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Abstract: Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle
peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to
Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained
hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, and their
resistance to UV radiation and changes in solution temperature was studied. It was shown that
the investigated polyporphyrin nanostructures are porous materials with predominance cylindrical
mesopores. Density functional theory (DFT) was used to geometrically optimize the experimentally
obtained supramolecular porphyrin polymers. The sizes of unit cells in porphyrin tubular structures
were determined and coincided with the experimental data. The results obtained can be used to create
highly porous materials for separation, storage, transportation, and controlled release of substrates of
different nature, including highly volatile, explosive, and toxic gases.

Keywords: Sn(IV)porphyrin extra-complexes; porphyrin polymers; highly porous materials;
photoresistance; thermal stability

1. Introduction

Coordination polymers based on metal complexes of tetrapyrrole macrocyclic com-
pounds represent a special group of self-organized systems that combine their structural
fragments through non-covalent interactions [1–26]. Such interactions are reversible and
easily controlled by various external influences. Therefore, the coordination self-assembly
is a convenient tool to create stable and controllable architectures by the self-organization
of metal and organic components with electronic and geometric complementarity. Different
functional substituents, the type of organic fragments binding, the metal nature, and the
length of the linking fragments provide a variety of framework structure types and areas of
their potential application [1–37]. The construction of supramolecular porphyrin scaffolds
is still little studied, but it is undoubtedly an urgent scientific problem, the solution of
which will to get closer to understanding the life processes of nature.

In according to our interests in the development of polyporphyrin arrays with con-
trolled practically useful functional properties [24], the synthesis and design of new
supramolecular porphyrin oligomers and polymers obtained using reaction of chelation of
Sn(IV)porphyrin diaxial complexes with Cu(II) and Pd(II) cations are described in this work.
It was shown that the variation of the metal cations nature, and of the flexibility/rigidity
of porphyrin macrocycles will give wide range of practically useful properties of these
materials. The results obtained can be used to create highly porous materials for separation,
storage, transportation, and controlled release of substrates of different nature, including
highly volatile, explosive, and toxic gases.
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2. Experimental
2.1. Equipment

All the 1H NMR (500.17) experiments were performed on a Bruker Avance III 500 NMR
spectrometer with 256 or 512 scans and spectral windows of 20 ppm. The inaccuracy of the
1H NMR chemical shift measurement relative to the solvent (CDCl3 and DMSO) was found
to be±0.01 ppm. The mass spectra were obtained on a SolariX XR Ion Cyclotron Resonance
Mass Spectrometers (Bruker, USA). Elemental analyses were performed on a CHN analyzer
Flash EA 1112. The UV–Vis spectra were recorded on a Cary 300 spectrophotometer
(Agilent, Santa Clara, USA). The fluorescence spectra were obtained on an RF 5301PC
Spectrofluorimeter (Shimadzu, Duisburg, Germany). The porosity of the samples was
studied on a NOVAtouch NT LX specific surface and porosity analyzer (Quantachrome,
Florida, USA). X-ray diffraction data were obtained using a D2 PHASER diffractometer
(Bruker, Cambridge, UK).

2.2. Computational Details

The density functional theory (DFT) calculations were carried out using the GAUS-
SIAN 16 quantum chemical program package [38]. The geometry optimization, the vibra-
tional frequency calculations and the analysis of the potential function of internal rotation
of molecules in the ground state were performed using the CAM-B3LYP functional [39]
in combination with the def2-TZVP [40] basis set for Sn(IV) and 6-31G* [41] basis set for
all other non-metallic atoms. The time-dependent density functional theory (TD-DFT)
calculation was performed for geometry-optimized structure at the same model chemistry.
The solvent effect (DMF) in TD-DFT calculations was taken into an account by applying the
polarizable continuum model (PCM) [42]. The results of the quantum chemical calculations
were visualized in ChemCraftsoftware [43].

2.3. Synthesis
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Commercially available 5,15-diphenyl-10,20-di(4-pyridyl)-21H,23H-porphine from
PorphyChem, PdCl2(C6H5CN)2from Alfa Aesar, and p-octopamine (p-hydroxyphenyle-
thanolamine) from Sigma-Aldrich were used.

Synthesis and spectral characteristics of dihydroxy-Sn(IV)-5,15-diphenyl-10,20-di(4-
pyridyl)porphyrin (Sn(OH)2P, 1): 20 mg (0.0324 mmol) of 5,15-diphenyl-10,20-di(4-pyridyl)-
21H,23H-porphine and 61.4 mg (0.324 mmol) of SnCl2 was dissolved in 20 mL of DMF,
and refluxed for 1 h. The reaction mixture was cooled down, then purified by column
chromatography with aluminum oxide as the adsorbent, and CH2Cl2 and CHCl3 as the
eluents. The yield was 13 mg (52%). 1H NMR (500 MHz, CDCl3): 9.28. d (4H, β-H), 9.22 d
(4H, β-H), 9.13 m (4H, o-Py), 8.34 d (4H, m-Py), 8.32 d (4H, o-Ph), 7.89 m (6H m,p-Ph),
−7.39 (2H, OH). δ 13C ЯMP (DMSO-d6): δ 148.6, 135.0, 133.3, 129.6, 127.2. IR (KBr, cm-1): ν
OH 3590. UV-vis (DMSO, nm): λmax(logε) 602 (4.26), 562 (4.43), 426 (5.68), 405 (4.84), and
MS (ESI): m/z 769.5059 [Calculated: (M)+ 767.4298]

