Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Sn (IV) substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 14415 KiB  
Review
Towards Construction of the “Periodic Table” of 1-Methylbenzotriazole
by Christina Stamou, Zoi G. Lada, Sophia Paschalidou, Christos T. Chasapis and Spyros P. Perlepes
Inorganics 2024, 12(8), 208; https://doi.org/10.3390/inorganics12080208 - 30 Jul 2024
Cited by 1 | Viewed by 1391
Abstract
Metal complexes of benzotriazole-type ligands continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their aesthetically beautiful structures, physical properties and applications. 1-methylbenzotriazole (Mebta) is the N-substituted archetype of the parent [...] Read more.
Metal complexes of benzotriazole-type ligands continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their aesthetically beautiful structures, physical properties and applications. 1-methylbenzotriazole (Mebta) is the N-substituted archetype of the parent 1H-benzotriazole. The first attempt to build a “periodic table” of Mebta, which includes its complexes with several metal ions, is described in this work. This, at first glance, trivial ligand has led to interesting results in terms of the chemistry, structures and properties of its metal complexes. This work reviews the to-date published coordination chemistry of Mebta with Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), Cu(II), Zn(II), Pd(II), Au(I) and {UVIO2}2+, with emphasis on their preparations, reactivity, structures and properties. Unpublished results from our group comprising other Co(II), Ni(II), Cu(II) and Zn(II) complexes, as well as Cd(II), Hg(II), Ag(I), In(III) and Sn(IV) ones are briefly reported. Mebta can also provide access to 1D and 3D heterometallic thiocyanato-bridged Co(II)/Hg(II) and Ni(II)/Hg(II) compounds. In almost all cases, Mebta behaves as a monodentate ligand with the nitrogen of position 3 of the azole ring as the donor atom. However, there are two copper complexes in which this molecule adopts a bidentate bridging coordination behavior. Our efforts to complete the “periodic table” of Mebta are continued. Full article
Show Figures

Figure 1

11 pages, 1711 KiB  
Article
Comparative Study of Magnetic Properties of (Mn1−xAxIV)Bi2Te4 AIV = Ge, Pb, Sn
by Dmitry A. Estyunin, Anna A. Rybkina, Konstantin A. Kokh, Oleg E. Tereshchenko, Marina V. Likholetova, Ilya I. Klimovskikh and Alexander M. Shikin
Magnetochemistry 2023, 9(9), 210; https://doi.org/10.3390/magnetochemistry9090210 - 13 Sep 2023
Cited by 11 | Viewed by 2065
Abstract
We investigated the magnetic properties of the antiferromagnetic (AFM) topological insulator MnBi2Te4 with a partial substitution of Mn atoms by non-magnetic elements (AIV = Ge, Pb, Sn). Samples with various element concentrations (10–80%) were studied using SQUID magnetometry. The [...] Read more.
We investigated the magnetic properties of the antiferromagnetic (AFM) topological insulator MnBi2Te4 with a partial substitution of Mn atoms by non-magnetic elements (AIV = Ge, Pb, Sn). Samples with various element concentrations (10–80%) were studied using SQUID magnetometry. The results demonstrate that, for all substitutes the type of magnetic ordering remains AFM, while the Néel temperature (TN) and spin-flop transition field (HSF) decrease with an increasing AIV = Ge, Pb, Sn concentration. The rate of decrease varies among the elements, being highest for Pb, followed by Sn and Ge. This behavior is attributed to the combined effects of the magnetic dilution and lattice parameter increase on magnetic properties, most prominent in (Mn1xPbx)Bi2Te4. Besides this, the linear approximation of the experimental data of TN and HSF suggests higher magnetic parameters for pure MnBi2Te4 than observed experimentally, indicating the possibility of their non-monotonic variation at low concentrations and the potential for enhancing magnetic properties through doping MnBi2Te4 with small amounts of nonmagnetic impurities. Notably, the (Mn1xPbx)Bi2Te4 sample with 10% Pb substitution indeed exhibits increased magnetic parameters, which is also validated by local-probe analyses using ARPES. Our findings shed light on tailoring the magnetic behavior of MnBi2Te4-based materials, offering insights into the potential applications in device technologies. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

