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Abstract: Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to
substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The
reducing power of gallium was applied to influence the optoelectronic properties of the Cs2SnI6 phase
via partial reduction of tin(IV) and, very likely, substitute partially Sn4+ by Ga3+. The reduction of Sn4+

to Sn2+ in the Cs2SnI6 phase contributes to the switching from p-type conductivity to n-type, thereby
improving the total concentration and mobility of negative-charge carriers. The phase composition
of the samples obtained was studied by X-ray diffraction (XRD) and 119Sn Mössbauer spectroscopy
(MS). It is shown that the excess of metal gallium in a reaction melt leads to the two-phase product
containing Cs2SnI6 with Sn4+ and β-CsSnI3 with Sn2+. UV–visible absorption spectroscopy shows a
high absorption coefficient of the composite material.

Keywords: ampoule reactive sintering; halide perovskite; chemical reduction in melt; 119Sn Mössbauer
spectroscopy; substitutional solid solutions

1. Introduction

Complex tin-based halides [1] with a general formula AIMIIX3 (where A is an in-
organic or organic cation such as Cs+, K+, Rb+, or CH3NH3

+ [2]; MIV = Sn; and X = a
halide anion of F−, Cl−, Br−, or I−) are most promising as light-harvesting components in
modern photovoltaic solar cells (PSCs) as alternatives to lead halides. Recently, the power-
conversion efficiency of Pb-based inorganic–organic perovskite PSCs has overrun 25% in
single-junction architecture [3]. Such progress of perovskite-solar-cell efficiency is a result
of both the chemical design of new light-harvesting compounds and also the evolution
of the overall structure of the photovoltaic cell that originated from the architecture of
the dye-sensitized solar cell [4] and transformed later to a thin sandwich-like structure
with nano-sized functional layers of solid materials [5]. Research of complex halides as
new light-harvesting materials gives a chance to minimize significantly the size and make
flexible perovskite photovoltaic cells.

It is remarkable that all of the most efficient perovskite solar cells are based on lead-
containing light absorbers; however, this raises concerns owing to their high toxicity [6,7].
Despite the progressive increase in the efficiency of lead PSCs, the toxicity of lead re-
quires development of new lead-free analogues with appropriate optical and electrical
characteristics. Lately, γ-CsSnI3 with the p-type conductivity was used in PSCs as a
light-harvesting compound; however, the phase has demonstrated rather poor stability
to oxidation and hydrolysis [8–12]. Ichiba and Kanatzidis described four polymorphs for
CsSnI3, including black B-α-CsSnI3, black B-β-CsSnI3, black B-γ-CsSnI3, and yellow (or
green) Y-γ-CsSnI3 [13,14]. Optical methods have shown that, among these polymorphs, the

Nanomaterials 2023, 13, 427. https://doi.org/10.3390/nano13030427 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13030427
https://doi.org/10.3390/nano13030427
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8085-5425
https://doi.org/10.3390/nano13030427
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13030427?type=check_update&version=1


Nanomaterials 2023, 13, 427 2 of 12

black metastable B-γ-CsSnI3 phase demonstrates metallic conductivity, high hole mobility,
rather strong luminescence, and a large optical absorption coefficient [15–17], as well as the
improved phase stability in a close-packed cell [8,18,19]. The compound is also suitable for
PSCs as a hole conductive layer [20] or light-absorber layer [21]. Despite this, instability
problems of γ-CsSnI3 as a light-harvesting compound in cycling and slow degradation
reduce the lifetime and efficiency of such PSCs. The reasons for instability of the CsSnI3
phases originate from the high reduction activity of Sn2+, which is easily oxidized to Sn4+

in moist air and disproportionately converted into Sn4+ and Sn0 in an inert atmosphere.
Some problems with the negative-charge-carrier transfer could also take place.