Synthesis and spectral characteristics of tetramer based on dihydroxy-Sn(IV)-5,15-
diphenyl-10,20-di(4-pyridyl)porphyrin with PdCl2(C6H5CN)2 salts {(Sn(OH)2P)4(PdCl2)4,2}:
5.35 mg (6.97 µmol) of Sn(OH)2P was mixed with 3.1 mg (8.08 µmol) (C6H5CN)2PdCl2, and
dissolved in 18 mL of DMF. The reaction mixture was boiled for 3 h, then cooled, diluted
with water, and the product extracted into chloroform. Then, the chloroform solution was
evaporated, the substance was dried. The yield was 4 mg (60%). 1H NMR (500 MHz,
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CDCl3): 9.30 (d, 4H, o-Py), 9.20 (d, 4H, β-H), 9.16 (d, 4H, β-H), 8.33 (d, 4H, m-Py), 8.32 (d,
4H, o-Ph), 7.93 (tr, 2H, p-Ph), and 7.87 (tr, 4H, m-Ph). UV- vis (DMF, nm): λmax 599, 559, 520,
424, and 404.

Synthesis and spectral characteristics of the tetramer 2 with octopamine molecules
{(Sn(L)2P)4(PdCl2)4,3}: 2 mg (0.53 µmol) of tetramer 2 was mixed with 0.81 mg (4.24 µmol)
of octopamine hydrochloride and dissolved in 10 mL of DMF. The obtained solution was
refluxed for 3 h. The solvent was then evaporated, the resulting solid was washed of water
and dried. The product yield was 2 mg (74%). UV-vis (DMF, nm): λmax, 628, 598, 559, 514,
425, and 404. 1H NMR (500 MHz, CDCl3): 9.32. d (4H, o-Py), 9.23 d (4H, β-H), 9.17 d (4H,
β-H), 8.35 d (4H, m-Py), 8.33 d (4H, o-Ph), 7.95 tr (2H, p-Ph), 7.88 tr (4H, m-Ph), 6.13 (s, br.,
4H, NH2 (L)),5.88 (d, J = 8.0 Hz, 4H, m-Ph (L)), 5.13 (s, br.,2H, OH(L)), 4.10 (s, 2H, -CH-(L)),
3.11 (t., J = 2.0 Hz, 4H, -CH2-(L)), 1.90 (d, J = 8.0 Hz, and 4H, o-Ph (L)).

Synthesis of a polymer based on (Sn(L)2P)4(PdCl2)4 bonded by copper (II) salts {((Sn(L-
Cu-)2P)4(PdCl2)4)n,4}: 2 mg (0.39 µmol) of tetramer with octopamine 3 was mixed with
1.2 mg (7.87 µmol) of copper(II) chloride dihydrate and dissolved in 15 mL of DMF. The
reaction mixture was refluxed for 2 h. Then, the reaction mixture was repeatedly extracted
by adding chloroform and water. The chloroform layer was separated, the solvent was
evaporated. The obtained solid was washed with water and dried. The product yield was
2 mg (53%). UV-vis (DMF, nm): λmax, 598, 557, 425, and 404. 1H NMR (500 MHz, DMSO-d6):
9.31. d (4H, o-Py), 9.23 d (4H, β-H), 9.18 d (4H, β-H), 8.35 d (4H, m-Py), 8.33 d (4H, o-Ph),
7.95 tr (2H, p-Ph), 7.88 tr (4H, m-Ph), 6.11 (s, 2H, NH2-L(→Cu)), 6.62 (s, 2H, NH2-L(→Cu)),
5.89 (d, J = 8.0 Hz, 4H, m-Ph (L)), 5.13 (s, br.,2H, OH(L)), 4.05 (s, 2H, -CH-(L)), 3.10 (t.,
J = 2.0 Hz, 4H, -CH2-(L)), and 1.89 (d, J = 8.0 Hz, 4H, o-Ph (L)).

Synthesis and spectral characteristics of the triad consisting of Sn(IV)-5,15-diphenyl-
10,20-di(4-pyridyl)porphyrin and two molecules of octopamine (Sn(L)2P, 6): 11.65 mg
(15.2 µmol) of Sn(OH)2P 1 was mixed with 6.3 mg (41 µmol) of octopamine hydrochloride
and dissolved in 7 mL of DMF. The reaction mixture was refluxed for 2 h. Then, the reaction
mixture was repeatedly extracted by adding chloroform and water. The chloroform layer
was separated, the solvent was evaporated. The resulting solid was washed with water
and dried. The product yield was 11 mg (66 %). 1H NMR (500 MHz, DMSO-d6): 9.28.
(m, 8H, β-H), 9.22 (d, 4H, β-H), 9.13 (m, 4H, o-Py), 8.34 (d, 4H, m-Py), 8.32 (d, 4H, o-Ph),
7.83 (m, 6H m,p-Ph), 6.13 (s, br., 4H, NH2 (L)),5.86 (d, J = 8.0 Hz, 4H, m-Ph (L)), 5.30 (s, br.,2H,
OH(L)), 4.09 (s, 2H, -CH-(L)), 3.13 (t., J = 2.0 Hz, 4H, -CH2-(L)), and 1.90 (d, J = 8.0 Hz,
4H, o-Ph (L)). UV–Vis (DMSO. nm): λmax(logε) 598(4.30), 559(4.43), 424(5.67), and 406(4.83).
Anal.Calcd.for C58H46N8O4Sn: C. 68.99; H. 4.56; N. 8.33. Found: C. 68.95; H. 4.53; and N. 8.30.