14 pages, 2612 KiB  
Article
Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin
by Somila Dingiswayo, Balaji Babu, Kristen Burgess, John Mack and Tebello Nyokong
Photochem 2023, 3(3), 313-326; https://doi.org/10.3390/photochem3030019 - 30 Jun 2023
Cited by 8 | Viewed by 2237
Abstract
A Sn(IV) meso-tetra(4-methylthiolphenyl) N-confused porphyrin (4-Sn) complex was prepared to facilitate a comparison of the photophysicochemical and singlet oxygen photosensitiser properties of a series of Sn(IV) complexes of meso-4-methylthiolphenyl-substituted porphyrin, corrole, chlorin, and N-confused porphyrin. 4-Sn has an unusually [...] Read more.
A Sn(IV) meso-tetra(4-methylthiolphenyl) N-confused porphyrin (4-Sn) complex was prepared to facilitate a comparison of the photophysicochemical and singlet oxygen photosensitiser properties of a series of Sn(IV) complexes of meso-4-methylthiolphenyl-substituted porphyrin, corrole, chlorin, and N-confused porphyrin. 4-Sn has an unusually high singlet oxygen quantum (ΦΔ) yield of 0.88, markedly higher than the ΦΔ values of the other complexes in this series. A Thorlabs M660L4 LED (280 mW · cm−2) was used to study the photodynamic activity of Sn-4 against the MCF-7 cancer cell line through irradiation at 660 nm for 30 min. The IC50 value was calculated to be 1.4 (± 0.8) µM, markedly lower than the previously reported values for the rest of the series. Photodynamic antimicrobial activity was also determined against Staphylococcus aureus and Escherichia coli, and 4-Sn was found to deactivate both Gram-(+) and Gram-(−) bacteria despite the absence of cationic charges on the ligand structure. Full article
Show Figures

Figure 1

9 pages, 3341 KiB  
Article
Sn-Substituted Argyrodite Li6PS5Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability
by Seul-Gi Kang, Dae-Hyun Kim, Bo-Joong Kim and Chang-Bun Yoon
Materials 2023, 16(7), 2751; https://doi.org/10.3390/ma16072751 - 29 Mar 2023
Cited by 6 | Viewed by 4859
Abstract
Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal [...] Read more.
Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal and an argyrodite Li6Ps5Cl solid electrolyte by partially substituting P with Sn to form an Sn–S bond. The solid electrolyte was synthesized via liquid synthesis instead of the conventional mechanical milling method. X-ray diffraction analyses confirmed that solid electrolytes have an argyrodite structure and peak shift occurs as substitution increases. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses confirmed that the particle size gradually increased, and the components were evenly distributed. Moreover, electrochemical impedance spectroscopy and DC cycling confirmed that the ionic conductivity decreased slightly but that the cycling behavior was stable for about 500 h at X = 0.05. The amount of H2S gas generated when the solid electrolyte is exposed to moisture was measured using a gas sensor. Stability against atmospheric moisture was improved. In conclusion, liquid-phase synthesis could be applied for the large-scale production of argyrodite-based Li6PS5Cl solid electrolytes. Moreover, Sn substitution improved the electrochemical stability of the solid electrolyte. Full article
(This article belongs to the Special Issue Applications of High-Performance Electrolyte Materials in Batteries)
Show Figures

Figure 1

20 pages, 5963 KiB  
Article
Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine
by Anastasia E. Likhonina, Galina M. Mamardashvili, Ilya A. Khodov and Nugzar Z. Mamardashvili
Polymers 2023, 15(4), 1055; https://doi.org/10.3390/polym15041055 - 20 Feb 2023
Cited by 5 | Viewed by 3008
Abstract
Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, [...] Read more.
Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, and their resistance to UV radiation and changes in solution temperature was studied. It was shown that the investigated polyporphyrin nanostructures are porous materials with predominance cylindrical mesopores. Density functional theory (DFT) was used to geometrically optimize the experimentally obtained supramolecular porphyrin polymers. The sizes of unit cells in porphyrin tubular structures were determined and coincided with the experimental data. The results obtained can be used to create highly porous materials for separation, storage, transportation, and controlled release of substrates of different nature, including highly volatile, explosive, and toxic gases. Full article
(This article belongs to the Special Issue Coordination Polymers: Properties and Applications II)
Show Figures