Recently, Lee et al. [22] suggested the perovskite-like phase of Cs2SnI6 as a more stable
analogue among tin-based lead-free perovskite light harvesters [23,24]. Since that moment,
Cs2SnI6 in PSCs has been explosively developing as a light absorber or semiconductive PSC
compound and is attributed to “double perovskites”. Actually, the phase of Cs2SnI6 with the
Fm-3m space group and the lattice parameter a in the range of 11.6276(9) Å [12]—11.65 Å [25,26]
is not a “double perovskite” phase but is a complex halide of a K2PtCl6 structure type. Its
transport characteristics are also still under discussion. According to Saparov et al. [27],
Cs2SnI6 is an n-type semiconductor with a direct band gap (Eg) of 1.26 [22] or 1.62 eV [28].
Lee et al. [22] have presented Cs2SnI6 as a p-type semiconductor for the HTM layer ac-
cording to its non-stoichiometry and presence of some Sn2+ in Sn4+ positions. The air
stability of Cs2SnI6 is not only due to the 4+ oxidation state in this compound but also due
to the shorter interatomic distance and stronger covalency of the Sn–I bonds in the [SnI6]2–

octahedra than in perovskite structure of CsSnI3 [27,29].
Doping of Cs2SnI6 with some other elements leads to the formation of new intrinsic

defects and to an increase in concentration of charge carriers, which improves the stability
of compounds [30–32]. Recently, Lee et al. [33] reported that the partial iodine replacement
by bromine (Cs2SnI6−xBrx) using a “sandwich” device-fabrication process (a two-step-
solution processing technique) makes it more air stable. Nowadays, Cs2SnI4Br2 is known as
the most air-stable compound of the Cs2SnI6 type [33]. Recently, we showed the possibility
of heterovalent substitution of tin by InIII in Cs2SnI6 [34].

In this study, we report the effect of metal gallium as a reducing agent for the complex
iodide Cs2SnI6. We also report here the formation of the substitutional solid solution
Cs2Sn1-xGaxI6-x belonging to the K2PtCl6 structure type [35,36]. The reduction of Sn4+ to
Sn2+ by metal gallium melt leads to a complex product with varying Sn2+ percentage. A
general composition of products with Cs2SnI6-based substitutional solid solution (SS) could
be expressed by a general formula of Cs2Sn4+

1-xGa3+
xI6-x, where xmax is up to 0.15. For the

samples obtained with an excess of reductant (RS), no elemental iodine was added to the
ampoules (as shown in SI, Table S1).

XRD and Sn119 Mössbauer spectroscopy were applied to investigate the reaction
products at different gallium-to-iodine ratios.

Both fundamental and structure-sensitive characteristics of compounds are important
for the new materials proposed as light-harvesting compounds. The investigation of
Ga-doped (IV) cesium iodostannate as light harvesters included both phase analysis and
analysis of the microstructure at the nanolevel.

2. Materials and Methods
2.1. Materials and Syntheses of RS/SS Compounds

The reactions were carried out in sealed quartz ampoules and evacuated to a pressure
of 1.6·10−2 Torr. The reduction samples (RS compounds) (where x = 0–0.2) were prepared
by grinding cesium iodide (CsI) (SigmaAldrich, St. Louis, MO, USA, 99.9%), tin iodide
(SnI4), and metallic gallium (Ga) (SigmaAldrich, 99.9999%) with the stoichiometric mass
ratios given in Table S1 in Supplementary Materials in an agate mortar. The solid-solution
samples of Cs2Sn1−xGaxI6−x (SS compounds) were prepared in the same way but with the
addition of elemental iodine in small excess amounts proportional to the cesium content.
Mass ratios are given in Table S2 in Supplementary Materials. The pristine Cs2SnI6 phase
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was obtained using the stoichiometric molar ratio of CsI to SnI4 (2:1). The mixtures were
sealed in preliminary dried-quartz ampoules and heated with a rate of ~0.2 ◦C/min to
300 ◦C and then annealed at this temperature for 96 h. The specimens were cooled to room
temperature slowly and opened inside a nitrogen-filled glove box. All products were black
in color, and irregularly shaped crystals were observed under a microscope. All samples
were kept in closed black Ziploc bags in nitrogen and then studied at room temperature
in air.

2.2. Characterization Methods

X-ray diffraction measurements (XRD) were performed on a Rigaku D/MAX 2500
diffractometer (Rigaku, Tokyo, Japan) equipped with a rotating copper anode (Cu-Kα1,2
radiation) and operated at 45 kV and 250 mA from 5 to 80◦ in 2θ, and the scanning rate was
3◦ min−1 at a step of 0.02◦. The experimental data were analyzed using WinXPow (database
PDF2) (STOE & Cie, Version 1.07, Darmstadt, Germany) to define the phase composition,
whereas for the lattice parameter calculations, Jana 2006 software (ECA-SIG#3/Institute of
Physics, Prague, Czech Republic) was applied. The crystal structure of the materials was
designed using the VESTA (JP-Minerals, Tsukuba, Japan) and Diamond (Crystal Impact,
Bonn, Germany) programs.