Synthesis and spectral characteristics of liner complex (octopamine)2-Sn(IV)-5,15-
diphenyl-10,20-di(4-pyridyl)porphyrin with Cu(II) salts {(Sn(L)2P)2Cu, 7}: 7.5 mg (6.8 µmol)
of Sn(L)2P was mixed with 12 mg (70 µmol) of CuCl2·2H2O, and dissolved in 5 mL of
DMF. The reaction mixture was refluxed for 2 h. Then, the reaction mixture was repeatedly
extracted by adding chloroform and water. The chloroform layer was separated, the solvent
was evaporated. The product yield was 5.5 mg (71 %). 1H NMR (500 MHz, DMSO-d6):
9.28. (m, 8H, β-H), 9.22 (d, 4H, β-H), 9.13 (m, 4H, o-Py), 8.34 (d, 4H, m-Py), 8.32 (d, 4H,
o-Ph), 7.87 (m, 6H m,p-Ph), 6.13 (s, 2H, NH2-L(→Cu)), 6.60 (s, 2H, NH2-L(→Cu)), 5.86 (d,
J = 8.0 Hz, 4H, m-Ph (L)), 5.13 (s, br.,2H, OH(L)), 4.05 (s, 2H, -CH-(L)), 3.10 (t., J = 2.0 Hz,
4H, -CH2-(L)), 1.89 (d, J = 8.0 Hz, 4H, o-Ph (L)).UV–Vis (DMSO), λmax (logε): 424(4.98),
558(3.88), 599(3.37). Anal.Calcd.for C116H90N16O8Sn2Cu: C. 65.17; H. 4.21; and N. 10.47.
Found: C. 65.14; H. 4.18; and N. 10.19.

2.4. DOSY NMR Spectroscopy

The study of the formation mechanisms and structures of obtained oligomers and
polymers in solution was carried out using DOSY NMR spectroscopy. The obtained
DOSY NMR spectra were performed on a Bruker Avance III 500 MHz spectrometer with a
5 mm TBI probe head. Temperature stability (25 ◦C) was controlled using a Bruker unit
(BVT-2000) in combination with a Bruker cooling unit (BCU-05) [44]. The 2D DOSY spectra
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were recorded using the CPMG pulse sequence. The CPMG sequence was used with a
diffusion delay of 0.15 s, a total diffusion encoding pulse width of 1.5 ms for each of the
16 gradient amplitudes, 16,384 complex data points were obtained.

To determine the diffusion coefficient values (D), experimental curves of diffusion
damping were obtained, which are the dependence of the relative integrated intensity
I(I0) on the power of the gradient pulse on a logarithmic scale. The resulting curves were
approximated by mathematical model including the experimental parameters and the
diffusion coefficient (Equation (1)):

I = I[0]× exp(−D× SQR(2 × PI× gamma×Gi× LD)× (BD− LD/3)× 104
)

(1)

where gamma is the gyromagnetic ratio of the investigated nuclei (4.258·103 Hz/G), Gi is
the power of the gradient pulse, the big delta (BD) is 49.9 ms, and the little delta (LD) is
2.8 ms. The data were processed using the qtiplot software.

The approximation by the presented model made it possible to establish the diffusion
coefficients values with high accuracy. To determine the molecular weights of the obtained
complexes, the signals, and the corresponding solvent coefficients (DMSO-d6 and CDCl3
depending on the system) were chosen as standards. The diffusion coefficients of the
research objects based on porphyrins were measured using the CPMG method (Carr-Purcell-
Meiboom-Gill) [45–48]. The high measurement accuracy (±0.20·10−10 m2/s) confirms that
the sensitivity of the DOSY CPMG method is sufficient for the experimental separation of
structures of various sizes, shapes, and molecular weights.

To interpret and visually demonstrate the results obtained, the method of graphical
analysis was applied [33,49–51]. The method is based on the interdependence of the
translational diffusion coefficient and mass in accordance with the Einstein–Smoluchowski
relation. It was shown that the ratio of the diffusion coefficients for two different molecules
(Di/Dj) is inversely proportional to the square or cubic root of the ratio of their molecular
weights (Mj/Mi) for rod-shaped and spherical molecules, respectively [50,52–54]:

2

√
Mj

Mi
≥ Di

Dj
≥ 3

√
Mj

Mi
(2)

In accordance with Equation (2), the theoretical values of the diffusion coefficients
were obtained from the molecular weight and the diffusion coefficient values of the solvent.
Experimentally determined values of the diffusion coefficient for the objects of study
were plotted on the obtained theoretical curves. The experimental values (points on
the graphs) are within the range between the theoretical curves, which confirm that the
diffusion coefficients correspond to the molecular weights of the proposed structures. All
the obtained values of the diffusion coefficients and the molecular weights of the formed
supramolecular structures are given in Tables 1–4.

