HPAI (H5N1 and H5N8) outbreaks in Kazakhstan, 2020–2024, and to identify areas of potential underreporting of the disease. Two ecological niche models were developed, namely an “occurrence model” (considering climatic and environmental factors influencing the likelihood of HPAI occurrence) and a “reporting model” (that assesses the probability of disease reporting based on human and poultry population demography). Both models were trained using outbreak locations in countries neighboring Kazakhstan (Afghanistan, China, Hong Kong, Iran, Iraq, Pakistan and Russia), and then tested using the HPAI outbreak locations in Kazakhstan. Results suggested a good fit for both models to Kazakhstani outbreaks (test AUC = 0.894 vs. training AUC = 0.915 for “occurrence model”, and test AUC = 0.869 vs. training AUC = 0.872 for “reporting model”). A cluster of high occurrence-to-reporting ratio was detected in the south-western region of Kazakhstan, close to the Caspian Sea, suggesting a need for enhancing surveillance efforts in this zone as well as in some other areas of Pavlodar, Northern Kazakhstan, Western Kazakhstan, Qyzylorda, and Eastern Kazakhstan. Results presented here will help inform the design and implementation of control strategies for HPAI in Kazakhstan with the ultimate goal of promoting disease prevention and control in the country. Full article
(This article belongs to the Special Issue Advances in Animal Influenza Virus Research: Third Edition)
Show Figures

Figure 1

22 pages, 7910 KiB  
Article
The Contribution of Moisture Sources of Precipitation to Water Resources Recharge in Semi-Arid Regions
by Hossein Mohammadzadeh, Rogert Sorí and Mojtaba Heydarizad
Atmosphere 2024, 15(11), 1274; https://doi.org/10.3390/atmos15111274 - 24 Oct 2024
Cited by 2 | Viewed by 1023
Abstract
This study investigates the isotopic composition of precipitation in Iran and its moisture sources, offering insights crucial for addressing water recharge and management in semi-arid regions. This study analyzes 150 precipitation events collected from 11 stations across Iran over multiple years. The HYSPLIT [...] Read more.
This study investigates the isotopic composition of precipitation in Iran and its moisture sources, offering insights crucial for addressing water recharge and management in semi-arid regions. This study analyzes 150 precipitation events collected from 11 stations across Iran over multiple years. The HYSPLIT model was used to trace air mass trajectories contributing to these events. The isotopic composition of precipitation from each moisture source was examined to identify their distinct characteristics. Furthermore, the contribution of each air mass to groundwater and surface water recharge was quantified using the Simmr mixing model in R programming language, combining stable isotope data from precipitation and surface/groundwater samples. Precipitation in northern Iran is associated with low d-excess values, indicating moisture from high-latitude sources, particularly the Caspian Sea, while higher d-excess values in the west and south point to moisture mainly from the Persian Gulf and the Mediterranean Sea. Air mass trajectory analysis via the HYSPLIT model identified the dominant pathways of Continental Tropical (CT), Continental Polar (CP), and Mediterranean (MedT) air masses across Iran. Quantitative analysis using the Simmr mixing model revealed that the CT air mass contributes up to 33.6% to groundwater recharge in southern Iran’s karstic regions, while the CP air mass dominates in the north, with up to 46.8% contribution. The MedT air mass, although significant in the west, decreases in influence towards the east. Isotope data from groundwater and surface water sites showed more depleted values than local precipitation, likely due to larger catchment areas. These findings contribute to water management strategies by identifying the variations in moisture sources that influence groundwater and surface water recharge in Iran. Understanding these variations enables the development of targeted strategies for managing water resources in semi-arid regions facing increasing water scarcity. The methodologies applied in this study can be adapted to other regions, providing a valuable framework for sustainable water management in areas where identifying moisture sources is critical. Full article
Show Figures

