Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis and Characterisation
2.3. Dark Toxicity and Photodynamic Anticancer Activity Studies
2.4. Antibacterial Studies
2.5. Theoretical Calculations
3. Results and Discussion
3.1. Synthesis and Characterisation
3.2. Photophysical and Photochemical Properties
3.3. Photodynamic Therapy
3.4. Photodynamic Antimicrobial Chemotherapy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2015, 24, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Sibata, C.H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagn. Photodyn. Ther. 2010, 7, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Nyokong, T. Desired properties of new phthalocyanines for photodynamic therapy. Pure Appl. Chem. 2011, 83, 1763–1779. [Google Scholar] [CrossRef]
- Laville, I.; Figueiredo, T.; Loock, B.; Pigaglio, S.; Maillard, P.; Grierson, D.S.; Carrez, D.; Croisy, A.; Blais, J. Synthesis, Cellular Internalization and Photodynamic Activity of Glucoconjugated Derivatives of Tri and Tetra(meta-hydroxyphenyl)chlorins. Bioorg. Med. Chem. 2003, 11, 1643–1652. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Hargus, J.A.; Fronczek, F.R.; Vicente, M.G.H.; Smith, K.M. Mono-(l)-aspartylchlorin-e6. Photochem. Photobiol. 2007, 83, 1006–1015. [Google Scholar] [CrossRef]
- Mang, T.S.; Allison, R.; Hewson, G.; Snider, W.; Moskowitz, R. A phase II/III clinical study of tin ethyl etiopurpurin (Purlytin)-induced photodynamic therapy for the treatment of recurrent cutaneous metastatic breast cancer. Cancer J. Sci. Am. 1998, 4, 378–384. [Google Scholar]
- Rostaporfin. Drugs RD 2004, 5, 58–61. [CrossRef]
- Furuta, H.; Asano, T.; Ogawa, T. “N-Confused Porphyrin”: A New Isomer of Tetraphenylporphyrin. J. Am. Chem. Soc. 1994, 116, 767–768. [Google Scholar] [CrossRef]
- Chmielewski, P.J.; Latos-Grażyński, L.; Rachlewicz, K.; Glowiak, T. Tetra-p-tolylporphyrin with an Inverted Pyrrole Ring: A Novel Isomer of Porphyrin. Angew. Chem. Int. Ed. 1994, 33, 779–781. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. Sn(IV) N-confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Trans. 2020, 49, 15180–15183. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Mack, J.; Nyokong, T. A heavy-atom-free π-extended N-confused porphyrin as a photosensitizer for photodynamic therapy. New J. Chem. 2021, 45, 5654–5658. [Google Scholar] [CrossRef]
- Thomas, A.P.; Babu, P.S.S.; Nair, S.A.; Ramakrishnan, S.; Ramaiah, D.; Chandrashekar, T.K.; Srinivasan, A.; Pillai, M.R. meso-Tetrakis(p-sulfonatophenyl)N-Confused Porphyrin Tetrasodium Salt: A Potential Sensitizer for Photodynamic Therapy. J. Med. Chem. 2012, 55, 5110–5120. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Mack, J.; Nyokong, T. Sn(iv)-porphyrinoids for photodynamic anticancer and antimicrobial chemotherapy. Dalton Trans. 2023, 52, 5000–5018. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Amuhaya, E.; Oluwole, D.; Prinsloo, E.; Mack, J.; Nyokong, T. Preparation of NIR absorbing axial substituted tin(iv) porphyrins and their photocytotoxic properties. MedChemComm 2019, 10, 41–48. [Google Scholar] [CrossRef]
- Babu, B.; Prinsloo, E.; Mack, J.; Nyokong, T. Synthesis, characterization and photodynamic activity of Sn(iv) triarylcorroles with red-shifted Q bands. New J. Chem. 2019, 43, 18805–18812. [Google Scholar] [CrossRef]
- Dingiswayo, S.; Babu, B.; Prinsloo, E.; Mack, J.; Nyokong, T. A comparative study of the photophysicochemical and photodynamic activity properties of meso-4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. J. Porphyr. Phthalocyanines 2020, 24, 1138–1145. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. An octabrominated Sn(IV) tetraisopropylporphyrin as a photosensitizer dye for singlet oxygen biomedical applications. Dalton Trans. 2020, 49, 9568–9573. [Google Scholar] [CrossRef]
- Babu, B.; Soy, R.C.; Mack, J.; Nyokong, T. Non-aggregated lipophilic water-soluble tin porphyrins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. New J. Chem. 2020, 44, 11006–11012. [Google Scholar] [CrossRef]