2.5. Photoresistance and Thermal Stability Study Technique

The study of the photo-oxidation process was carried out by irradiating dilute solutions
of porphyrins for 60–75 min using a UV lamp (λ = 415 nm, Ev = 1790 ± 30 lx). Fluorescence
spectra were recorded at λexe = 420 nm, the width of the excitation and emission slit is
5 nm. The photo-oxidation process was studied in dimethyl sulfoxide (DMSO) medium.
The changes in the UV-Vis and fluorescence spectra were recorded every 15 min. The
photodestruction degree (η, %) was calculated from the decrease in the optical density of
the Soret band. The photo-oxidation constant (k, min−1) was obtained graphically using
the dependence lnCporph. = f(τ). The half-life was calculated by Equation(3):

τ1/2 =
ln2
k

(3)
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The thermal stability of polymers in high-boiling DMSO (189 ◦C) was also controlled
using UV-Vis and fluorescence spectra. The spectra were recorded at certain tempera-
ture intervals.

Table 1. Diffusion coefficients of compounds from the reaction mixture formed during the preparation
of the porphyrin arrays with different numbers of structural units.

Name Number of
Monomer Units

Dexp (×10−9)
(m2/s)

Molecular Weight
(g/mol)

Sn(OH)2P 1 Monomer 0.83 767.42

(Sn(OH)2P)2PdCl2 5 Dimer 0.73 1712.26

(Sn(OH)2P)4(PdCl2)4 2 Tetramer 0.58 3779.36

Table 2. Summary results of DOSY NMR experiments, for the object of study 2 with the values of the
molecular masses of the complexes, and the diffusion coefficients determined from the experiments.
The molecular weight and diffusion coefficient of dimethyl sulfoxide-d6 (DMSO-d6) are used as a
reference in the calculations.

Name Number of
Monomer Units

Dexp
(×10−10) (m2/s)

Molecular Weight
(g/mol)

DMSO Reference 4.13 84.17

(Sn(OH)2P)4(PdCl2)4
2

Mono- 0.83 3779.36

Di- 0.75 7558.72

Three- 0.64 11,338.08

Tetra- 0.56 34,014.24

Table 3. Summary results of DOSY NMR experiments, the molecular weight and the diffusion
coefficient values for the cyclic tetramer with octopamine 3. The molecular weight and diffusion
coefficient of DMSO-d6 are used as reference in the calculations.

Name Number of
Monomer Units Dexp (×10−10) (m2/s)

Molecular Weight
(g/mol)

DMSO Reference 5.21 84.17

(Sn(L)2P)4(PdCl2)4 3 Mono- 0.86 5152.345

Table 4. Summary results of DOSY NMR experiments, the molecular weight and the diffusion coeffi-
cient values for the research object 4. The molecular weight and diffusion coefficient of deuterium
chloroform (CDCl3) are used as reference in the calculations.

Name Number of
Monomer Units (n) Dexp (×10−10) (m2/s)

Molecular Weight
(g/mol)

CDCl3 Reference 19.4 119.38

((Sn(L-Cu)2P)4(PdCl2)4)n
4

Di- 4.32 9704.69

Hexa- 2.71 29,114.07

Octa- 2.61 38,818.76

Deca- 1.59 48,523.45

2.6. Determination of the Porosity of Hybrid Sn(IV)-Porphyrin Polymers

The porosity of the samples was studied on a NOVAtouch NT LX specific surface and
porosity analyzer. Pore distribution analysis was performed by the Barret–Joyner–Halenda
(BJH) method. Before measurements, the samples were degassed for 1 h at 523 K. Liquid
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nitrogen was used as the adsorbate (bath temperature 77.35 K). The samples were heated
to 100.0 ◦C at a heating rate of 10 ◦C/min, then kept at this temperature for 180 min.

3. Results and Discussion
3.1. Structures of the Sn(IV)-Dipyridylporphyrin Based Systems

In this work, to create supramolecular porphyrin arrays, the chelation reaction of
diaxial complexes of the Sn(IV)-dipyridylporphyrin with Cu(II) and Pd(II) cations wereused.
Dihydroxy-5,15-diphenyl-10,20-di(4-pyridyl)porphyrinate Sn(IV) 1 and its diaxial complex
with octopamine 6 were chosen as monomeric tetrapyrrole units for the preparation of
porphyrin oligomers and polymers. To prove the structure of the synthesized complexes,
one- (1H NMR, 13C NMR) and two-dimensional (1H-1H COSY and 1H-13C HSQC) NMR
spectroscopy was used. The spectra obtained with the correlation of the protons and carbon
atoms signals are shown in Figures S1–S4.

The complex 6 formation is accompanied by a significant shift of the proton signals of
the octopamine phenyl ring in 1H NMR spectrum, while the porphyrin bands remain almost
unchanged (Figure 1). The m-Ph and o-Ph protons of octopamine shift from 7.86 to 5.86 ppm
and from 8.38 to 1.90 ppm, respectively (Figure 1). It should also be noted that the OH-
protons signals of octopamine disappear in the region of 9.51 ppm (Figure 1), which
indicates binding to Sn(IV)porphyrin precisely through the OH-group of the octopamine
phenyl fragment.
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Figure 1. 1Н NMR-spectrum of the Sn(OH)2P 1, Sn(L)2P 6, and octopamine in DMSO-d6.

The formation of linear dimer 7, which occurs due to the binding of octopamines in
molecules 6 by Cu(II) salts, leads to splitting of NH2 proton signals into 1H NMR (6.13 and
6.60 ppm), and a decrease in the integrated intensity of OH proton signals in the 5.13 ppm
region (Figure 2).

