Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = Silicon Photo-Multipliers (SiPM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5307 KiB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 280
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 328
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

15 pages, 5363 KiB  
Article
Compact and Handheld SiPM-Based Gamma Camera for Radio-Guided Surgery and Medical Imaging
by Fabio Acerbi, Aramis Raiola, Cyril Alispach, Hossein Arabi, Habib Zaidi, Alberto Gola and Domenico Della Volpe
Instruments 2025, 9(2), 14; https://doi.org/10.3390/instruments9020014 - 15 Jun 2025
Viewed by 601
Abstract
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, [...] Read more.
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, the lesion has to be identified precisely, in terms of position and extension. In such a context, going beyond the current one-point probes, introducing portable but high-resolution cameras, handholdable by the surgeon, would be highly beneficial. We developed and tested a novel compact, low-power, handheld gamma camera for radio-guided surgery. This is based on a particular position-sensitive Silicon Photomultiplier (SiPM) technology—the FBK linearly graded SiPM (LG-SiPM). Within the camera, the photodetector is made up of a 3 × 3 array of 10 × 10 mm2 SiPM chips having a total area of more than 30 × 30 mm2. This is coupled with a pixelated scintillator and a parallel-hole collimator. With the LG-SiPM technology, it is possible to significantly reduce the number of readout channels to just eight, simplifying the complexity and lowering the power consumption of the readout electronics while still preserving a good position resolution. The novel gamma camera is light (weight), and it is made to be a fully stand-alone system, therefore featuring wireless communication, battery power, and wireless recharge capabilities. We designed, simulated (electrically), and tested (functionally) the first prototypes of the novel gamma camera. We characterized the intrinsic position resolution (tested with pulsed light) as being ~200 µm, and the sensitivity and resolution when detecting gamma rays from Tc-99m source measured between 134 and 481 cps/MBq and as good as 1.4–1.9 mm, respectively. Full article
Show Figures

Figure 1

16 pages, 3975 KiB  
Article
A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry
by Antonio Mariscal-Castilla, Markus Piller, Jerome Alozy, Rafael Ballabriga, Michael Campbell, Oscar de la Torre, David Gascón, Sergio Gómez, David Heathcote, Joan Mauricio, Dennis Milesevic, Andreu Sanuy, Claire Vallance and Daniel Guberman
Sensors 2025, 25(5), 1585; https://doi.org/10.3390/s25051585 - 5 Mar 2025
Viewed by 874
Abstract
Pixellated scintillation detectors have the potential to overcome several limitations of conventional microchannel-plate-based detectors employed in time-of-flight mass spectrometry (ToF-MS), such as extending detector lifetime, reducing vacuum requirements, or increasing the ion throughput. We have developed a prototype comprising a fast organic scintillator [...] Read more.
Pixellated scintillation detectors have the potential to overcome several limitations of conventional microchannel-plate-based detectors employed in time-of-flight mass spectrometry (ToF-MS), such as extending detector lifetime, reducing vacuum requirements, or increasing the ion throughput. We have developed a prototype comprising a fast organic scintillator (Exalite 404) coupled to an array of 16 silicon photomultipliers (SiPMs), with read-out electronics based on the FastIC application-specific integrated circuit (ASIC). Each SiPM signal processed by FastIC is fed into its own time-to-digital converter (TDC). The dead time of a single channel can be as short as ∼20 ns. As a result, our system have the potential to process ion rates above 109 cm−2 s−1. We have evaluated the performance of our prototype using a velocity-map imaging ToF-MS instrument, recording the time-of-flight mass spectra of C3H6 and CF3I samples. We achieved time resolutions of (3.3±0.1) and (2.5±0.2) ns FWHM for ions of mass-to-charge ratio (m/z) values of 196 and 18, respectively. This corresponds to a mass resolution of ∼1000 for m/z<200, which we found to be dominated by the spread in ion arrival times. Full article
(This article belongs to the Special Issue Advanced Silicon Photomultiplier Based Sensors)
Show Figures