- Babu, B.; Sindelo, A.; Mack, J.; Nyokong, T. Thien-2-yl substituted chlorins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. Dyes Pigments 2021, 185, 108886. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Trans. 2021, 50, 2177–2182. [Google Scholar] [CrossRef]
- Dingiswayo, S.; Burgess, K.; Babu, B.; Mack, J.; Nyokong, T. Photodynamic Antitumor and Antimicrobial Activities of Free-Base Tetra(4-methylthiolphenyl)chlorin and Its Tin(IV) Complex. ChemPlusChem 2022, 87, e202200115. [Google Scholar] [CrossRef]
- Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998, 42, 13–28. [Google Scholar] [CrossRef]
- Li, X.; Bai, H.; Yang, Y.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Adv. Mater. 2019, 31, 1805092. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res. 2011, 44, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookfield, R.L.; Ellul, H.; Harriman, A.; Porter, G.J. Luminescence of porphyrins and metalloporphyrins. Part 11—Energy transfer in zinc–metal-free porphyrin dimers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1986, 82, 219–233. [Google Scholar] [CrossRef]
- Hackbarth, S.; Ro, B.; Spiller, W.; Kliesch, H.; Wöhrle, D. Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions. J. Porphyr. Phthalocyanines 1998, 2, 145–158. [Google Scholar] [CrossRef]
- Geier, G.R.; Haynes, D.M.; Lindsey, J.S. An Efficient One-Flask Synthesis of N-Confused Tetraphenylporphyrin. Org. Lett. 1999, 1, 1455–1458. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Kitamura, M.; Mori, S.; Ishida, M.; Xie, Y.; Furuta, H. Near-infrared luminescent Sn(IV) complexes of N-confused tetraphenylporphyrin: Effect of axial anion coordination. J. Porphyr. Phthalocyanines 2015, 19, 361–371. [Google Scholar] [CrossRef]
- Mosmann, T.J. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sindelo, A.; Kobayashi, N.; Kimura, M.; Nyokong, T. Physicochemical and photodynamic antimicrobial chemotherapy activity of morpholine-substituted phthalocyanines: Effect of point of substitution and central metal. J. Photochem. Photobiol. A 2019, 374, 58–67. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, NY, USA, 1978; Volume III, Part A; pp. 1–165. [Google Scholar]
- Michl, J. Magnetic circular dichroism of aromatic molecules. Tetrahedron 1984, 40, 3845–3934. [Google Scholar] [CrossRef]
- Mack, J. Expanded, Contracted, and Isomeric Porphyrins: Theoretical Aspects. Chem. Rev. 2017, 117, 3444–3478. [Google Scholar] [CrossRef]
- Dryden, M.S. Complicated skin and soft tissue infection. J. Antimicrob. Chemother. 2010, 65, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-T. Progress of medical lasers: Fundamentals and Applications. Med. Devices Diagn. Eng. 2016, 1, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, S.G.; Schuetz, A.N. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin. Proc. 2012, 87, 290–308. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Songca, S.P.; Oluwafemi, O.S.; Bamidele, A.T. 467—Application of Porphyrins in Antibacterial Photodynamic Therapy. Free Radic. Biol. Med. 2016, 100, S194. [Google Scholar] [CrossRef]
- Wikene, K.O.; Bruzell, E.; Tønnesen, H.H. Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents. J. Photochem. Photobiol. B 2015, 148, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Malik, Z.; Hanania, J.; Nitzan, Y. Bactericidal effects of photoactivated porphyrins—An alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B 1990, 5, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Kustov, A.V.; Kustova, T.V.; Belykh, D.V.; Khudyaeva, I.S.; Berezin, D.B. Synthesis and investigation of novel chlorin sensitizers containing the myristic acid residue for antimicrobial photodynamic therapy. Dyes Pigments 2020, 173, 107948. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, Y.H.; Bang, I.S.; Kim, Y.C.; Kim, S.A.; Ahn, S.G.; Yoon, J.H. Antimicrobial effect of photodynamic therapy using a highly pure chlorin e6. Lasers Med. Sci. 2010, 25, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