In addition to the synthesis of the compounds presented in Section 2.3, the lin-
ear oligomers 5 based on Pd-salts were obtained. The solution obtained by boiling
Sn(OH)2Pand salt (C6H5CN)2PdCl2in a ratio of 2:1 in DMF was studied using DOSY
NMR spectroscopy. The study showed (Table 1, Figure 3A) that in the course of this reac-
tion, a cyclic tetrameric product is formed as the main product, although the dimer and
monomer are also presented in the reaction mixture, but in a very small amount. The
reaction course is determined by the Pd-salt structure having the form of a cis-isomer.
Therefore, the task was to purposefully cyclize the tetramer structure based on dihydroxy-
Sn(IV)-5,15-diphenyl-10,20-di(4-pyridyl)porphyrin.
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Figure 3. Graphical analysis of self-diffusion coefficients versus molecular weight from DOSY NMR
spectroscopy. (A)The green dot is the monomeric structure of Sn(OH)2P 1, the red dot is the structure
of complex 5, the blue dot is the structure of complex 2. (B) The red dot is the monomeric structure
of the (Sn(OH)2P)4(PdCl2)4 complex 2, the blue dot is the dimeric structure of the complex 2, two
additional gray dots correspond to the trimeric and tetrameric structures of the complex 2, the
presence of which is also likely.

To obtain the cyclic tetramer 2 structure, the ratio of reagents was changed to 1/1. The
resulting reaction mixture (synthesis of tetramer 2 (Sn(OH)2P)4(PdCl2)4according to the
method presented in Section 2.3) was also investigated using DOSY NMR spectroscopy. In
the reaction mixture, in addition to the monomeric form of the cyclic tetramer 2, there is
also dimeric form (Figure 3B, Table 2). In addition, the solution also contains structures
consisting of three and four cyclic tetramers 2 (Figure 3B, Table 2).

The formation of the tetramer 2 from the Sn(OH)2P 1 is accompanied by the displace-
ment of β-pyrrole and o-Py protons in 1H NMR spectrum (Figure 4) [51]. The signals of
β-pyrrole protons at 9.28 and 9.22 ppm are shifted to 9.20 and 9.16 ppm, respectively. In
turn, the o-Ph protons signals are downfield shifted to 9.30 ppm. The UV-Vis spectrum of
the system shows blue shift (2–5 nm) of the Qx- and Soret bands, and the appearance of
a band at 628 nm, which corresponds to binding of monomeric fragments of the 1 with
Pd(II) salts.
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Figure 4. 1H NMR-spectrum of the cyclic tetramer 2{(Sn(OH)2P)4(PdCl2)4} and Sn(OH)2P1.

For the cyclic tetramer with octopamine 3 {(Sn(L)2P)4(PdCl2)4}, the diffusion coefficient
was obtained (Table 3) from the graph of its dependence on the molecular weight of the
complex. It turned out that the monomeric form of compound 3 exists in the reaction
mixture. No complexes with other structures were found in the reaction mixture.

The results obtained indicate that the structures formed in solution based on the
tetramer 2 (Sn(OH)2P)4(PdCl2)4, consisting of 2–4 units, are apparently linked by weak
hydrogen bonds via the axial OH groups. This assumption is supported by the absence
of associates consisting of several units in the solution when the OH group is replaced by
octopamine (Table 3).

Next, the polymer structure 4 ((Sn(L-Cu-)2P)4(PdCl2)4)n was synthesized by binding
of compound 3 (Sn(L)2P)4(PdCl2)4with copper(II) salts. The study of the reaction mix-
ture using DOSY NMR spectroscopy showed the formation in the solution of structures
consisting of 2–10 monomer units of the tetramer (Sn(L)2P)4(PdCl2)4(Table 4, Figure 5).
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The synthesized structures 1, 2, and 4 were also characterized by IR spectroscopy. IR
spectroscopy data are presented in the supplementary materials in Table S3 and Figure S7.

The geometrical optimization of experimentally obtained diaxial complexes based
on Sn(IV)-diphenyldipyridylporphyrines and their associates (porphyrin oligomers) of
various compositions was carried out by the density functional theory (DFT) method, the
B3LYP functional and the combination of the 6-31G basis set for O, H, C, N and def2-TZVP
for Sn. Geometric and energy characteristics of optimized molecules and polymers are
shown in Tables 5–7.

Table 5. Geometric parameters of the diaxial complexes based on Sn(IV)-diphenyldipyridylporphyrines.

Name r(Sn-O), Å
Est(Sn-O),

kJ/mol qst,e r(Sn-Np),Å
Est(Sn-Np),

kJ/mol qst,e <L-O-O-L, ◦ <Sn-O-L, ◦

Sn(OH)2P 1 1.998 451.9 0.481 2.101 397.5 0.521 78.3 116.3

Sn(L)2P 6 2.033 230.4 0.608 2.098 195.2 0.455 129.0 132.1

Table 6. Geometrical parameters of the monomer unit in the chain Cu(II) polymer based on Sn(L)2P.

Name r(Sn-O),Å
Est(Sn-O)

kJ/mol qst,e r(Sn-Np),Å
Est(Sn-Np),

kJ/mol qst,e <Sn-O-L,◦ r(Sn-Sn),Å

(Sn(L)2P)2Cu 7 2.038 207.1 0.446 2.091 242.9 0.678 122.5 18.124

Table 7. Geometrical parameters of the studied compounds obtained by quantum chemical calcula-
tions using the method DFT/B3LYP/3–21G.