Figure 1

21 pages, 9980 KiB  
Case Report
The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability
by Dinara Adenova, Dani Sarsekova, Malis Absametov, Yermek Murtazin, Janay Sagin, Ludmila Trushel and Oxana Miroshnichenko
Sustainability 2024, 16(11), 4597; https://doi.org/10.3390/su16114597 - 29 May 2024
Cited by 8 | Viewed by 2930
Abstract
Water resources are scarce and difficult to manage in Kazakhstan, Central Asia (CA). Anthropic activities largely eliminated the Aral Sea. Afghanistan’s large-scale canal construction may eliminate life in the main stream of the Amu Darya River, CA. Kazakhstan’s HYRASIA ONE project, with a [...] Read more.
Water resources are scarce and difficult to manage in Kazakhstan, Central Asia (CA). Anthropic activities largely eliminated the Aral Sea. Afghanistan’s large-scale canal construction may eliminate life in the main stream of the Amu Darya River, CA. Kazakhstan’s HYRASIA ONE project, with a EUR 50 billion investment to produce green hydrogen, is targeted to withdraw water from the Caspian Sea. Kazakhstan, CA, requires sustainable programs that integrate both decision-makers’ and people’s behavior. For this paper, the authors investigated groundwater resources for sustainable use, including for consumption, and the potential for natural “white” hydrogen production from underground geological “factories”. Kazakhstan is rich in natural resources, such as iron-rich rocks, minerals, and uranium, which are necessary for serpentinization reactions and radiolysis decay in natural hydrogen production from underground water. Investigations of underground geological “factories” require substantial efforts in field data collection. A chemical analysis of 40 groundwater samples from the 97 wells surveyed and investigated in the T. Ryskulov, Zhambyl, Baizak and Zhualy districts of the Zhambyl region in South Kazakhstan in 2021–2022 was carried out. These samples were compared with previously collected water samples from the years 2020–2021. The compositions of groundwater samples were analyzed, revealing various concentrations of different minerals, natural geological rocks, and anthropogenic materials. South Kazakhstan is rich in natural mineral resources. As a result, mining companies extract resources in the Taraz–Zhanatas–Karatau and the Shu–Novotroitsk industrial areas. The most significant levels of minerals found in water samples were found in the territory of the Talas–Assinsky interfluve, where the main industrial mining enterprises are concentrated and the largest groundwater deposits have been explored. Groundwater compositions have direct connections to geological rocks. The geological rocks are confined to sandstones, siltstones, porphyrites, conglomerates, limestones, and metamorphic rocks. In observation wells, a number of components can be found in high concentrations (mg/L): sulfates—602.0 (MPC 500 mg/L); sodium—436.5 (MPC 200 mg/L); chlorine—465.4 (MPC 350 mg/L); lithium—0.18 (MPC 0.03 mg/L); boron—0.74 (MPC 0.5 mg/L); cadmium—0.002 (MPC 0.001 mg/L); strontium—15, 0 (MPC 7.0 mg/L); and TDS—1970 (MPC 1000). The high mineral contents in the water are natural and comprise minerals from geological sources, including iron-rich rocks, to uranium. Proper groundwater classifications for research investigations are required to separate potable groundwater resources, wells, and areas where underground geological “factories” producing natural “white” hydrogen could potentially be located. Our preliminary investigation results are presented with the aim of creating a large-scale targeted program to improve water sustainability in Kazakhstan, CA. Full article
Show Figures