λmax (nm) (log ε) | λem (nm) | ΦF | τF (ns) | ΦΔ | τT (µs) | Photo a (%) | Ref. | |
---|---|---|---|---|---|---|---|---|
1 | 426 (4.60), 517 (3.70), 552 (3.59), 591 (3.45), 651 (3.36) | 660, 726 | 0.04 | 5.70 | 0.51 | 14 | 83 | [17] |
1-Sn | 434 (4.60), 565 (3.64), 611 (3.63) | 624, 674 | 0.02 | 0.47 | 0.59 | 214 | 92 | [17] |
2 | 431 (4.72), 534 (3.78), 595 (3.72), 647 (4.13) | 665, 724 | 0.10 | 2.77 | 0.14 | – | 84 | [17] |
2-Sn | 431 (4.74), 526 (3.41), 568 (3.54), 619 (3.97) | 638, 697 | <0.01 | 0.18 | 0.60 | 231 | 66 | [17] |
3 | 423 (5.40), 523 (4.25), 551 (4.21), 618 (4.23), 653 (4.51) | 659, 722 | 0.05 | 8.49 | 0.40 | 9.0 | 83 | [22] |
3-Sn | 436 (5.03), 565 (3.68), 605 (3.97), 633 (4.16) | 656, 717 | 0.02 | 0.38 | 0.48 | 18 | 78 | [22] |
4 | 335 (4.41), 450 (5.01), 601 (3.75), 648 (3.86), 700 (3.91) | 716, 770 | 0.02 | 8.50 | 0.28 | 13 | 97 | – b |
4-Sn | 452 (4.93), 526 (3.44), 562 (3.71), 609 (3.75), 697 (3.87) | 711 | <0.01 | 0.27 | 0.88 | 27 | 93 | – |
IC50 Dark a | IC50 Light b | PI | LED λ | Time | Dose | Ref. | |
---|---|---|---|---|---|---|---|
(µM) | (µM) | (nm) | (min) | (J·cm−2) | |||
1 | >50 | >50 | – | 625 | 30 | 432 | [17] |
1-Sn | >50 | 12.4 (± 1.2) | >4.0 | 625 | 30 | 432 | [17] |
(3-pyridyloxy)2 Sn(IV) tetraphenylporphyrin | >50 | 18.7 (± 1.1) | >2.7 | 625 | 20 | 288 | [14] |
(3-pyridyloxy)2 Sn(IV) tetrathien-2-ylporphyrin | >50 | 5.6 (± 1.1) | >8.9 | 625 | 20 | 288 | [14] |
2 | >50 | >50 | – | 625 | 30 | 432 | [17] |
2-Sn | >50 | 8.9 (± 0.6) | >5.6 | 625 | 30 | 432 | [17] |
Sn(IV) triphenylcorrole | >50 | 13.1 (± 0.2) | >3.8 | 625 | 30 | 432 | [16] |
Sn(IV) trithien-2-ylcorrole | >50 | 3.2 (± 0.1) | >15.6 | 625 | 30 | 432 | [16] |
3 | >50 | 7.8 (± 0.9) | >6.4 | 660 | 30 | 504 | [22] |
Tetraphenylchlorin | >25 | 15.8 (± 1.2) | >1.6 | 660 | 15 | 252 | [20] |
Tetrathien-2-ylchlorin | >25 | 3.5 (± 1.1) | >7.1 | 660 | 15 | 252 | [20] |
Tetra-5-bromothien-2-ylchlorin | >25 | 2.7 (± 1.0) | >9.3 | 660 | 15 | 252 | [20] |
3-Sn | >50 | 3.9 (± 0.9) | >12.8 | 660 | 30 | 504 | [22] |
Sn(IV) tetrathien-2-ylchlorin | >25 | 0.9 (± 0.1) | >27.8 | 660 | 30 | 504 | [21] |
4 | >50 | 27.9 (± 0.8) | >1.8 | 660 | 30 | 504 | – c |
N-confused tetraphenylporphyrin | >25 | >25 | – | 660 | 30 | 504 | [11] |
4-Sn | >50 | 1.4 (± 0.8) | >35.7 | 660 | 30 | 504 | – |
Sn(IV) N-confused tetraphenylporphyrin | >25 | 1.6 (± 0.2) | >15.6 | 660 | 30 | 504 | [11] |
Concentration | Log10 Reduction | Conc. | Log10 Reduction | Time a | Ref. | |
---|---|---|---|---|---|---|
µM | S. aureus | µM | E. coli | Min | ||
3 | 2.5 | 10.6 | 10 | 0.35 | 75 | [22] |
3-Sn | 2.5 | 10.5 | 10 | 8.74 | 75 | [22] |
4 | 2.5 | 2.1 | 10 | 0.30 | 75 | – |
4-Sn | 2.5 | 10.5 | 10 | 1.57 | 75 | – |
4-Sn | – | – | 15 | 8.74 | 75 | – |
4-Sn | – | – | 20 | 8.74 | 75 | – |
Tetrathien-2-ylchlorin b | 2.5 | 7.22 | 15 | 4.98 | 60 | [20] |
Tetra-5-bromothien-2-ylchlorin b | 2.5 | 7.42 | 15 | 8.34 | 60 | [20] |
Tetraphenylchlorin b | 2.5 | 1.18 | 15 | 0.02 | 60 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingiswayo, S.; Babu, B.; Burgess, K.; Mack, J.; Nyokong, T. Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin. Photochem 2023, 3, 313-326. https://doi.org/10.3390/photochem3030019
Dingiswayo S, Babu B, Burgess K, Mack J, Nyokong T. Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin. Photochem. 2023; 3(3):313-326. https://doi.org/10.3390/photochem3030019
Chicago/Turabian StyleDingiswayo, Somila, Balaji Babu, Kristen Burgess, John Mack, and Tebello Nyokong. 2023. "Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin" Photochem 3, no. 3: 313-326. https://doi.org/10.3390/photochem3030019
APA StyleDingiswayo, S., Babu, B., Burgess, K., Mack, J., & Nyokong, T. (2023). Photodynamic Anticancer and Antibacterial Activities of Sn(IV) N-Confused Meso-tetra(methylthiophenyl)porphyrin. Photochem, 3(3), 313-326. https://doi.org/10.3390/photochem3030019