Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Snail-1 (SNAI-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3450 KiB  
Article
Characterization of Epithelial–Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7
by Hendrik Ungefroren, Juliane von der Ohe, Rüdiger Braun, Yola Gätje, Olha Lapshyna, Jörg Schrader, Hendrik Lehnert, Jens-Uwe Marquardt, Björn Konukiewitz and Ralf Hass
Cells 2024, 13(23), 2010; https://doi.org/10.3390/cells13232010 - 5 Dec 2024
Cited by 1 | Viewed by 1814
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal–epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management. Full article
(This article belongs to the Special Issue New Insights of TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

23 pages, 3969 KiB  
Article
Enhanced Migration of Fuchs Corneal Endothelial Cells by Rho Kinase Inhibition: A Novel Ex Vivo Descemet’s Stripping Only Model
by Mohit Parekh, Annie Miall, Ashley Chou, Lara Buhl, Neha Deshpande, Marianne O. Price, Francis W. Price and Ula V. Jurkunas
Cells 2024, 13(14), 1218; https://doi.org/10.3390/cells13141218 - 19 Jul 2024
Cited by 6 | Viewed by 2769
Abstract
Descemet’s Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We [...] Read more.
Descemet’s Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet’s membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance. Full article
(This article belongs to the Special Issue Molecular Insights into Corneal Wound Healing and Inflammation)
Show Figures

Graphical abstract

20 pages, 13915 KiB  
Article
Canine Visceral Leishmaniasis: A Histological and Immunohistochemical Study of Fibropoiesis in Chronic Interstitial Pneumonitis
by Frederico C. Gonçalves, Ramon de Alencar Pereira, Adriano Francisco Alves, Aldair Pinto Woyames Junio, Ricardo T. Fujiwara, David M. Mosser, Helida Monteiro Andrade, Geovanni D. Cassali, Enio Ferreira and Wagner Luiz Tafuri
Microorganisms 2024, 12(5), 941; https://doi.org/10.3390/microorganisms12050941 - 7 May 2024
Viewed by 2154
Abstract
We studied some fibrotic aspects of chronic interstitial pneumonitis in the lungs of dogs infected with Leishmania infantum. The lungs of eleven naturally infected dogs, twelve experimentally infected with two distinct strains of L. infantum (BH401 and BH46), and six uninfected (controls) [...] Read more.
We studied some fibrotic aspects of chronic interstitial pneumonitis in the lungs of dogs infected with Leishmania infantum. The lungs of eleven naturally infected dogs, twelve experimentally infected with two distinct strains of L. infantum (BH401 and BH46), and six uninfected (controls) dogs, were analyzed by histological, parasitological, and immunohistochemical studies. Conventional histology (HE), collagen deposition (Gomori’s silver staining for reticulin collagen fibers), and immunohistochemistry for myofibroblast characterization were carried out based on the cellular expression of alpha-smooth muscle actin, vimentin, cytokeratin, E-cadherin, snail antigen homologue 1 (SNAI1) (Snail), and the cytokine expression of transforming growth factor-beta (TGF-β). Parasitological screening was carried out using conventional polymerase chain reaction (PCR) and the immunohistochemical reaction of streptavidin–peroxidase for visualizing Leishmania amastigotes. Dogs naturally infected with L. infantum and experimentally infected with L. infantum BH401 strains showed intense interstitial pneumonitis characterized by thickening of the alveolar septa as a consequence of an intense diffuse and focal (plaques) chronic exudate of mononuclear cells associated with fibrogenesis. The expression of alpha-actin, vimentin, and TGF-β was higher in the lung interstitium of all infected dogs than in the other two groups (BH46 strain and controls). Moreover, in both the naturally and experimentally infected dog (BH401 strain) groups, the expression of Snail was moderate to intense in contrast to the other groups. Based on these immunohistochemical results, we concluded that mesenchymal cells are active in promoting changes in the extracellular matrix in the lungs of dogs naturally and experimentally infected with L. infantum, but it depends on the virulence of the parasite. Full article
(This article belongs to the Special Issue New Advancements in the Field of Leishmaniasis)
Show Figures