Figure 1

20 pages, 18404 KiB  
Article
Impact of Wave Energy Converters and Port Layout on Coastal Dynamics: Case Study of Astara Port
by Mehrdad Moradi and Adrian Ilinca
Energies 2024, 17(11), 2485; https://doi.org/10.3390/en17112485 - 22 May 2024
Cited by 1 | Viewed by 1605
Abstract
In the face of depleting fossil energy and the imperative of sustainable development, there is a compelling drive towards advancing renewable energies. In this context, sustainable and predictable alternatives, like marine energy, gain prominence. Marine energy presents a cleaner option devoid of the [...] Read more.
In the face of depleting fossil energy and the imperative of sustainable development, there is a compelling drive towards advancing renewable energies. In this context, sustainable and predictable alternatives, like marine energy, gain prominence. Marine energy presents a cleaner option devoid of the adverse effects associated with fossil fuels, playing a crucial role in environmental sustainability by safeguarding coastlines against erosion. This study focuses on Astara Port in the Caspian Sea, exploring the utilization of wave energy converters (WECs). The originality of this study’s research lies in exploring WECs’ dual role in energy generation and coastal protection. Using MIKE21 software simulations, the impact of number, location, arrangement, and orientation of WECs across various scenarios was investigated, including two WEC number scenarios (11 and 13), three structural placement scenarios (north, front, and south of the port), two structural arrangement scenarios (linear and staggered), two port layout scenarios (original layout and modified layout), and two orientation scenarios for the structures (facing north-east, which is the dominant wave direction, and facing southeast). The results show a remarkable decrease in the significant wave height behind WECs, notably with 13 staggered devices facing dominant waves (from northeast), reducing the significant wave height Hs by 23–25%. This setup also shows the highest wave height reduction, notably 36.26% during a storm event. However, linear WEC setup offers more extensive coastline protection, covering 47.88% of the model boundary during storms. Furthermore, the 11 staggered WECs facing southeast (SE) arrangement had the lowest sediment accumulation at 0.0358 m over one year, showing effective sedimentation mitigation potential. Conversely, the 13 linear WECs facing northeast (NE) had the highest accumulation at 0.1231 m. Finally, the proposed port design redirects high-velocity flow away from the port entrance and removes rotatory flow, reducing sediment accumulation near the harbor entrance. Full article
(This article belongs to the Special Issue Wave Energy: Theory, Methods, and Applications)
Show Figures

Figure 1

22 pages, 21292 KiB  
Article
The Geotectonic Peculiarities of the North Caspian Permian Salt-Bearing Basins (Kazakhstan)
by Vyacheslav Zhemchuzhnikov, Aitbek Akhmetzhanov, Kenzhebek Ibrashev and Gauhar Akhmetzhanova
Geosciences 2024, 14(1), 23; https://doi.org/10.3390/geosciences14010023 - 16 Jan 2024
Cited by 3 | Viewed by 3424
Abstract
This article examines the geotectonic and sedimentary features of the Upper Devonian–Carboniferous–Permian deposits of the North Caspian basin, represented by deposits of marine Paleozoic-isolated carbonate platforms formed during the subsidence of the basement on the passive continental margin. The top is covered by [...] Read more.
This article examines the geotectonic and sedimentary features of the Upper Devonian–Carboniferous–Permian deposits of the North Caspian basin, represented by deposits of marine Paleozoic-isolated carbonate platforms formed during the subsidence of the basement on the passive continental margin. The top is covered by thick salt-bearing Kungurian deposits from the end of the Early Permian epoch. The formation of carbonate platforms is associated with a major tectonic restructuring of the basin at the turn of the Caledonian and Hercynian eras, when the Paleo-Tethys Ocean was formed and isolated carbonate islands began to grow in an open marine environment. The central part of the depression experienced a long and gradual subsidence that spanned the entire Paleozoic era and the beginning of the Mesozoic era. In the south and east, from the Devonian to the Permian periods, barriers were formed in the form of island carbonate massifs that separated the North Caspian basin from the Paleo-Tethys Ocean. During the formation of the salt-bearing basin, these barriers limited water exchange and ensured a one-way influx of sea water from the open ocean. As a result, at the end of the Permian period, thicker salts accumulated; however, during the collision of the continental massifs, an invasion of many kilometers of redbeds occurred. They initially stopped salt accumulation; however, gradually, in the north of the Caspian Sea during Roadian times, the salt accumulation continued. The post-Roadian time is associated with the influx of large quantities of redbed sediments, which caused gravitational instability in the underlying salt, and salt tectonics began with the formation of domal structures. Full article
Show Figures