Name Parameters (Sn(OH)2P)4(PdCl2)4
2

(Sn(L)2P)4(PdCl2)4
3

r(Sn-O), Ǻ 2.014 2.011

r(Sn-N), Ǻ 2.112 2.108

<Sn-O-L, ◦ 114.1 114.6

d(Sn . . . Sn) X-axis * 18.98 19.23

d(Sn . . . Sn) Y-axis ** 18.84 19.01
d(Sn . . . Sn) X-axis *- distance between tin atoms of porphyrins along the X axis. d(Sn . . . Sn) Y-axis; **- distance
between tin atoms of porphyrins along the Y axis.

The structure optimization by quantum chemical calculations showed that the partial
transfer of an electron pair of the Np atom to the empty Sn-atom orbitals (LPN→ LP*Sn)
occurs in Sn(L)2P 6 with two axial ligands. According to the NBO analysis, the stabilization
energy value of the Sn-Np bond is 195.2 kJ/mol, and the corresponding charge transfer
(qst) value is 0.455 e (Table 5).

At the same time, there is the transfer of an electron pair from the oxygen atom of the
ligand to an empty orbital of the Sn atom according to the LPO→ LP*Sn type. The Sn-O
bond stabilization energy value is 230.4 kJ/mol, and the corresponding charge transfer
value is 0.608 e (Table 5).

The <Sn-O-L angle value given in Table 5 shows the tilt angle of the aromatic ring of
the ligand relative to the porphyrin ring, which allows to evaluate the conjugation degree
of the ligand with the macrocycle (π-π interaction). Thus, the conjugation degree of the
ligand L with the macrocycle is less than with the OH group.

We also performed the geometry optimization of the monomeric unit in the chain
polymer (M2+=Cu2+) by the DFT method with the CAM-B3LYP/3-21G kit. The geometry
selected bond lengths and angles of the optimized molecules are shown in Table 6.

The analysis of the obtained results showed that the inclusion of the monomer unit
based on Cu(II) in the polymer chain leads to an increase in the bond length r(Sn-O)
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compared to the initial complex Sn(L)2P (Tables 5 and 6). The possible reason for this may
be an increase in the binding energy of the ligand with Cu(II). Additionally, with increasing
the bond length r(Sn-O), the decrease in the charge transfer value (qst) from the oxygen
atom of the ligand to the tin atom of the complex (LPO→ LP*Sn) is observed. Thus, the
binding energy of the ligand to the macrocycle decreases compared to the initial Sn(L)2P,
and the inclination angle of the ligand relative to the porphyrin ring (<Sn-O-L) decreases,
which leads to a greater conjugation of the ligand with the macrocycle.

Table 7 and Figure S6 present the data of the 2D tetramers optimizing structures
based on Sn(L)2P porphyrin and Pd(II) cations. According to the above quantum chemical
calculations, the cell cavity of the polymer based on Sn(L)2P is a parallelogram with
dimensions of 18.12 × 19.23 × 19.01 Å, and the cell volume of 5660 Å3, respectively, which
is in good agreement with the experimental data.

3.2. Powder X-ray Diffraction Studies and Thermogravimetric Analysis

According to the powder X-ray diffraction studies, the Sn(OH)2P 1 and the triad
6 have crystalline structure. Further complication of the studied systems structure due
to the cyclization or linear dimerization leads to a decrease in the crystallinity of the
samples (Figure 6). However, oligomers 2, 4, and 7 are not amorphous; they still re-
tain their crystalline structure, which indicates ordered assembly of monomeric units in
their composition.
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The TGA data was given in the supplementary materials in Figure S8. The first mass
loss peak, which starts at 79.9 ◦C, corresponds to the evaporation of solvent molecules
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(DMF). The second peak of weight loss (t = 296.1–361.2 ◦C) corresponds to the destruction
of octopamine fragments, which leads to the breakdown of the polymer 4 framework. The
next stage of degradation begins at a temperature of 466.9 ◦C. This process is associated
with the destruction of tetrameric structures, that is, the destruction of Py-Pd-Py bonds,
into monomeric fragments.

3.3. Determination of the Porosity of the Hybrid Sn(IV)-Porphyrin Polymers

Based on the obtained data on the pore size distribution, it can be concluded that the
synthesized polymer structures are predominantly materials with micro- and meso-pores
(Table 8, Tables S1 and S2). According to the adsorption data (Table 8), the pore radius
of monomers 1, 6, and their cyclic tetramers 2, 3 practically do not differ. However, it
should be noted that the octopamine introduction (compounds 3 and 6) contributes to
the increase in the pore radius compared to dihydroxy derivatives 1 and 2. It can also
be concluded that the tetramers 2, 3, and 4 formation is accompanied by the significant
increase in the pore volume and surface area compared to 1, 6, and 7. However, the pore
volume and the surface area values of the obtained polymer structure 4 are much lower
than for tetramer 2 (Table 8, Tables S1 and S2). This is quite expected and explained by a
denser arrangement of molecules (Sn(L)2P)4(PdCl2)4due to self-assembly by Cu(II) salts in
polymer 4 than in the free form. The decrease in the surface area and pore volume is also
observed for compound 7 obtained by bonding two molecules of Sn(L)2P (compound 6)
with Cu(II) cations.