Figure 1

18 pages, 3699 KiB  
Article
A Systematic Investigation of Beam Losses and Position-Reconstruction Techniques Measured with a Novel oBLM at CLEAR
by Montague King, Sara Benitez, Alexander Christie, Ewald Effinger, Jose Esteban, Wilfrid Farabolini, Antonio Gilardi, Pierre Korysko, Jean Michel Meyer, Belen Salvachua, Carsten P. Welsch and Joseph Wolfenden
Instruments 2025, 9(1), 4; https://doi.org/10.3390/instruments9010004 - 28 Feb 2025
Viewed by 1176
Abstract
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using [...] Read more.
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using the timing information from loss signals, the loss positions can be reconstructed. This paper presents a novel oBLM system recently deployed at the CERN Linear Electron Accelerator for Research (CLEAR). Multiple methods of extracting timing and position information from measured waveforms with silicon photomultipliers (SiPM) and photomultiplier tubes (PMT) are investigated. For this installation, the optimal approach is determined to be applying a constant fraction discrimination (CFD) on the upstream readout. The position resolution is found to be similar for the tested SiPM and PMT. This work has resulted in the development of a user interface to aid operations by visualising the beam losses and their positions in real time. Full article
Show Figures

Figure 1

7 pages, 473 KiB  
Article
An Overview of the CMS High Granularity Calorimeter
by Bora Akgün
Particles 2025, 8(1), 4; https://doi.org/10.3390/particles8010004 - 11 Jan 2025
Viewed by 1014
Abstract
Calorimetry at the High Luminosity LHC (HL-LHC) faces many challenges, particularly in the forward direction, such as radiation tolerance and large in-time event pileup. To meet these challenges, the CMS Collaboration is preparing to replace its current endcap calorimeters from the HL-LHC era [...] Read more.
Calorimetry at the High Luminosity LHC (HL-LHC) faces many challenges, particularly in the forward direction, such as radiation tolerance and large in-time event pileup. To meet these challenges, the CMS Collaboration is preparing to replace its current endcap calorimeters from the HL-LHC era with a high-granularity calorimeter (HGCAL), featuring an unprecedented transverse and longitudinal segmentation, for both the electromagnetic and hadronic compartments, with 5D information (space–time–energy) read out. The proposed design uses silicon sensors for the electromagnetic section (with fluences above 1016 neq/cm2) and high-irradiation regions (with fluences above 1014 neq/cm2) of the hadronic section, while in the low-irradiation regions of the hadronic section, plastic scintillator tiles equipped with on-tile silicon photomultipliers (SiPMs) are used. Full HGCAL will have approximately 6 million silicon sensor channels and about 280 thousand channels of scintillator tiles. This will allow for particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. In this overview we present the ideas behind HGCAL, the current status of the project, results of the beam tests and the challenges that lie ahead. Full article
Show Figures

Figure 1

10 pages, 5685 KiB  
Article
Improvement and Characterisation of the ArCLight Large-Area Dielectric Light Detector for Liquid-Argon Time Projection Chambers
by Jonas Bürgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa and Michele Weber
Instruments 2024, 8(4), 48; https://doi.org/10.3390/instruments8040048 - 4 Nov 2024
Viewed by 1510
Abstract
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for [...] Read more.
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for modular detectors that wish to maximize their active volume. The ArgonCube light readout system detectors (ArCLights) are large-area thin-wavelength-shifting (WLS) panels that can operate in highly proximate modular detectors and within the electric field. The WLS plastic forming the bulk structure of the ArCLight has Tetraphenyl Butadiene (TPB) and sheets of dichroic mirror layered across its surface. It is coupled to a set of six silicon photomultipliers (SiPMs). This publication compares TPB coating techniques for large surface areas and describes quality control methods for large-scale production. Full article
Show Figures

Figure 1

18 pages, 2273 KiB  
Article
Optimization of the Pixel Design for Large Gamma Cameras Based on Silicon Photomultipliers
by Carolin Wunderlich, Riccardo Paoletti and Daniel Guberman
Sensors 2024, 24(18), 6052; https://doi.org/10.3390/s24186052 - 19 Sep 2024
Viewed by 1274
Abstract
Most single-photon emission computed tomography (SPECT) scanners employ a gamma camera with a large scintillator crystal and 50–100 large photomultiplier tubes (PMTs). In the past, we proposed that the weight, size and cost of a scanner could be reduced by replacing the PMTs [...] Read more.
Most single-photon emission computed tomography (SPECT) scanners employ a gamma camera with a large scintillator crystal and 50–100 large photomultiplier tubes (PMTs). In the past, we proposed that the weight, size and cost of a scanner could be reduced by replacing the PMTs with large-area silicon photomultiplier (SiPM) pixels in which commercial SiPMs are summed to reduce the number of readout channels. We studied the feasibility of that solution with a small homemade camera, but the question on how it could be implemented in a large camera remained open. In this work, we try to answer this question by performing Geant4 simulations of a full-body SPECT camera. We studied how the pixel size, shape and noise could affect its energy and spatial resolution. Our results suggest that it would be possible to obtain an intrinsic spatial resolution of a few mm FWHM and an energy resolution at 140 keV close to 10%, even if using pixels more than 20 times larger than standard commercial SiPMs of 6 × 6 mm2. We have also found that if SiPMs are distributed following a honeycomb structure, the spatial resolution is significantly better than if using square pixels distributed in a square grid. Full article
Show Figures