Mössbauer spectroscopy experiments were carried out in closed polycarbonate am-
poules during 2 days using an original setup equipped with a Ba119mSnO3 source. Möss-
bauer spectra at 119Sn nuclei were recorded on an MS-1104Em electrodynamic spectrometer
operating in a constant-acceleration mode (CJSC Cordon, Rostov-on-Don, Russia). The
analysis and model approximation of the spectra were performed with the SpectrRelax
software application [37,38].

UV–visible diffuse reflectance spectra were collected using the UV–visible spectrome-
ter Lambda 950 (PerkinElmer, Waltham, MA, USA). Measurements were performed in a
spectral range of 200–2000 nm with a step scan of 1 nm at 298 K with a scanning rate of
1 nm/s using quartz glass as a reference. The optical energy band gap (Eg) was acquired
using a Tauc plot as a dependence of (αhν)2 on energy (hν).

The microstructure of the samples was studied using a scanning electron microscope
with the field emission source LEO SUPRA 50VP (LEO Carl Zeiss SMT Ltd., Oberkochen,
Germany) with 250 X–2.5k X magnification. The samples were analyzed by X-ray emission
microanalysis with an X/MAX X-ray energy dispersive detector (EDX) (Oxford Instruments,
High Wycombe, UK).

3. Results and Discussion

The SS samples of the estimated composition of Cs2Sn4+
1−xGa3+

xI6−x and RS samples
(assuming a composition of Cs2Sn4+

1−5xSn2+
3xGa3+

2xI6−8x) with x = 0–0.2 were synthesized
by a reactive sintering method in vacuum (in closed ampoules), while almost in all quoted
publications various wet-chemistry methods were applied for synthesizing Cs2SnI6 and
other complex iodide materials. The compounds taken in the stoichiometric mass ratios
for the SS series are given in Table S1 in Supplementary Materials. Compositions of the
RS samples had a lack of elementary iodine and an excess of metal gallium (Table S1, in
Supplementary Materials). The weight of each sample was 0.01 g. We observed no traces
of the possible reactions between iodine, tin iodide, or metal gallium with quartz ampoules
because any reactions were negligible and did not change the stoichiometry of elements
during the synthesis.

Samples of the SS series were synthesized in small excess amounts of elemental iodine
to produce the I-reach materials with the n-type conductivity and low deficiencies of the
anionic sublattice. We supposed the Sn4+ octahedral positions in the Cs2SnI6 structure
to be the most preferable for heterovalent substitution by Ga3+ (0.620Å in the octahedral
environment), while the reduced tin (Sn2+) cation (1.16 Å) is larger significantly than the
0.690 Å of the Sn4+ ionic radii, which works against the formation of the substitutional solid
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solution. We proposed the possible products in the RS series to be Cs2SnI6-like compounds
with Sn4+ cations substituted partially by Ga3+ or Sn2+ cations (Figure 1a).
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Figure 1. (a1) Possible positions of heteroatoms (Ga3+) in Cs2SnI6 perovskite lattice; (a2) Cs2SnI6 unit
cell; (a3) Cs2SnI6 reduction result. XRD data for (b) Cs2SnI6-based solid solutions and (c) the samples
obtained by reduction with the melt of metallic gallium (x = 0–0.15). In diffractograms of SS samples,
impurity-phase CsGaI4—reflections are marked with + symbols—and all unmarked reflections belong
to Cs2SnI6. In diffractograms of RS series, β-CsSnI3 peaks are marked with ⊗-symbols, γ-CsSnI3

peaks are marked with o-symbols, and Cs2SnI6 peaks with the symbol *.
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It is shown experimentally that all characteristic XRD reflections for the SS series
(Figure 1) match well to the peaks generated from the crystal data and are consistent with
the experimental data for the Cs2SnI6 phases reported elsewhere [23,39]. For all samples of
the SS series, XRD reflections are consistent with the cubic vacancy-ordered perovskite-like
structure (Figure 1b). The noticeable shift in the reflection positions to higher or lower
2θ values with increasing Ga/Sn ratio x is not observed.