Graphical abstract

12 pages, 2211 KiB  
Article
Controlled Reduction of Sn4+ in the Complex Iodide Cs2SnI6 with Metallic Gallium
by Shodruz T. Umedov, Anastasia V. Grigorieva, Alexey V. Sobolev, Alexander V. Knotko, Leonid S. Lepnev, Efim A. Kolesnikov, Dmitri O. Charkin and Andrei V. Shevelkov
Nanomaterials 2023, 13(3), 427; https://doi.org/10.3390/nano13030427 - 20 Jan 2023
Cited by 3 | Viewed by 2589
Abstract
Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The reducing power of gallium was applied to influence the optoelectronic [...] Read more.
Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The reducing power of gallium was applied to influence the optoelectronic properties of the Cs2SnI6 phase via partial reduction of tin(IV) and, very likely, substitute partially Sn4+ by Ga3+. The reduction of Sn4+ to Sn2+ in the Cs2SnI6 phase contributes to the switching from p-type conductivity to n-type, thereby improving the total concentration and mobility of negative-charge carriers. The phase composition of the samples obtained was studied by X-ray diffraction (XRD) and 119Sn Mössbauer spectroscopy (MS). It is shown that the excess of metal gallium in a reaction melt leads to the two-phase product containing Cs2SnI6 with Sn4+ and β-CsSnI3 with Sn2+. UV–visible absorption spectroscopy shows a high absorption coefficient of the composite material. Full article
(This article belongs to the Special Issue Design and Synthesis of New Photoactive Perovskite Nanomaterials)
Show Figures

Graphical abstract

19 pages, 5903 KiB  
Article
The Magmatic-Hydrothermal Ore-Forming Processes of the Tonggou Cu-Zn Deposit, NW China: Constraints from Magnetite Chemistry and Fluid Inclusions
by Chang-Cheng Han, Xue-Bing Zhang, Shi-Shan Wu and Ying-Ting Liu
Minerals 2022, 12(4), 485; https://doi.org/10.3390/min12040485 - 15 Apr 2022
Cited by 3 | Viewed by 3060
Abstract
The Tonggou deposit is a porphyry Cu and vein-type Cu-Zn mineralization system located in the Bogda Orogenic Belt, north of Eastern Tianshan. Systematic fluid inclusion analyses were performed on granular quartz from the magnetite–quartz stage and pyrite–chalcopyrite–quartz stage from the porphyry Cu mineralization. [...] Read more.
The Tonggou deposit is a porphyry Cu and vein-type Cu-Zn mineralization system located in the Bogda Orogenic Belt, north of Eastern Tianshan. Systematic fluid inclusion analyses were performed on granular quartz from the magnetite–quartz stage and pyrite–chalcopyrite–quartz stage from the porphyry Cu mineralization. During the early stage of porphyry Cu mineralization, the ore-forming fluids were at high temperatures (450–501 °C) and high salinity (51.2–55.2 wt.% NaCl equiv.) H2O-NaCl hydrothermal fluids with fluid boiling. These fluids evolved to high temperature (412–450 °C) and intermediate to low salinity (8.3–14.2 wt.% NaCl equiv.) H2O-NaCl hydrothermal fluids during the pyrite–chalcopyrite–quartz stage. In addition, magnetite from the Tonggou deposit was studied as a marker for the ore-forming process evolution of porphyry and vein-type mineralization. Sampled magnetite can be divided into MagI (allotriomorphic magnetite from altered granodiorite), MagII (magnetite from altered granodiorite found in veinlets or as granular aggregates), MagIII (from the magnetite–quartz stage of porphyry mineralization), and MagIV (from the polymetallic sulfide–epidote–quartz stage of vein-type mineralization). Magnetite LA-ICP-MS data indicate a hydrothermal origin. The contents of Ti, Si, Al, and Ta are controlled by temperature, and these elements gradually decrease from MagI to MagIV. Moreover, fO2 has considerable influence on the substitution of Sn, V, and Mn in magnetite, and the contents of these elements generally decrease from MagI to MagIII—increasing only in MagIV. Indeed, high fO2 in the polymetallic sulfide–epidote–quartz stage (MagIV) of vein-type mineralization is shown by the presence of a replacement texture in ilmenite grains within hydrothermal magnetite. On the other hand, magnetite samples from the Tonggou deposit have relatively low Ti + V contents compared to other porphyry Cu deposits—plotting in the skarn field of the (Ti + V) vs. (Ca + Al + Mn) diagram—and shows negative correlations in the (Ti + V) vs. Sn diagram. These data indicate that the porphyry Cu mineralization at Tonggou formed at relatively lower fO2 conditions than the Tonggou vein-type mineralization and other typical porphyry Cu deposits. Finally, porphyry and vein-type mineralization at Tonggou are both sourced from the porphyry system, as a result of ore-forming fluid transfer to a different location. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