Figure 1

14 pages, 2664 KiB  
Article
A Novel Interaction of Slug (SNAI2) and Nuclear Actin
by Ling Zhuo, Jan B. Stöckl, Thomas Fröhlich, Simone Moser, Angelika M. Vollmar and Stefan Zahler
Cells 2024, 13(8), 696; https://doi.org/10.3390/cells13080696 - 17 Apr 2024
Cited by 2 | Viewed by 1661
Abstract
Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified [...] Read more.
Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair. Full article
(This article belongs to the Special Issue Cytoskeletal Remodeling in Health and Disease)
Show Figures

Figure 1

14 pages, 3004 KiB  
Article
Nidogen-1/NID1 Function and Regulation during Progression and Metastasis of Colorectal Cancer
by Matjaz Rokavec, Stephanie Jaeckel and Heiko Hermeking
Cancers 2023, 15(22), 5316; https://doi.org/10.3390/cancers15225316 - 7 Nov 2023
Cited by 8 | Viewed by 2749
Abstract
We have previously shown that the extracellular matrix and basement membrane protein Nidogen1 (NID1) is secreted by more malignant, mesenchymal-like CRC cells and induces the epithelial–mesenchymal transition (EMT) and promotes the migration and invasion of less malignant, epithelial-like CRC cells. Here, we performed [...] Read more.
We have previously shown that the extracellular matrix and basement membrane protein Nidogen1 (NID1) is secreted by more malignant, mesenchymal-like CRC cells and induces the epithelial–mesenchymal transition (EMT) and promotes the migration and invasion of less malignant, epithelial-like CRC cells. Here, we performed a comprehensive bioinformatics analysis of multiple datasets derived from CRC patients and showed that elevated expression of NID1 and the genes ITGA3, ITGB1, and ITGAV, which encode NID1 receptors, is associated with poor prognosis and advanced tumor stage. Accordingly, the expression of NID1, ITGA3, ITGB1, and ITGAV was associated with an EMT signature, which included SNAIL/SNAI1, an EMT-inducing transcription factor. In CRC cells, ectopic SNAIL expression induced NID1 and SNAIL occupancy was detected at an E-box upstream of the NID1 transcription start site. Therefore, NID1 represents a direct target of SNAIL. Ectopic expression of NID1 or treatment with NID1-containing medium endowed non-metastatic CRC cells with the capacity to form lung metastases after xenotransplantation into mice. Suppression of the NID1 receptor ITGAV decreased cell viability, particularly in CMS/consensus molecular subtype 4 CRC cells. Taken together, our results show that NID1 is a direct target of EMT-TF SNAIL and is associated with and promotes CRC progression and metastasis. Furthermore, the NID1 receptor ITGAV represents a candidate therapeutic target in CMS4 colorectal tumors. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

21 pages, 3626 KiB  
Article
Empirical Myoelectric Feature Extraction and Pattern Recognition in Hemiplegic Distal Movement Decoding
by Alexey Anastasiev, Hideki Kadone, Aiki Marushima, Hiroki Watanabe, Alexander Zaboronok, Shinya Watanabe, Akira Matsumura, Kenji Suzuki, Yuji Matsumaru and Eiichi Ishikawa
Bioengineering 2023, 10(7), 866; https://doi.org/10.3390/bioengineering10070866 - 21 Jul 2023
Cited by 2 | Viewed by 3012
Abstract
In myoelectrical pattern recognition (PR), the feature extraction methods for stroke-oriented applications are challenging and remain discordant due to a lack of hemiplegic data and limited knowledge of skeletomuscular function. Additionally, technical and clinical barriers create the need for robust, subject-independent feature generation [...] Read more.
In myoelectrical pattern recognition (PR), the feature extraction methods for stroke-oriented applications are challenging and remain discordant due to a lack of hemiplegic data and limited knowledge of skeletomuscular function. Additionally, technical and clinical barriers create the need for robust, subject-independent feature generation while using supervised learning (SL). To the best of our knowledge, we are the first study to investigate the brute-force analysis of individual and combinational feature vectors for acute stroke gesture recognition using surface electromyography (EMG) of 19 patients. Moreover, post-brute-force singular vectors were concatenated via a Fibonacci-like spiral net ranking as a novel, broadly applicable concept for feature selection. This semi-brute-force navigated amalgamation in linkage (SNAiL) of EMG features revealed an explicit classification rate performance advantage of 10–17% compared to canonical feature sets, which can drastically extend PR capabilities in biosignal processing. Full article
(This article belongs to the Special Issue Machine Learning for Biomedical Applications, Volume II)
Show Figures