Figure 1

23 pages, 16300 KiB  
Article
Effect of Water Vapor Transport on a Typical Rainstorm Process in the Arid Region of Southern Xinjiang: Observations and Numerical Simulations
by Chen Jin, Qing He and Qian Huang
Remote Sens. 2023, 15(16), 4082; https://doi.org/10.3390/rs15164082 - 19 Aug 2023
Cited by 1 | Viewed by 1557
Abstract
There are frequent and intensive periods of heavy rain in the arid areas of southern Xinjiang. This study uses a typical rainstorm process in the South Xinjiang Basin to investigate the weather, physical mechanisms, mesoscale characteristics, and income and expenditure characteristics of water [...] Read more.
There are frequent and intensive periods of heavy rain in the arid areas of southern Xinjiang. This study uses a typical rainstorm process in the South Xinjiang Basin to investigate the weather, physical mechanisms, mesoscale characteristics, and income and expenditure characteristics of water vapor sources, analyzing them using the observation data from southern Xinjiang regional automatic stations, ERA5 reanalysis data, multi-source satellite data, and WRF numerical simulation results. The study results show that torrential rain processes occur in the double-body distribution of the South Asian High in the upper troposphere, which is “high in the east and low in the west,” with “two ridges and one trough” in the middle layer. The development and movement of the low vortex, the configuration of low-level convergence and high-level divergence, and vertical upward movement provide favorable dynamic conditions for heavy rain. Additionally, the Black Sea, the Caspian Sea, the Aral Sea, the Arabian Sea, and the Bay of Bengal are important water vapor sources for this rainstorm. The water vapor reaches the South Xinjiang Basin along westward, southwest, and eastward paths. It is mainly imported into the South Xinjiang Basin from 500 to 300 hPa on the southern border and 700–500 hPa on the west, north, and east borders, and exported from 500 to 300 hPa on the eastern border. The simulation results show that the change in water vapor content significantly influences the precipitation intensity and range. The water vapor transport at the southern boundary contributes the most precipitation during the rainstorm. As the water vapor in the rainstorm area increases (decreases), the ascending motion is strengthened (weakened), the low-level convergence and high-level divergence are strengthened (weakened), the water vapor transport to the middle and high levels increases (decreases), and the precipitation increases (decreases). Full article
Show Figures

Graphical abstract

21 pages, 10179 KiB  
Article
Movement of Southern European Aquatic Alien Invertebrate Species to the North and South
by Aldona Dobrzycka-Krahel
Water 2023, 15(14), 2598; https://doi.org/10.3390/w15142598 - 17 Jul 2023
Cited by 3 | Viewed by 2106
Abstract
Due to globalisation and anthropopressure (intensification of shipping, creation of water corridors connecting seas, cultivation of commercial species), the movement of aquatic species has increased in recent years. The determination of trends in the movement of aquatic species in their geographical distribution over [...] Read more.
Due to globalisation and anthropopressure (intensification of shipping, creation of water corridors connecting seas, cultivation of commercial species), the movement of aquatic species has increased in recent years. The determination of trends in the movement of aquatic species in their geographical distribution over time is important because it may help in the management of a species in aquatic ecosystems. There are also knowledge gaps on the long-term trends in the movements of Southern European aquatic alien invertebrates. The study provides the first evidence of both northward and southward movements of these species based on available observations from 1940 to 2021, using meta-analyses and GAM modelling. To date, the majority (98%) of analysed Southern European aquatic alien invertebrates of Mediterranean and Ponto-Caspian origin have moved to the north. Among them, 61% are Ponto-Caspian aquatic alien invertebrates that moved only to the north, and 4% are Mediterranean aquatic alien invertebrates that moved only to the north; the rest include species that moved to the north and south: 27% are Ponto-Caspian aquatic alien invertebrates, and 6% are Mediterranean aquatic alien invertebrates. The one-way movement to the south was observed only in 2% of Mediterranean aquatic alien species. The study will help in understanding the movement patterns of Southern European aquatic alien invertebrates and in the effective management of aquatic ecosystems that allow for the co-existence of people and the rest of biodiversity. Full article
(This article belongs to the Special Issue Seas under Anthropopressure)
Show Figures