17 pages, 3438 KiB  
Article
The Potential Use of Nephelium lappaceum Seed as Coagulant–Coagulant Aid in the Treatment of Semi-Aerobic Landfill Leachate
by Hamidi Abdul Aziz, Nur Syahirah Rahmat and Motasem Y. D. Alazaiza
Int. J. Environ. Res. Public Health 2022, 19(1), 420; https://doi.org/10.3390/ijerph19010420 - 31 Dec 2021
Cited by 8 | Viewed by 2781
Abstract
Chemical-based coagulants and flocculants are commonly used in the coagulation–flocculation process. However, the drawbacks of using these chemical materials have triggered researchers to find natural materials to substitute or reduce the number of chemical-based coagulants and flocculants. This study examines the potential application [...] Read more.
Chemical-based coagulants and flocculants are commonly used in the coagulation–flocculation process. However, the drawbacks of using these chemical materials have triggered researchers to find natural materials to substitute or reduce the number of chemical-based coagulants and flocculants. This study examines the potential application of Nephelium lappaceum seeds as a natural coagulant–coagulant aid with Tin (IV) chloride (SnCl4) in eliminating suspended solids (SS), colour, and chemical oxygen demand (COD) from landfill leachate. Results showed that the efficiency of Nephelium lappaceum was low when used as the main coagulant in the standard jar test. When SnCl4 was applied as a single coagulant, as much as 98.4% of SS, 96.8% of colour and 82.0% of COD was eliminated at an optimal dose of 10.5 g/L and pH 7. The higher removal efficiency of colour (88.8%) was obtained when 8.40 g/L of SnCl4 was applied with a support of 3 g/L of Nephelium lappaceum. When SnCl4 was utilised as a coagulant, and Nephelium lappaceum seed was used as a flocculant, the removal of pollutants generally improved. Overall, this research showed that Nephelium lappaceum seed is a viable natural alternative for treating landfill leachate as a coagulant aid. Full article
(This article belongs to the Special Issue Second Edition of Municipal Wastewater Treatment)
Show Figures

Figure 1

11 pages, 2609 KiB  
Article
Effect of Point Defects on Electronic Structure of Monolayer GeS
by Hyeong-Kyu Choi, Janghwan Cha, Chang-Gyu Choi, Junghwan Kim and Suklyun Hong
Nanomaterials 2021, 11(11), 2960; https://doi.org/10.3390/nano11112960 - 4 Nov 2021
Cited by 10 | Viewed by 2890
Abstract
Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in [...] Read more.
Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in GeS. It was found that the bandgap of GeS with substitutional atoms is close to that of pristine GeS, while the bandgap of GeS with Ge or S vacancies was smaller than that of pristine GeS. In terms of formation energy, monolayer GeS with Ge vacancies is more stable than that with S vacancies, and notably GeS with Ge substituted with Sn is most favorable within the range of chemical potential considered. Defects affect the piezoelectric properties depending on vacancies or substitutional atoms. Especially, GeS with substitutional atoms has almost the same piezoelectric stress coefficients eij as pristine GeS while having lower piezoelectric strain coefficients dij  but still much higher than other 2D materials. It is therefore concluded that Sn can effectively heal Ge vacancy in GeS, keeping high piezoelectric strain coefficients. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