Figure 1

15 pages, 4161 KiB  
Article
Vincamine Ameliorates Epithelial-Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis in Rats; Targeting TGF-β/MAPK/Snai1 Pathway
by Rania Alaaeldin, Reham H. Mohyeldin, Amany Abdlrehim Bekhit, Wafaey Gomaa, Qing-Li Zhao and Moustafa Fathy
Molecules 2023, 28(12), 4665; https://doi.org/10.3390/molecules28124665 - 9 Jun 2023
Cited by 20 | Viewed by 2914
Abstract
Idiopathic pulmonary fibrosis is a progressive, irreversible lung disease that leads to respiratory failure and death. Vincamine is an indole alkaloid obtained from the leaves of Vinca minor and acts as a vasodilator. The present study aims to investigate the protective activity of [...] Read more.
Idiopathic pulmonary fibrosis is a progressive, irreversible lung disease that leads to respiratory failure and death. Vincamine is an indole alkaloid obtained from the leaves of Vinca minor and acts as a vasodilator. The present study aims to investigate the protective activity of vincamine against EMT in bleomycin (BLM)-induced pulmonary fibrosis via assessing the apoptotic and TGF-β1/p38 MAPK/ERK1/2 signaling pathways. In bronchoalveolar lavage fluid, protein content, total cell count, and LDH activity were evaluated. N-cadherin, fibronectin, collagen, SOD, GPX, and MDA levels were determined in lung tissue using ELISA. Bax, p53, bcl2, TWIST, Snai1, and Slug mRNA levels were examined using qRT-PCR. Western blotting was used to assess the expression of TGF-β1, p38 MAPK, ERK1/2, and cleaved caspase 3 proteins. H & E and Masson’s trichrome staining were used to analyze histopathology. In BLM-induced pulmonary fibrosis, vincamine reduced LDH activity, total protein content, and total and differential cell count. SOD and GPX were also increased following vincamine treatment, while MDA levels were decreased. Additionally, vincamine suppressed the expression of p53, Bax, TWIST, Snail, and Slug genes as well as the expression of factors such as TGF-β1, p/t p38 MAPK, p/t ERK1/2, and cleaved caspase 3 proteins, and, at the same time, vincamine increased bcl2 gene expression. Moreover, vincamine restored fibronectin, N-Catherine, and collagen protein elevation due to BLM-induced lung fibrosis. In addition, the histopathological examination of lung tissues revealed that vincamine attenuated the fibrotic and inflammatory conditions. In conclusion, vincamine suppressed bleomycin-induced EMT by attenuating TGF-β1/p38 MAPK/ERK1/2/TWIST/Snai1/Slug/fibronectin/N-cadherin pathway. Moreover, it exerted anti-apoptotic activity in bleomycin-induced pulmonary fibrosis. Full article
Show Figures