Figure 1

27 pages, 13984 KiB  
Article
Influence of Long-Term Wind Variability on the Storm Activity in the Caspian Sea
by Elizaveta Kruglova and Stanislav Myslenkov
Water 2023, 15(11), 2125; https://doi.org/10.3390/w15112125 - 2 Jun 2023
Cited by 6 | Viewed by 2181
Abstract
Wind and wave conditions are limiting factors for economic activity, and it is very important to study the long-term variability of storm activity. The main motivation of this research is to assess the impact of wind variability on the storm activity in the [...] Read more.
Wind and wave conditions are limiting factors for economic activity, and it is very important to study the long-term variability of storm activity. The main motivation of this research is to assess the impact of wind variability on the storm activity in the Caspian Sea over the past 42 years. The paper presents the analysis of a number of storms based on the results of wave model WAVEWATCH III and the Peak Over Threshold method. The mean, maximum, and 95th percentile significant wave heights were analyzed by season. The highest waves were in the Middle Caspian Sea in winter. Detailed interannual and seasonal analyses of the number and duration of storm waves were performed for the whole Caspian Sea and its separate regions. Positive significant trends were found in the whole sea. Significant positive trends in the number and duration of storms were found for the North and Middle Caspian. In the South Caspian, the trends were negative and not significant. High correlations were found between the number of storms and events with wind speed > 10–14 m/s and 95th percentile wind speed. Positive trends in the number of storms in the Middle Caspian were caused by positive trends in extreme wind situations. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

19 pages, 2581 KiB  
Article
Tracing Water–Rock–Gas Reactions in Shallow Productive Mud Chambers of Active Mud Volcanoes in the Caspian Sea Region (Azerbaijan)
by Aygun Bayramova, Orhan R. Abbasov, Adil A. Aliyev, Elnur E. Baloglanov, Franziska M. Stamm, Martin Dietzel and Andre Baldermann
Minerals 2023, 13(5), 696; https://doi.org/10.3390/min13050696 - 19 May 2023
Cited by 5 | Viewed by 2070
Abstract
We present geochemical and mineralogical datasets for five new mud volcanoes in continental Azerbaijan (Hamamdagh and Bendovan) and the adjacent Caspian Sea (Khara-Zire, Garasu and Sangi-Mughan). The fluid ejects have a Na–Cl-type composition and are generated by the mixing of evaporated Caspian seawater [...] Read more.
We present geochemical and mineralogical datasets for five new mud volcanoes in continental Azerbaijan (Hamamdagh and Bendovan) and the adjacent Caspian Sea (Khara-Zire, Garasu and Sangi-Mughan). The fluid ejects have a Na–Cl-type composition and are generated by the mixing of evaporated Caspian seawater and low- to high-salinity pore waters, as indicated by Br–B and Cl–B systematics and Na–K and SiO2 geo-thermometers. The fluids contain high concentrations of As, Ba, Cu, Si, Li, Sr and Zn (60 to 26,300 ppm), which are caused by surface evaporation, pyrite oxidation, ion exchange reactions and hydrocarbon maturation in Oligocene-Miocene ‘Maykop’ shales. The solid ejects comprise liquid, oily and brecciated mud, mud/claystones and sandstones. The mud heterogeneity of the volcanoes is related to the geological age and different sedimentological strata of the host rocks that the mud volcanoes pass through during their ascent. All ejects show evidence of chemical alterations via water–rock–gas reactions, such as feldspar weathering, smectite illitization and the precipitation of Fe-(hydr)oxides, calcite, calcian dolomite, kaolinite and smectite. The studied localities have petrographic similarities to northern extending mud volcano systems located on Bahar and Zenbil islands, which suggests that mud volcanoes in the Caspian Sea region are sourced from giant shallow mud chambers (~1–4 km depth) located in Productive Series strata. Our results document the complex architecture of the South Caspian Basin—the most prolific hydrocarbon region in the world. Full article
Show Figures