Figure 1

15 pages, 26053 KiB  
Article
Module Tester for Positron Emission Tomography and Particle Physics
by David Baranyai, Stefan Oniga, Balazs Gyongyosi, Balazs Ujvari and Attia Mohamed
Electronics 2024, 13(15), 3066; https://doi.org/10.3390/electronics13153066 - 2 Aug 2024
Cited by 1 | Viewed by 1131
Abstract
The combination of high-density, high-time-resolution inorganic scintillation crystals such as Lutetium Yttrium Oxyorthosilicate (LYSO), Yttrium Orthosilicate (YSO) and Bismuth Germanate (BGO) with Silicon Photomultiplier (SiPM) sensors is widely employed in medical imaging, particularly in Positron Emission Tomography (PET), as well as in modern [...] Read more.
The combination of high-density, high-time-resolution inorganic scintillation crystals such as Lutetium Yttrium Oxyorthosilicate (LYSO), Yttrium Orthosilicate (YSO) and Bismuth Germanate (BGO) with Silicon Photomultiplier (SiPM) sensors is widely employed in medical imaging, particularly in Positron Emission Tomography (PET), as well as in modern particle physics detectors for precisely timing sub-detectors and calorimeters. During the assembly of each module, following individual component testing, the crystals and SiPMs are bonded together using optical glue and enclosed in a light-tight, temperature-controlled cooling box. After integration with the readout electronics, the bonding is initially tested. The final readout electronics typically comprise Application-Specific Integrated Circuits (ASICs) or low-power Analog-to-Digital Converters (ADCs) and amplifiers, designed not to heat up the temperature-sensitive SiPM sensors. However, these setups are not optimal for testing the optical bonding. Specific setups were developed to test the LYSO + SiPM modules that are already bonded but not enclosed in a box. Through large data collection, small deviations in bonding can be detected if the SiPMs and LYSOs have been thoroughly tested before our measurement. The Monte Carlo simulations we used to study how parameters—which are difficult to measure in the laboratory (LYSO absorption length, refractive index of the coating)—affect the final result. Our setups for particle physics and PET applications are already in use by research institutes and industrial partners. Full article
(This article belongs to the Special Issue Sensor Based Big Data Analysis)
Show Figures

Figure 1

20 pages, 10120 KiB  
Article
Radiation Damage on Silicon Photomultipliers from Ionizing and Non-Ionizing Radiation of Low-Earth Orbit Operations
by Stefano Merzi, Fabio Acerbi, Corinne Aicardi, Daniela Fiore, Vincent Goiffon, Alberto Giacomo Gola, Olivier Marcelot, Alex Materne and Olivier Saint-Pe
Sensors 2024, 24(15), 4990; https://doi.org/10.3390/s24154990 - 1 Aug 2024
Cited by 4 | Viewed by 1521
Abstract
Silicon Photomultipliers (SiPMs) are single photon detectors that gained increasing interest in many applications as an alternative to photomultiplier tubes. In the field of space experiments, where volume, weight and power consumption are a major constraint, their advantages like compactness, ruggedness, and their [...] Read more.
Silicon Photomultipliers (SiPMs) are single photon detectors that gained increasing interest in many applications as an alternative to photomultiplier tubes. In the field of space experiments, where volume, weight and power consumption are a major constraint, their advantages like compactness, ruggedness, and their potential to achieve high quantum efficiency from UV to NIR makes them ideal candidates for spaceborne, low photon flux detectors. During space missions however, SiPMs are usually exposed to high levels of radiation, both ionizing and non-ionizing, which can deteriorate the performance of these detectors over time. The goal of this work is to compare process and layout variation of SiPMs in terms of their radiation damage effects to identify the features that helps reduce the deterioration of the performance and develop the next generation of more radiation-tolerant detectors. To do this, we used protons and X-rays to irradiate several Near Ultraviolet High-Density (NUV-HD) SiPMs with small areas (single microcell, 0.2 × 0.2 mm2 and 1 × 1 mm2) produced at Fondazione Bruno Kessler (FBK), Italy. We performed online current-voltage measurements right after each irradiation step, and a complete functional characterization before and after irradiation. We observed that the main contribution to performance degradation in space applications comes from proton damage in the form of an increase in primary dark count rate (DCR) proportional to the proton fluence and a reduction in activation energy. In this context, small active area devices show a lower DCR before and after irradiation, and we propose light or charge-focusing mechanisms as future developments for high-sensitivity radiation-tolerant detectors. Full article
Show Figures