According to Figure 1b, the XRD patterns of two samples related to the SS series
(namely, x = 0.01 and 0.03) and one related to the pristine Cs2SnI6 (where x = 0) can be
regarded as single phase. Contrastingly, the XRD patterns of the RS series (Figure 1c) dis-
tinctly show the presence of the β-CsSnI3 secondary phase. The most intensive diffraction
peaks are associated with reflections of Cs2SnI6 (PDF2 file #73-330), while the weaker group
of peaks is associated with reflections of γ-CsSnI3 (PDF2 file #71-1898). The intensities
and number of CsSnI3-characteristic reflections increase with the percentage of gallium in
the samples before the heat treatment (0→0.15). Meanwhile, diffractograms do not show
reflections of any iodogallates such as CsGaI4 and CsGa2I7 (Figure 1c).

It is remarkable that for the samples with the substitution rate x of 0.09–0.15, the
presence of B-β-CsSnI3 (PDF2 file #80-2138) was observed. This β-phase is stable thermo-
dynamically at higher temperatures of 78–152 ◦C but is present in the RS samples together
with low-temperature B-γ-CsSnI3.

Table 1 shows the unit-cell parameters for the perovskite-related phase of Cs2SnI6,
which were determined using the Le Bail method. The estimated unit-cell parameter a for
the undoped Cs2SnI6 perovskite phase was found to be 11.6416 (8) Å, which is close to
recently reported data (11.630 (10) Å, according to the PDF2 file 73–330). The evolution of
the unit-cell parameter with increasing dopant content for the SS samples demonstrated
a slight increase of the cell parameter a to 11.6426 (5) Å (x = 0.05). The unit-cell volume
V changes only slightly. It changes the same way with an increase of gallium percentage
in the charge (Table 1). It is important that the radius of Ga3+ is smaller than that of Sn4+

(0.62 Å vs. 0.69 Å), and only an insignificant decrease of the unit-cell parameter is expected
if gallium(III) partially substitutes for tin(IV). The deficiency in the iodine sublattice could
also influence cubic unit-cell parameters in the same manner. In contrast, substitution of
Sn4+ ions with the larger cations of Sn2+ could act in a different way by increasing the
unit-cell parameter and volume.

Table 1. Calculated cell parameters for the Cs2Sn1−xGaxI6−x samples (SS series).

x Phase a, Å Cell Volume, Å3 Rp, % wRp, % GOF (χ2)

0 Cs2SnI6 11.6416 (8) 1577.75 (11) 7.55 10.63 1.62

0.01 Cs2SnI6 11.6418 (9) 1577.85 (13) 7.37 10.42 1.50

0.03 Cs2SnI6 11.6411 (5) 1577.58 (7) 5.59 8.69 1.31

0.05 Cs2SnI6 11.6426 (5) 1578.17 (7) 6.11 9.26 1.3

0.07 Cs2SnI6 11.6411 (3) 1577.57 (4) 7.14 10.54 1.29

0.09 Cs2SnI6 11.6398 (7) 1577.04 (9) 9.48 14.14 1.19

0.11 Cs2SnI6 11.6407 (9) 1577.41 (12) 9.03 13.35 1.15

The unit-cell parameter a of the “double perovskite” Cs2SnI6 phase was estimated
for the RS series to demonstrate its evolution with the substitution rate. The results are
presented in Table 2. As soon as the samples include more than one phase of Ga-doped
Cs2SnI6, these values are not characteristic for the substituted phases.
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Table 2. Calculated cell parameters for the Cs2SnI6 samples reduced by metallic gallium (RS series).

x Phase a, Å Cell Volume, Å3 Rp, % wRp, % GOF (χ2)

0 Cs2SnI6 11.6458 (9) 1579.450 (13) 9.3 13.19 1.25

0.05
Cs2SnI6 11.6438 (3) 1578.654 (2)

9.8 14.17 1.17
CsSnI3 8.7252 (1) 477.137 (7)

0.09
Cs2SnI6 11.6482 (1) 1580.43 (2)

10.16 14.8 1.22
CsSnI3 8.7339 (8) 477.29 (6)

0.12
Cs2SnI6 11.647 (1) 1580.26 (2)

10.64 15.01 1.20
CsSnI3 8.6995 (2) 482.23 (8)

0.15
Cs2SnI6 11.664 (2) 1587.18 (2)

11.81 16.43 1.27
CsSnI3 8.6016 (2) 461.24 (10)