Figure 1

21 pages, 5780 KiB  
Article
Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma
by Gaurab Roy, Ting Yang, Shangxin Liu, Yi-Ling Luo, Yuantao Liu and Qian Zhong
Int. J. Mol. Sci. 2023, 24(3), 1964; https://doi.org/10.3390/ijms24031964 - 19 Jan 2023
Cited by 8 | Viewed by 3186
Abstract
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein [...] Read more.
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein–Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman’s correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFβR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 6230 KiB  
Article
SNAI2 Attenuated the Stem-like Phenotype by Reducing the Expansion of EPCAMhigh Cells in Cervical Cancer Cells
by Xian Liu, Ni Zhang, Qian Chen, Qian Feng, Yanru Zhang, Zhiqiang Wang, Xiong Yue, Hongbao Li and Nan Cui
Int. J. Mol. Sci. 2023, 24(2), 1062; https://doi.org/10.3390/ijms24021062 - 5 Jan 2023
Cited by 4 | Viewed by 2397
Abstract
SNAI2 (Snai2) is a zinc-finger transcriptional repressor that belongs to the Snail family. The accumulated evidence suggests that SNAI2 exhibits biphasic effects on regulating a stem-like phenotype in various types of cells, both normal and malignant. In this study, by exogenously expressing SNAI2 [...] Read more.
SNAI2 (Snai2) is a zinc-finger transcriptional repressor that belongs to the Snail family. The accumulated evidence suggests that SNAI2 exhibits biphasic effects on regulating a stem-like phenotype in various types of cells, both normal and malignant. In this study, by exogenously expressing SNAI2 in SiHa cells, SNAI2 exhibited the capacity to inhibit a stem-like phenotype in cervical cancer cells. The SNAI2-overexpressing cells inhibited cell growth, tumorsphere formation, tumor growth, enhanced sensitivity to cisplatin, reduced stem cell-related factors’ expression, and lowered tumor initiating frequency. In addition, the EPCAMhigh cells sorted from SiHa cells exhibited an enhanced capacity to maintain a stem-like phenotype. Further study demonstrated that the trans-suppression of EPCAM expression by SNAI2 led to blockage of the nuclear translocation of β-catenin, as well as reduction in SOX2 and c-Myc expression in SiHa and HeLa cells, but induction in SNAI2 knockdown cells (CaSki), which would be responsible for the attenuation of the stem-like phenotype in cervical cancer cells mediated by SNAI2. All of these results demonstrated that SNAI2 could attenuate the stem-like phenotype in cervical cancer cells through the EPCAM/β-catenin axis. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 2433 KiB  
Article
A Signaling Crosstalk Links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and Regulates the Acquisition of a Cancer Stem Cell Molecular Signature in U87 Glioblastoma Neurospheres
by Loraine Gresseau, Marie-Eve Roy, Stéphanie Duhamel and Borhane Annabi
Cancers 2022, 14(23), 5944; https://doi.org/10.3390/cancers14235944 - 30 Nov 2022
Cited by 10 | Viewed by 2469 | Correction
Abstract
Background: Three-dimensional in vitro neurospheres cultures recapitulate stemness features associated with poor clinical outcome in glioblastoma patients. They are commonly used to address brain cancer stem cell (CSC) signal transducing biology that regulates spheroids formation and stemness phenotype, and to assess the [...] Read more.
Background: Three-dimensional in vitro neurospheres cultures recapitulate stemness features associated with poor clinical outcome in glioblastoma patients. They are commonly used to address brain cancer stem cell (CSC) signal transducing biology that regulates spheroids formation and stemness phenotype, and to assess the in vitro pharmacological impact of chemotherapeutic drugs. Objective: Here, we addressed the role of a new signaling axis involved in the regulation of in vitro spheroids formation and assessed the chemopreventive ability of diet-derived epigallocatechin gallate (EGCG) to impact the processes that govern the acquisition of spheroids CSC stemness traits. Methods: Neurospheres were generated from adherent human U87 glioblastoma cancer cell cultures under conditions that recapitulate stemness features. Total RNA and protein lysates were isolated for gene expression by RT-qPCR and protein expression by immunoblot. Transcriptomic analysis was performed through RNA-Seq. Results: Compared to their parental adherent cells, tumorspheres expressed increased levels of the CSC markers NANOG, SOX2, PROM1 (CD133), as well as of the epithelial-to-mesenchymal transition (EMT) markers Fibronectin, SNAI1, and 37/67 kDa laminin-1 receptor ribosomal protein SA (RPSA). Increased PROM1, SOX2, Fibronectin, and RPSA transcripts level were also observed in clinical grade IV glioblastoma tissues compared to normal tissue. EGCG treatment reduced dose-dependently tumorspheres size and inhibited the transcriptional regulation of those genes. An apoptotic signature was also found in spheroids with increased signal transducing events involving GSK3α/β, RSK, and CREB. These were repressed upon RPSA gene silencing and partially by SNAI1 silencing. Conclusion: This work highlights a signaling axis linking RPSA upstream of SNAIL in neurospheres genesis and supports the chemopreventive impact that diet-derived EGCG may exert on the acquisition of CSC traits. Full article
(This article belongs to the Special Issue Signalling Pathways of Cancer Stem Cells)
Show Figures