Figure 1

23 pages, 11187 KiB  
Article
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis
by Gaetano Elio Poma, Chiara Rita Failla, Simone Amaducci, Luigi Cosentino, Fabio Longhitano, Gianfranco Vecchio and Paolo Finocchiaro
Inventions 2024, 9(4), 85; https://doi.org/10.3390/inventions9040085 - 26 Jul 2024
Cited by 3 | Viewed by 1586
Abstract
The current scenario of radioactive waste management requires innovative and automated solutions to ensure its effectiveness and safety. In response to this need, the Proximity Imaging System for Sort and Segregate Operations (PI3SO) project was proposed. It is a gamma radiation proximity scanner [...] Read more.
The current scenario of radioactive waste management requires innovative and automated solutions to ensure its effectiveness and safety. In response to this need, the Proximity Imaging System for Sort and Segregate Operations (PI3SO) project was proposed. It is a gamma radiation proximity scanner system for radioactive waste with the primary goal of speeding up some aspects of the waste management cycle while reducing direct human operations. The system will provide proximity imaging for hot-spot finding and spectral analysis for radiological characterization, enabling semiautomatic recognition, sorting and separation of radioactive waste. The core of the proposed scanning system consists of an array of 128 CsI(Tl) scintillators, 1 cm3 size, coupled with silicon photomultipliers (SiPMs), installed on a motorized bridge sliding along a suitable table in order to scan the materials under investigation. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

14 pages, 10507 KiB  
Article
Position-Sensitive Silicon Photomultiplier Arrays with Large-Area and Sub-Millimeter Resolution
by Fabio Acerbi, Stefano Merzi and Alberto Gola
Sensors 2024, 24(14), 4507; https://doi.org/10.3390/s24144507 - 12 Jul 2024
Cited by 7 | Viewed by 2089
Abstract
Silicon photomultipliers (SiPMs) are solid-state single-photon-sensitive detectors that show excellent performance in a wide range of applications. In FBK (Trento, Italy), we developed a position-sensitive SiPM technology, called “linearly graded” (LG-SiPM), which is based on an avalanche-current weighted-partitioning approach. It shows position reconstruction [...] Read more.
Silicon photomultipliers (SiPMs) are solid-state single-photon-sensitive detectors that show excellent performance in a wide range of applications. In FBK (Trento, Italy), we developed a position-sensitive SiPM technology, called “linearly graded” (LG-SiPM), which is based on an avalanche-current weighted-partitioning approach. It shows position reconstruction resolution below 250 μm on an 8 × 8 mm2 device area with four readout channels and minimal distortions. A recent development in terms of LG-SIPM is a larger chip version (10 × 10 mm2) based on FBK NUV-HD technology (near-ultraviolet sensitive), with a peak photon detection efficiency at 420 nm. Such a large-area detector with position sensitivity is very interesting in applications like MR-compatible PET, high-energy physics experiments, and readout of time-projection chambers, gamma and beta cameras, or scintillating fibers, with a reduced number of channels. These SiPMs were characterized in terms of noise, photon detection efficiency, and position resolution. We also developed tiles of 2 × 2 and 3 × 3 LG-SiPMs, reaching very large sensitive areas of 20 × 20 mm2 and 30 × 30 mm2. We implemented a “smart-channel” configuration, which allowed us to have just six output channels for the 2 × 2 elements and eight channels for the 3 × 3 element tiles, preserving a position resolution below 0.5 mm. These kinds of detectors provide a great advantage in compact and low-power applications by maintaining position sensitivity over large areas with a small number of channels. Full article
(This article belongs to the Special Issue Advanced Silicon Photomultiplier Based Sensors)
Show Figures