Table 8. Average pore radius ®, pore volume (V), and surface area (S) obtained by the BJH and
BET methods.

Name
Adsorption Desorption

S,m2/g V, cm3/г r, nm S,m2/g V, cm3/g r, nm

BJH

Sn(OH)2P 1 154.686 0.27 1.68 192.71 0.31 1.53

Sn(L)2P 6 257.868 0.38 1.88 334.319 0.48 2.15

(Sn(L)2P)2Cu 7 214.574 0.35 2.11 238.272 0.39 1.91

(Sn(OH)2P)4(PdCl2)4, 2 3420.48 5.41 1.69 3699.60 5.89 1.70

(Sn(L)2P)4(PdCl2)4, 3 2340.82 3.99 1.89 2865.23 4.59 1.89

((Sn(L-Cu)2P)4(PdCl2)4)n, 4 2694.52 4.28 1.90 3190.07 4.85 1.90

BET

Sn(OH)2P 1 158.278 0.26 1.68 197.177 0.30 1.53

Sn(L)2P 6 263.959 0.37 1.88 342.071 0.47 2.15

(Sn(L)2P)2Cu 7 219.609 0.35 2.11 243.848 0.38 1.91

(Sn(OH)2P)4(PdCl2)4, 2 3499.82 5.30 1.69 3786.12 5.77 1.70

(Sn(L)2P)4(PdCl2)4, 3 2462.23 3.89 1.89 2932.47 4.49 1.70

((Sn(L-Cu)2P)4(PdCl2)4)n, 4 2757.43 4.19 1.90 3183.41 4.75 1.90

Figure 7 shows the adsorption and desorption isotherms of the synthesized compounds.
Based on the type of isotherms and data in Table 8 and Table S1, it could be concluded that
the compounds are predominantly mesoporous materials with the cylindrical pore shape.
Isotherms A–D in Figure 7 have a narrow hysteresis loop, which indicates the presence of
narrow mesopores having a shape close to conical in the compounds 1, 2, 6, and 7.
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An increase in the pore radius in the compounds explains the partial filling of pores
before the start of the experiment and their emptying during desorption. The reversibility
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of the gas adsorption–desorption process (adsorbed nitrogen molecules do not linger
in the pores of polymers during desorption) testifies in favor of the possibility of their
practical application as molecular containers for storage, transportation, and release of
reactive gases.

3.4. Photo- and Thermal Stability of Obtained Poly-Sn(IV)Porphyrin Systems in Solution

In the study of the effect of environmental conditions on the spectral-fluorescent
properties of the synthesized Sn(IV)porphyrin systems, it was found that the construc-
tion complication of the (Sn(OH)2P)4(PdCl2)4 building block leads to an increase in the
photostability of the investigated samples (Table 9). The values of the photo-degradation
degrees, the photo-oxidation constants of the tetramer with octopamine extra-ligands 3
(Sn(L)2P)4(PdCl2)4, and the polymer 4 ((Sn(L-Cu)2P)4(PdCl2)4)ndecrease by about 3–4 times
compared with tetramer 2 (Sn(OH)2P)4(PdCl2)4. The half-life values, on the contrary, in-
crease, which also indicates an increase in the stability of compounds 3 and 4 compared to
tetramer 2.

Table 9. Experimental data of the objects of study after a session of UV light irradiation after 75 min
(λ = 415 nm) in DMSO.

Name η, % k, min−1 τ1/2, min

Sn(OH)2P 1 15 0.0021 237

(Sn(OH)2P)4(PdCl2)4 2 11 0.0015 462

(Sn(L)2P)4(PdCl2)4 3 4 0.0004 1733

((Sn(L-Cu)2P)4(PdCl2)4)n 4 3 0.0005 1386

Sn(L)2P 6 7 0.0009 893

In contrast, the UV irradiation of the compounds 1-6 is accompanied by an in-
crease in their fluorescence on average by 10%. Figure 8 shows the spectral changes
of (Sn(L)2P)4(PdCl2)4observed during 75 min UV photo-irradiation.
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Figure 8. Changes in the fluorescence spectra of tetramer with octopamine 3 (Sn(L)2)4(PdCl2)4 during
75 min UV photo-irradiation in DMSO.

The thermal stability of the compounds 1-6 was assessed by the change in the UV-Vis
and fluorescence spectra when they were boiled in DMSO. In the UV-Vis spectrum, when
the temperature of the solution reaches 112 ◦C, there is a slight decrease in optical density
with the blue shift of the Soret band from 425 nm to 424 nm (Figure 9 on the left), while
in the fluorescence spectra, on the contrary, an increase in the intensity of the bands was



Polymers 2023, 15, 1055 15 of 20

recorded (Figure 9 on the right). The further increase in temperature to 140 ◦C again
leads to an increase in optical density in the UV-Vis spectrum with an already red shift of
the Soret band to 427 nm, while a decrease in fluorescence properties is recorded in the
fluorescence spectra.
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Figure 9. Dependence of UV-Vis spectrum and fluorescence spectra of (Sn(OH)2P)4(PdCl2)4 on the
solution temperature.