To investigate the effect of gallium doping on the crystallization process of the Cs2SnI6
phase, the morphological analysis of the as-prepared SS samples (before grinding) was
carried out with scanning electron microscopy (SEM). In order to correctly estimate the
distribution of gallium over the volume of the sample, the annealed materials were divided
into several parts so that the surface and the fracture (volume) could be explored (Figure S1).
In the SEM images (Figure 2 and Figure S2), we can see that, on average, 100~200-micron
spherical grains consist of crystallites of different sizes and shapes. Comparatively, Figure
S2a4–d4 (x = 0, x = 0.01, x = 0.03, and x = 0.05) provides crystal size spreading based on the
fracture top-view images. It is noticeable also that the characteristic grain size increased up
to 50 µm with a gallium percentage in a melt, probably as a result of an excess of iodine in
the ampoules. A similar effect was found recently for Cs2SnI6 and many other complex
iodides [40]. For details, see also Figures S2–S8.
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Figure 2. SEM images of fracture of the samples (a4) x = 0, (b4) x = 0.01, (c4) x = 0.03, and (d4) x = 0.05
(SS-series) after annealing (before grinding). All micrographs are taken at the same magnification.

The EDX images and tables of the elemental composition of the samples show that
gallium is not evenly distributed across the samples. A large amount of gallium is observed
at the grain boundaries, which indicates the possibility of the formation of the CsGaI4 phase.
Since CsGaI4 is an ionic liquid and remains in a liquid state at a temperature of 300 ◦C, it
becomes an ion exchanger (or solvent) between precursors/Cs2SnI6, and this is the reason
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for the increase in the crystal size in doped samples. Gallium can also be seen in Cs2SnI6
crystallites (Figures S3 and S7), albeit in small quantities. We assume that gallium in the
Cs2SnI6 structure does not replace tin but is present in the form of interstitial defects in
octahedral vacancies (as shown in Figure 1a), so it is not distributed uniformly. Additionally,
it should be noted that in the micrographs of backscattered electrons, a chemical contrast
that would show the presence of two phases is not observed.

The 119Sn Mössbauer spectroscopy was used to analyze the oxidation state of tin atoms
in both series of samples. Figure 3a–c shows characteristic 119Sn Mössbauer spectra for
RS samples (x = 0; 0.05; 0.09) after 2 days of spectra collecting (Table 3). In the Mössbauer
spectra of the RS series (x = 0.05 and 0.09), the presence of a major sensibly unresolved
resonant subspectrum characteristic of Sn4+ (isomer shift δ ≈ 1.36 mm/s, quadrupole
splitting ∆ ≈ 0.15 mm/s) and one minor doublet that corresponds to Sn2+ (isomer shift
δ = 3.84 mm/s and δ = 3.72 mm/s for x = 0.05 and x = 0.09, respectively) are observed.
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The major component can be attributed to the cubic Cs2SnI6 phase [39]. The isomer
shift and profile of the spectrum for the double perovskite is further confirmed by the data
for the SS sample (x = 0.05) given in Figure 3d. The hyperfine parameters of the phases
are given in Table 3. The presence of Sn2+ ions within the sample of the SS series was not
found. For the RS series, Mössbauer spectroscopy data do not contradict the results of the
XRD phase composition analysis. Additionally, the experimental values of the hyperfine
parameters correspond to previously reported data for the three presented individual
phases [39,41]. According to Yamada et al. [42], minor quadrupole doublets correspond
to the β-CsSnI3 phase. The doublet related to the B-γ-CsSnI3 phase, which has higher
quadrupole splitting, is not found, and we assume that this is due to the small amount of
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this phase in the sample. An excess of the β-CsSnI3 phase in the RS sample with x = 0.05
could be a result of the concentration gradient of gallium in the sample.

Table 3. Hyperfine parameters of the 119Sn Mössbauer spectra of RS and SS samples with different
gallium content (x) at RT.

Series x Tin Type δ (mm/s) ∆ (mm/s) W (mm/s) A (%)

RS

0.00 Sn4+ 1.36 (1) 0.15 (4) 0.85 * 100

0.05
Sn4+ 1.35 (1) 0.18 (3) 0.85 * 91.4 (9)

Sn2+ 3.84 (8) 0.31 (7) 0.85 * 8.6 (9)

0.09
Sn4+ 1.36 (1) 0.17 (3) 0.85 * 90.9 (7)

Sn2+ 3.72 (7) 0.30 (6) 0.85 * 9.1 (7)

SS 0.05ˆ Sn4+ 1.37 (1) 0.22 (2) 0.85 * 100
* indicates values are fixed; W is the full width at the half height; A is a percent area of subspectrum.