Figure 1

13 pages, 4959 KiB  
Article
Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts
by Xu Chen, Bin Tang, Ruofu Chen, Zhifu Zhu, Pingchuan Zhang, Qian Yu, Chang Huang, Shaojia Chen, Xiuku Wang, Hong Xu, Xiaojie Cai, Dawei Guo, Li Yu, Zhijia Sun, Yanfeng Wang and Yuntao Liu
Appl. Sci. 2024, 14(13), 5536; https://doi.org/10.3390/app14135536 - 26 Jun 2024
Viewed by 1737
Abstract
Among non-destructive testing (NDT) techniques, fast neutron radiography with a higher penetration capability has achieved rapid advancements. However, the application of the radiography detector in many fast neutron imaging systems is limited by unfavorable detection efficiency and imaging spatial resolution. In this paper, [...] Read more.
Among non-destructive testing (NDT) techniques, fast neutron radiography with a higher penetration capability has achieved rapid advancements. However, the application of the radiography detector in many fast neutron imaging systems is limited by unfavorable detection efficiency and imaging spatial resolution. In this paper, a fast neutron radiography detector was designed, which was composed of a pixelated EJ200 scintillator array, a 16 × 16 silicon photomultiplier (SiPM) array, and capacitive multiplexing network readout electronics. The main parameters of the detector were optimized using Monte Carlo simulations. In addition, the prototype of the detector was fabricated and tested under a 14 MeV D-T neutron source. The preliminary test results demonstrated that the spatial resolution of the prototype reached 1.2 mm. Moreover, the conflict between spatial resolution and detection efficiency could be mitigated by using a pixelated scintillator structure. Overall, SiPMs enabled the extensive application of the imaging system because of their excellent photon detection performance, relatively low price, and joint possibility for large areas. Full article
(This article belongs to the Special Issue Neutron Scattering and Its Applications)
Show Figures

Figure 1

13 pages, 8711 KiB  
Communication
Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures
by Simon Fafard and Denis Masson
Photonics 2024, 11(7), 596; https://doi.org/10.3390/photonics11070596 - 26 Jun 2024
Cited by 4 | Viewed by 3099
Abstract
We demonstrate the use of laser diodes and multijunction photovoltaic power converters to efficiently deliver watts of electrical power for long-distance or cryogenic applications. Transmission through single-mode and multi-mode fibers at the wavelengths of 808 nm and 1470/1550 nm are studied. An electrical [...] Read more.
We demonstrate the use of laser diodes and multijunction photovoltaic power converters to efficiently deliver watts of electrical power for long-distance or cryogenic applications. Transmission through single-mode and multi-mode fibers at the wavelengths of 808 nm and 1470/1550 nm are studied. An electrical output power of ~0.1 W is obtained after a 5 km transmission through a standard single-mode SMF28 fiber fed with 0.25 W of optical power. An electrical output power of ~1 W is demonstrated after a 5 km transmission with a standard OM1 multi-mode fiber fed with ~2.5 W. Photovoltaic conversion efficiencies reaching Eff ~49% are obtained with an output voltage of ~5 V using commercial multijunction laser power converters. For low-temperature applications, an ultra-sensitive silicon photomultiplier (SiPM) is used to detect the residual light leaked from fibers as the temperature is decreased. Our study demonstrates that specific fiber types enable low-loss transmission compatible with cryogenic requirements and without light leakage triggering of the SiPM. A cryogenic power-over-fiber system at ~1470 nm is demonstrated with ~2 W of electrical power converted over a 10 m distance having a conversion efficiency of Eff > 65% at 77 K. Full article
Show Figures

Figure 1

12 pages, 2758 KiB  
Article
Miniaturizable Chemiluminescence System for ATP Detection in Water
by Giuseppe E. Capuano, Domenico Corso, Roberta Farina, Gianni Pezzotti Escobar, Giuseppe A. Screpis, Maria Anna Coniglio and Sebania Libertino
Sensors 2024, 24(12), 3921; https://doi.org/10.3390/s24123921 - 17 Jun 2024
Cited by 3 | Viewed by 1698
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP–luciferin chemiluminescent solution was faced to a silicon photomultiplier [...] Read more.
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP–luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s. Full article
Show Figures

Figure 1

Back to TopTop