The tetramer with octopamine 3 turned out to be more unstable than the tetramer 2;
however, the trend of spectral changes generally remains. Figure 10 shows the changes in
the UV-Vis spectrum of (Sn(L)2P)4(PdCl2)4during the variation of the solution temperature
in DMSO. First, there is a slight drop in the optical density of the Soret band when the
solution temperature reaches 50 ◦C; however, a further increase in temperature to 110 ◦C
leads to an increase in the optical density. The subsequent increase in temperature in the
110–183 ◦C range again leads to a decrease in the maxima of the B and Qx-bands.
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Figure 10. Changes in the UV-vis spectra of the (Sn(L)2P)4(PdCl2)4(compound 3) when the tempera-
ture of the DMSO solution varies from 23 ◦Cto 183 ◦C.

In the fluorescence spectra of the compound 3 (Sn(L)2P)4(PdCl2)4 with an increase
intemperature from 23 ◦Cto 110 ◦C, there is the tendency to an increase the fluorescence
(Figure 11). Afurther increase intemperature to 183 ◦C again leads to a decrease inthe band
maxima intensity in the fluorescence spectra (Figure 11). Recall that the similar trend is
observed for unsubstituted tetramer 2 (Figure 9 on the right).
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Figure 11. Change in the fluorescence spectra of the compound 3 (Sn(L)2P)4(PdCl2)4 when the
temperature of the DMSO solution varies from 23 ◦Cto183 ◦C.

In contrast to the compounds considered above, in the UV-Vis spectrum of polymer 4,
the decrease in the optical density of both the Soret band and the Qx-bands is observed with
an increase in the temperature from 23 ◦Cto 187 ◦C. However, it should be noted that the
Soret band first shifts in the short-wavelength region by 3 nm with increasing temperature,
and one returns again to 427 nm when the temperature reaches 187 ◦C.

The fluorescence spectra of the polymer 4 ((Sn(L-Cu)2P)4(PdCl2)4)n (Figure 12) show
the same trend as for the objects described above. In the temperature range of 23–110 ◦C,
an increase in the fluorescence was recorded, and a further increase in temperature again
leads to its quenching. The fluorescence of compounds 3 and 4 is higher at the solution
temperature of 183 ◦C compared to the room temperature solution (Figures 11 and 12).
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Figure 12. Change in the fluorescence spectra of the polymer 4 ((Sn(L-Cu)2P)4(PdCl2)4)n when the
temperature of the DMSO solution varies from 23 ◦Cto 187 ◦C.

In [55], the photophysics of a conjugated metal-bound dimeric porphyrin with one
palladium cation was studied spectroscopically and using quantum chemical calcula-
tions. The influence of the conformation on the ground and first singlet excited states
has been studied. Absorption spectra and quantum chemical calculations revealed two
different conformations of the dimer. The calculated value of the torsion energy barrier is
∆Е = 3.4 kJ·mol−1.

The torsion angle of porphyrins relative to each other in the dimer determines the
distribution of electronic transitions in the molecule, and hence its UV-Vis and emission
spectra. As the rotation angle decreases, the conjugation of porphyrin fragments with
each other decreases, and molecular orbitals are localized only on one porphyrin fragment.
Moreover, complete charge transfer from ligand to ligand can take place. Studies of the tem-
perature dependence of the fluorescence spectrum of the dimer showed the fundamental
possibility of using it as a contactless luminescent temperature sensor.
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Most likely, a similar phenomenon is also observed in the case of porphyrin oligomers
with palladium cations (tetramers and a polymer) studied in this work. Quantum chemical
studies to confirm the presence of various conformers of porphyrin oligomers were not
included in this study. However, it can be observed that, in the viewing temperature
range from 23 ◦C to 110 ◦C, the torsion angles of rotation in oligomers also change from
90 ◦C to 180 ◦C, which leads to the ignition of their fluorescence. An increase at a tem-
perature of 110 ◦C leads to a sharp reduction in the photophysical behavior of porphyrin
arrays, which may be higher than the complete detection of energy barrier overcoming with
the formation of a conformer characterized by an inversely proportional distribution of
porphyrin fragments. Due to the presence in porphyrin arrays (tetramers and polymers) of
several binding sites through palladium cations, the fluorescence temperature dependence
of the compounds described in this work is even more pronounced than in the case of a
dimer [55].

4. Conclusions

New methods for preparation of hybrid metalloporphyrin polymers based on palla-
dium (II) and copper (II) cations and diaxial complexes of dipyridyl-substituted
Sn(IV)porphyrin were developed. The structure and the formation mechanism of the
obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in the solution were
established, and their resistance to the UV radiation and changes in solution temperature
werestudied. It was shown that the obtained polyporphyrin nanostructures are porous
materials with predominance of cylindrical mesopores. Density functional theory (DFT)
was used to determine the sizes of unit cells in the polyporphyrin tubular structures. The
results obtained can be used to create highly porous materials for separation, storage,
transportation, and controlled release of substrates of different nature, including highly
volatile, explosive, and toxic gases.
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1H-1H COSY of the Sn(L)2P; Figure S4. 1H-13C HSQC of the Sn(L)2P; Figure S5. Optimized structures
of the Sn(OH)2P 1 and Sn(L)2P 6 complexes; Figure S6. Cell structure of a 2D polymer - a cyclic
tetramer complex (Sn(OH)2P)4(PdCl2)4, obtained by DFT with the B3LYP/3-21G kit; Table S1. Barret-
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is surface area).
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