Figure 1

27 pages, 33137 KiB  
Article
Insights on the Existence of Ancient Glacial Refugee in the Northern Black/Azov Sea Lowland, with the Description of the First Stygobiotic Microcrustacean Species of the Genus Niphargus Schiödte, 1849 from the Mouth of the Don River
by Ivan N. Marin and Dmitry M. Palatov
Diversity 2023, 15(5), 682; https://doi.org/10.3390/d15050682 - 18 May 2023
Cited by 9 | Viewed by 2052
Abstract
A new species of the genus Niphargus Schiödte, 1849 (Crustacea: Amphipoda: Niphargidae), co-existing with other stygobiotic amphipods, Diasynurella kiwi Marin and Palatov, 2023 and Pontonyx donensis (Martynov, 1919) (Crangonyctidae), is described from a small spring on a shore of Kiziterinka River in Rostov-on-Don [...] Read more.
A new species of the genus Niphargus Schiödte, 1849 (Crustacea: Amphipoda: Niphargidae), co-existing with other stygobiotic amphipods, Diasynurella kiwi Marin and Palatov, 2023 and Pontonyx donensis (Martynov, 1919) (Crangonyctidae), is described from a small spring on a shore of Kiziterinka River in Rostov-on-Don City in the mouth of the Don River. Two of the three species in the studied spring, D. kiwi and the discovered Niphargus, belong to microcrustaceans not exceeding the total body size of 3 mm. The new species, Niphargus rostovi sp. nov., represents one of the smallest species within the genus and is mostly related to the Greek Niphargus karkabounasi Ntakis, Anastasiadou, Zakšek and Fišer, 2015, which is also not reaching the body size of 3 mm. One more related undescribed species is found on the Crete Island by the molecular genetic data. These species represent a separate phylogenetic lineage within the “carpathicus” species complex, which diverged from the congeners in the Late Miocene for more than 10 Mya. At the same time, the speciation within the ingroup started about 5–6 Mya, obviously correlating with the drainage of the Euxinian basin of the Eastern Paratethys, connecting the lower Don and southern Greece areas. Niphargus potamophilus Birštein, 1954 is also first recorded from the mouth of the Belbek River in the Crimean Peninsula, closing the known area from the Kuban River delta to Rostov-on-Don area and further along the western coast of the Black Sea to Bulgaria. Analysis of the recent records of long-time lineages of endemic/subterranean/stygobiotic animals unable to disperse for long distances assumed that glacial refugium existed at the mouth of the Don River, along with the South Caucasus (Colchis) and the southern Caspian (Hyrcania), where many species have survived several periods of glaciation since the late Miocene. Full article
(This article belongs to the Special Issue Diversity and Biogeography of Crustaceans in Continental Waters)
Show Figures

Figure 1

12 pages, 2284 KiB  
Article
An Optimized Quantification Method for Marine Radioactivity Measurements: Application in the Southern Caspian Sea Using the KATERINA Underwater γ-Spectrometer
by Christos Tsabaris, Effrossyni G. Androulakaki and Stylianos Alexakis
J. Mar. Sci. Eng. 2023, 11(4), 725; https://doi.org/10.3390/jmse11040725 - 27 Mar 2023
Cited by 1 | Viewed by 1822
Abstract
The underwater gamma-ray spectrometer KATERINA was calibrated in a special tank and then demonstrated in the Southern Caspian Sea to determine the radioactivity levels in seawater as well as in the sediment. The simulated marine efficiency of the in situ detection system was [...] Read more.
The underwater gamma-ray spectrometer KATERINA was calibrated in a special tank and then demonstrated in the Southern Caspian Sea to determine the radioactivity levels in seawater as well as in the sediment. The simulated marine efficiency of the in situ detection system was validated analyzing the high energetic (1764 keV of 214Bi and 2614 keV of 208Tl) gamma-ray peaks using their known activity concentration as determined from the low energy emissions. The analysis of the in situ gamma-ray spectra in a short acquisition time period provided quantitative data for 226Ra and 232Th progenies as well as for 40K. A satisfactory analysis was performed for quantifying the observed energy peaks in the seawater and sediment measurements acquired at the south coast of the Caspian Sea. The spectrum in the water tank was also analyzed using full spectrum analysis methods, and the reproduced spectrum was in a very good agreement with the experimental spectrum giving as an output the activity concentrations of the observed radionuclides. Full article
(This article belongs to the Special Issue Environmental Radioactivity in the Ocean)
Show Figures