Figure 1

17 pages, 1869 KiB  
Article
SPARC Induces E-Cadherin Repression and Enhances Cell Migration through Integrin αvβ3 and the Transcription Factor ZEB1 in Prostate Cancer Cells
by Fernanda López-Moncada, María José Torres, Boris Lavanderos, Oscar Cerda, Enrique A. Castellón and Héctor R. Contreras
Int. J. Mol. Sci. 2022, 23(11), 5874; https://doi.org/10.3390/ijms23115874 - 24 May 2022
Cited by 22 | Viewed by 3634
Abstract
Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC [...] Read more.
Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC induces changes associated with epithelial–mesenchymal transition (EMT), enhancing migration and invasion and increasing the expression of EMT transcriptional factor Zinc finger E-box-binding homeobox 1 (ZEB1), but not Zinc finger protein SNAI1 (Snail) or Zinc finger protein SNAI2 (Slug). It is unknown whether the SPARC-induced downregulation of E-cadherin in PCa cells depends on ZEB1. Several integrins are mediators of SPARC effects in cancer cells. Because integrin signaling can induce EMT programs, we hypothesize that SPARC induces E-cadherin repression through the activation of integrins and ZEB1. Through stable knockdown and the overexpression of SPARC in PCa cells, we demonstrate that SPARC downregulates E-cadherin and increases vimentin, ZEB1, and integrin β3 expression. Knocking down SPARC in PCa cells decreases the tyrosine-925 phosphorylation of FAK and impairs focal adhesion formation. Blocking integrin αvβ3 and silencing ZEB1 revert both the SPARC-induced downregulation of E-cadherin and cell migration enhancement. We conclude that SPARC induces E-cadherin repression and enhances PCa cell migration through the integrin αvβ3/ZEB1 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Determinants of Prostate Cancer Metastasis)
Show Figures