19 pages, 3198 KiB  
Article
Design of Promising Heptacoordinated Organotin (IV) Complexes-PEDOT: PSS-Based Composite for New-Generation Optoelectronic Devices Applications
by María Elena Sánchez-Vergara, Leon Hamui, Elizabeth Gómez, Guillermo M. Chans and José Miguel Galván-Hidalgo
Polymers 2021, 13(7), 1023; https://doi.org/10.3390/polym13071023 - 25 Mar 2021
Cited by 32 | Viewed by 3491
Abstract
The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to [...] Read more.
The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors)
Show Figures

Figure 1

34 pages, 8928 KiB  
Article
Geological, Geochemical, and Mineralogical Constraints on the Genesis of the Polymetallic Pb-Zn-Rich Nuocang Skarn Deposit, Western Gangdese, Tibet
by Junsheng Jiang, Shunbao Gao, Youye Zheng, David R. Lentz, Jian Huang, Jun Liu, Kan Tian and Xiaojia Jiang
Minerals 2020, 10(10), 839; https://doi.org/10.3390/min10100839 - 23 Sep 2020
Cited by 4 | Viewed by 4378
Abstract
The Nuocang Pb-Zn deposit is a newly discovered polymetallic skarn deposit in the southern Lhasa subterrane, western Gangdese, Tibet. The skarn occurs at the contact between the limestone of Angjie Formation and the Linzizong volcanic rocks of Dianzhong Formation (LDF), and the subvolcanic [...] Read more.
The Nuocang Pb-Zn deposit is a newly discovered polymetallic skarn deposit in the southern Lhasa subterrane, western Gangdese, Tibet. The skarn occurs at the contact between the limestone of Angjie Formation and the Linzizong volcanic rocks of Dianzhong Formation (LDF), and the subvolcanic granite porphyry intruding those formations; the contact metasomatic skarn is well zoned mineralogically and texturally, as well as geochemically. The skarn minerals predominantly consist of an anhydrous to hydrous calc-silicate sequence pyroxene–garnet–epidote. The endoskarn mainly consists of an assemblage of pyroxene, garnet, ilvaite, epidote, and quartz, whereas the exoskarn is characterized proximal to distally, by decreasing garnet, and increasing pyroxene, ilvaite, epidote, chlorite, muscovite, quartz, calcite, galena, and sphalerite. Geochemical analyses suggest that the limestone provided the Ca for all the skarn minerals and the magmatic volatiles were the main source for Si (except the skarnified hornfels/sandstone, and muscovite-epidote-garnet-pyroxene skarn possibly from the host sandstones), with Fe and Mn and other mineralizing components. During the hydrothermal alteration, the garnet-pyroxene skarn and pyroxene-rich skarn gained Si, Fe, Mn, Pb, Zn, and Sn, but lost Ca, Mg, K, P, Rb, Sr, and Ba. However, the skarnified hornfels/sandstone, and muscovite-epidote-garnet-pyroxene skarn gained Fe, Ca, Mn, Sr, Zr, Hf, Th, and Cu, but lost Si, Mg, K, Na, P, Rb, Ba, and Li. The REEs in the skarn were sourced from magmatic fluids during the prograde stage. Skarn mineral assemblages and geochemistry indicate the skarn in the Nuocang deposit were formed in a disequilibrated geochemical system by infiltrative metasomatism of magmatic fluids. During the prograde stage, garnet I (And97.6Gro1.6) firstly formed, and then a part of them incrementally turned into garnet II (And64.4Gro33.8) and III (And70.22Gro29.1). The subsequent substitution of Fe for Al in the garnet II and III indicates the oxygen fugacity of the fluid became more reduced, then resulted in formation of significant pyroxene. However, the anisotropic garnet IV (And38.5Gro59.8) usually replaced the pyroxene. In the retrograde stage, the temperature decreased and oxygen fugacity increased, but hydrolysis increased with epidote, ilvaite, chlorite I, and muscovite forming with magnetite. The continuing decreasing temperature and mixing with meteoric water lead to Cu, Pb, and Zn saturation as sulfides. After the sulfides deposition, the continued mixing with large amounts of cold meteoric water would decrease its temperature, and increase its pH value (neutralizing), promoting the deposition of significant amounts of calcite and chlorite II. The geological, mineralogical, and geochemical characteristics of Nuocang skarn, suggest that the Nuocang deposit is of a Pb-Zn polymetallic type. Compared to the other typical skarn-epithermal deposits in the Linzizong volcanic area, it indicates that the Nuocang deposit may have the exploration potential for both skarn and epithermal styles of mineralization. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