Figure 1

11 pages, 3254 KiB  
Article
GRACE Combined with WSD to Assess the Change in Drought Severity in Arid Asia
by Jiawei Liu, Guofeng Zhu, Kailiang Zhao, Yinying Jiao, Yuwei Liu, Mingyue Yang, Wenhao Zhang, Dongdong Qiu, Xinrui Lin and Linlin Ye
Remote Sens. 2022, 14(14), 3454; https://doi.org/10.3390/rs14143454 - 18 Jul 2022
Cited by 8 | Viewed by 2412
Abstract
Gravity Recovery and Climate Experiment (GRACE) satellite data are widely used in drought studies. In this study, we quantified drought severity based on land terrestrial water storage (TWS) changes in GRACE data. We used the water storage deficit (WSD) and water storage deficit [...] Read more.
Gravity Recovery and Climate Experiment (GRACE) satellite data are widely used in drought studies. In this study, we quantified drought severity based on land terrestrial water storage (TWS) changes in GRACE data. We used the water storage deficit (WSD) and water storage deficit index (WSDI) to identify the drought events and evaluate the drought severity. The WSDI calculated by GRACE provides an effective assessment method when assessing the extent of drought over large areas under a lack of site data. The results show a total of 22 drought events in the central Asian dry zone during the study period. During spring and autumn, the droughts among these incidents occurred more frequently and severely. The longest and most severe drought occurred near the Caspian Sea. In the arid area of central Asia, the north of the region tended to be moist (the WSDI value was 0.04 year−1), and the south, east, and Caspian Sea area tended to be drier (the WSDI values were −0.07 year−1 in the south, −0.11 year−1 in the east, and −0.19 year−1 in the Caspian Sea). These study results can provide a key scientific basis for agricultural development, food security, and climate change response in the Asian arid zone. Full article
Show Figures

Figure 1

22 pages, 15777 KiB  
Article
LGM Glaciations in the Northeastern Anatolian Mountains: New Insights
by Regina Reber, Naki Akçar, Dmitry Tikhomirov, Serdar Yesilyurt, Christof Vockenhuber, Vural Yavuz, Susan Ivy-Ochs and Christian Schlüchter
Geosciences 2022, 12(7), 257; https://doi.org/10.3390/geosciences12070257 - 22 Jun 2022
Cited by 12 | Viewed by 2932
Abstract
Barhal Valley belongs to the Çoruh Valley System in the Kaçkar Mountains of northeastern Anatolia. This 13 km long valley is located to the south of the main weather divide and to the east of Mt. Kaçkar, with the highest peak of the [...] Read more.
Barhal Valley belongs to the Çoruh Valley System in the Kaçkar Mountains of northeastern Anatolia. This 13 km long valley is located to the south of the main weather divide and to the east of Mt. Kaçkar, with the highest peak of the mountain range being 3932 m. Today, source of an average yearly precipitation of 2000 mm of moisture is the Black Sea, situated approximately 40 km to the north of the study site. Glaciers of the Last Glacial Maximum (LGM) descended directly from Mt. Kaçkar and reached an altitude of ca. 1850 m a.s.l. (above sea level). In this study, we are exploring whether the position of Barhal Valley to the south of the main weather divide and its east–west orientation have an influence on the existence and expansion of paleoglaciers. Here, we present 32 new cosmogenic 36Cl dates on erratic boulders from the Çoruh Valley System. We reconstructed three geomorphologically well-contained glacier advances in the Barhal Valley, namely at 34.0 ± 2.3 ka, 22.2 ± 2.6 ka, and 18.3 ± 1.7 ka within the time window of the global LGM. Field evidence shows that the glacier of the 18.3 ± 1.7 ka advance disappeared rapidly and that by the latest time, at 15.6 ± 1.8 ka, the upper cirques were ice-free. No evidence for Lateglacial glacier fluctuations was found, and the Neoglacial activity is restricted to the cirques with rock glaciers. A range of 2700 to 3000 m for the Equilibrium Line Altitude (ELA) at the LGM was reported based on modeling of the glacial morphology. We determined that the most likely position of the LGM ELA in the Çoruh Valley System was at 2900 m a.s.l. We suggest an alternative moisture source to the direct transport from the Black Sea for the ice accumulation in the Eastern Black See Mountains. The shift of the Polar Front and of the Siberian High Pressure System to the south during the LGM resulted in the domination of easterly airflow to the Caucasus and Kaçkar Mountains with moisture from expanded lakes in central–western Siberia and from the enlarged Aral- and Caspian Seas. Full article
(This article belongs to the Special Issue Cutting Edge Earth Sciences: Three Decades of Cosmogenic Nuclides)
Show Figures

Figure 1

Back to TopTop