Figure 1

15 pages, 820 KiB  
Systematic Review
Long Non-Coding RNAs as Potential Regulators of EMT-Related Transcription Factors in Colorectal Cancer—A Systematic Review and Bioinformatics Analysis
by Ana Pavlič, Nina Hauptman, Emanuela Boštjančič and Nina Zidar
Cancers 2022, 14(9), 2280; https://doi.org/10.3390/cancers14092280 - 3 May 2022
Cited by 12 | Viewed by 3373
Abstract
Epithelial–mesenchymal transition (EMT) plays a pivotal role in carcinogenesis, influencing cancer progression, metastases, stemness, immune evasion, metabolic reprogramming and therapeutic resistance. EMT in most carcinomas, including colorectal carcinoma (CRC), is only partial, and can be evidenced by identification of the underlying molecular drivers [...] Read more.
Epithelial–mesenchymal transition (EMT) plays a pivotal role in carcinogenesis, influencing cancer progression, metastases, stemness, immune evasion, metabolic reprogramming and therapeutic resistance. EMT in most carcinomas, including colorectal carcinoma (CRC), is only partial, and can be evidenced by identification of the underlying molecular drivers and their regulatory molecules. During EMT, cellular reprogramming is orchestrated by core EMT transcription factors (EMT-TFs), namely ZEB1/2, TWIST1/2, SNAI1 (SNAIL) and SNAI2 (SLUG). While microRNAs have been clearly defined as regulators of EMT, the role of long non-coding RNAs (lncRNAs) in EMT is poorly defined and controversial. Determining the role of lncRNAs in EMT remains a challenge, because they are involved in a number of cellular pathways and are operating through various mechanisms. Adding to the complexity, some lncRNAs have controversial functions across different tumor types, acting as EMT promotors in some tumors and as EMT suppressors in others. The aim of this review is to summarize the role of lncRNAs involved in the regulation of EMT-TFs in human CRC. Additional candidate lncRNAs were identified through a bioinformatics analysis. Full article
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
ELK3 Controls Gastric Cancer Cell Migration and Invasion by Regulating ECM Remodeling-Related Genes
by Minwook Lee, Hyeon-Ju Cho, Kyung-Soon Park and Hae-Yun Jung
Int. J. Mol. Sci. 2022, 23(7), 3709; https://doi.org/10.3390/ijms23073709 - 28 Mar 2022
Cited by 27 | Viewed by 3843
Abstract
Current therapeutic strategies for gastric cancer, including surgery and chemotherapy improve patient survival; however, the survival rate of patients with metastatic gastric cancer is very low. The molecular mechanisms underlying the dissemination of gastric cancer cells to distant organs are currently unknown. Here, [...] Read more.
Current therapeutic strategies for gastric cancer, including surgery and chemotherapy improve patient survival; however, the survival rate of patients with metastatic gastric cancer is very low. The molecular mechanisms underlying the dissemination of gastric cancer cells to distant organs are currently unknown. Here, we demonstrate that the E26 transformation-specific (ETS) transcription factor ELK3 (ELK3) gene is required for the migration and invasion of gastric cancer cells. The ELK3 gene modulates the expression of extracellular matrix (ECM) remodeling-related genes, such as bone morphogenetic protein (BMP1), lysyl oxidase like 2 (LOXL2), Snail family transcriptional repressor 1 (SNAI1), serpin family F member 1 (SERPINF1), decorin (DCN), and nidogen 1 (NID1) to facilitate cancer cell dissemination. Our in silico analyses indicated that ELK3 expression was positively associated with these ECM remodeling-related genes in gastric cancer cells and patient samples. The high expressions of ELK3 and other ECM remodeling-related genes were also closely associated with a worse prognosis of patients with gastric cancer. Collectively, these findings suggest that ELK3 acts as an important regulator of gastric cancer cell dissemination by regulating ECM remodeling. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Matrix Metalloproteinases in Human Decidualized Endometrial Stromal Cells
by Yoji Hisamatsu, Hiromi Murata, Hiroaki Tsubokura, Yoshiko Hashimoto, Masaaki Kitada, Susumu Tanaka and Hidetaka Okada
Curr. Issues Mol. Biol. 2021, 43(3), 2111-2123; https://doi.org/10.3390/cimb43030146 - 26 Nov 2021
Cited by 16 | Viewed by 4246
Abstract
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control [...] Read more.
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Particulate Matter (PM10) Promotes Cell Invasion through Epithelial–Mesenchymal Transition (EMT) by TGF-β Activation in A549 Lung Cells
by Claudia M. García-Cuellar, Miguel Santibáñez-Andrade, Yolanda I. Chirino, Raúl Quintana-Belmares, Rocío Morales-Bárcenas, Ericka Marel Quezada-Maldonado and Yesennia Sánchez-Pérez
Int. J. Mol. Sci. 2021, 22(23), 12632; https://doi.org/10.3390/ijms222312632 - 23 Nov 2021
Cited by 18 | Viewed by 3110
Abstract
Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 μm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial–mesenchymal transition (EMT) is a regulatory program capable of [...] Read more.
Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 μm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial–mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-β), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (α-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression. Full article
(This article belongs to the Special Issue The Epithelial-to-Mesenchymal Transition (EMT) in Cancers)
Show Figures

Figure 1

Back to TopTop