21 pages, 3383 KiB  
Article
Mixed Sr and Ba Tri-Stannides/Plumbides AII(Sn1−xPbx)3
by Michael Langenmaier, Michael Jehle and Caroline Röhr
Crystals 2018, 8(5), 204; https://doi.org/10.3390/cryst8050204 - 4 May 2018
Cited by 2 | Viewed by 4335
Abstract
The continuous substitution of tin by lead (M IV ) allows for the exploration geometric criteria for the stability of the different stacking variants of alkaline-earth tri-tetrelides A II M 3 IV . A series of ternary Sr and Ba mixed tri-stannides/plumbides [...] Read more.
The continuous substitution of tin by lead (M IV ) allows for the exploration geometric criteria for the stability of the different stacking variants of alkaline-earth tri-tetrelides A II M 3 IV . A series of ternary Sr and Ba mixed tri-stannides/plumbides A II (Sn 1 x Pb x ) 3 (A II = Sr, Ba) was synthesized from stoichiometric mixtures of the elements. Their structures were determined by means of single crystal X-ray data. All structures exhibit close packed ordered A M 3 layers containing M kagomé nets. Depending on the stacking sequence, the resulting M polyanion resembles the oxygen substructure of the hexagonal (face-sharing octahedra, h stacking, Ni 3 Sn-type, border compound BaSn 3 ) or the cubic (corner-sharing octahedra, c stacking, Cu 3 Au-type, border compound SrPb 3 ) perovskite. In the binary compound BaSn 3 (Ni 3 Sn-type) up to 28% of Sn can be substituted against Pb (hP8, P 6 3 / mmc, x = 0.28(4): a = 726.12(6), c = 556.51(6) pm, R1 = 0.0264). A further increased lead content of 47 to 66% causes the formation of the BaSn 2.57 Bi 0.43 -type structure with a ( hhhc ) 2 stacking [hP32, P 6 3 / mmc, x = 0.47(3): a = 726.80(3), c = 2235.78(14) pm, R1 = 0.0437]. The stability range of the BaPb 3 -type sequence ( hhc ) 3 starts at a lead proportion of 78% (hR36, R 3 ¯ m, a = 728.77(3), c = 2540.59(15) pm, R1= 0.0660) and reaches up to the pure plumbide BaPb 3 . A second new polymorph of BaPb 3 forms the Mg 3 In-type structure with a further increased amount of cubic sequences [ ( hhcc ) 3 ; hR48, a = 728.7(2), c = 3420.3(10) pm, R1 = 0.0669] and is thus isotypic with the border phase SrSn 3 of the respective strontium series. For the latter, a Pb content of 32% causes a small existence region of the PuAl 3 -type structure [hP24, P 6 3 / mmc, a = 696.97(6), c = 1675.5(2) pm, R1 = 0.1182] with a ( hcc ) 2 stacking. The series is terminated by the pure c stacking of SrPb 3 , the stability range of this structure type starts at 75% Pb (cP4, Pm 3 ¯ m; a = 495.46(9) pm, R1 = 0.0498). The stacking of the close packed layers is evidently determined by the ratio of the atomic radii of the contributing elements. The Sn/Pb distribution inside the polyanion (’coloring’) is likewise determined by size criteria. The electronic stability ranges, which are discussed on the basis of the results of FP-LAPW band structure calculations are compared with the Zintl concept and Wade’s/mno electron counting rules. Still, due to the presence of only partially occupied steep M-p bands the compounds are metals exhibiting pseudo band gaps close to the Fermi level. Thus, this structure family represents an instructive case for the transition from polar ionic/covalent towards (inter)metallic chemistry. Full article
(This article belongs to the Special Issue Compounds with Polar Metallic Bonding)
Show Figures

Graphical abstract

Back to TopTop