To investigate the optical properties of the black-color materials, diffuse reflectance
spectra were analyzed in the wavelength range of 200–2000 nm. The estimated optical band
gap values for the samples are in the range of 1.23–1.35 eV and diminish with increasing
the gallium percentage in the samples. The profiles of the collected absorption spectra
correspond to direct-gap semiconductors [43], while the estimated optical Eg values for the
samples demonstrate larger Urbach energies for both RS and SS samples with the smaller
concentration of gallium dopant. We assume that the decrease in the absorption edge
intensity and its slight shift are due to a suppression of vacancies/intrinsic defects with a
low formation energy and formation of in-gap states. If the pristine Cs2SnI6 phase is the
p-type semiconductor, this phenomenon would contradict the theory. If the SS samples of
Cs2Sn1-xGaxI6-x are n-conductive, as reported by most authors, the Ga3+ atoms will serve
as electron traps or increase the e’-h˙ recombination probability.

For the RS series (Figure 4a,b), we observed a wider absorption edge than that of the
SS series. Most likely, most of the spectra correspond to the superposition of subspectra
of the SS phase of Cs2Sn1-xGaxI6-x (Eg observed at 1.31–1.35 eV) and the black-color phase
of γ-CsSnI3 (Eg = 1.23 eV [8]). This correlates partly to the absorption spectra of these
materials, revealing local maxima at ~630 nm for all samples (Figure 4a,c), with small
discrepancies within the SS and RS series.
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Thus, the reduction of Sn4+ to Sn2+ by gallium melt leads to the formation of perovskite
phases, namely, the black γ-CsSnI3 genuine perovskite and β-CsSnI3 phase as an admixture.
The latter is promising for light harvesting. It is remarkable also that Cs2SnI6 is a p-type
semiconductor [22] and γ-CsSnI3 is an n-type semiconductor [7]. This fact makes the
growth of the sandwich-like planar structures of Cs2SnI6 and γ-CsSnI3 attractive, aiming
at the p–n heterojunction materials for the solid-state solar cells [44]. Thus, the composite
made of Ga-doped Cs2SnI6 with γ-CsSnI3 and β-CsSnI3 perovskites seems to be a model
for further investigation of corresponding cesium iodostannates (II, IV) composite films.

4. Conclusions

Our study improves the understanding of the double-perovskite Cs2SnI6 perspective
as a perovskite solar-cell compound. According to the XRD data, no iodogallates were
found in the samples for the x < 0.05 compositions, and so the formation of the substitutional
solid solution of the double-perovskite Cs2Sn1-xGaxI6-x up to 5 at.% of Ga is still under
discussion. On the other hand, the interaction of the tin-based double-perovskite Cs2SnX6
with metal gallium leads to the formation of a new light-harvesting composite compound
and a hole- or electron-transport material with improved grain boundaries and appropriate
conductivities of charge carriers. It is remarkable also that the presence of Sn2+ cations
in the double-perovskite structure is still under discussion due to the easy segregation of
tin(II) in a form of individual phases of β-CsSnI3 and γ-CsSnI3. These results suggest that
it is possible to optimize the crystal quality and optoelectronic properties by doping the
perovskite structures (ABX3, A2BX6, A3B2×9) with relevant heterovalent cations. We expect
that this research will be a significant step for obtaining “less toxic” light-absorber materials
with improved characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13030427/s1. Table S1: Composition of Cs2Sn1-xGaxI6-x solid-
solution samples (SS series); Table S2: Composition of samples for the reduction of Cs2SnI6 by metallic
gallium (RS); Figure S1: Optical photographs of a piece of compound after synthesis (before grinding)
for SEM and EDX measurements (an example of the SS series); Figure S2: SEM images of surface
and fracture of all SS series samples; Figure S3: Secondary electron image (a) and (b) backscattered
electrons image (with chemical contrast) of fracture and (c) element distribution map of the x = 0.03
SS sample; Figure S4: EDX results (including SEM images and elements table) of fracture of the
x = 0.03 SS sample; Figure S5: Backscattered electrons (with chemical contrast) images of surface
(a) and (b) fracture of the x = 0.05 SS sample; Figure S6: EDX results (including SEM images and
elements table) of fracture of the x = 0.05 SS sample; Figure S7: Secondary electrons image (a) and
(b) backscattered electrons image (with chemical contrast) of fracture and (c) element distribution
map of the x = 0.11 SS sample; Figure S8: EDX results of surface (a) and (b) fracture of the x = 0.11 SS
sample and (c) backscattered electrons image.
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