Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = SiMoA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3958 KiB  
Article
Impact of Manganese on Neuronal Function: An Exploratory Multi-Omics Study on Ferroalloy Workers in Brescia, Italy
by Somaiyeh Azmoun, Freeman C. Lewis, Daniel Shoieb, Yan Jin, Elena Colicino, Isha Mhatre-Winters, Haiwei Gu, Hari Krishnamurthy, Jason R. Richardson, Donatella Placidi, Luca Lambertini and Roberto G. Lucchini
Brain Sci. 2025, 15(8), 829; https://doi.org/10.3390/brainsci15080829 (registering DOI) - 31 Jul 2025
Abstract
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on [...] Read more.
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on cognitive function through β-amyloid (Aβ) deposition and multi-omics profiling. We evaluated six male Mn-exposed workers (median age 63, exposure duration 31 years) and five historical controls (median age: 60 years), all of whom had undergone brain PET scans. Exposed individuals showed significantly higher Aβ deposition in exposed individuals (p < 0.05). The average annual cumulative respirable Mn was 329.23 ± 516.39 µg/m3 (geometric mean 118.59), and plasma Mn levels were significantly elevated in the exposed group (0.704 ± 0.2 ng/mL) compared to controls (0.397 ± 0.18 in controls). Results: LC-MS/MS-based pathway analyses revealed disruptions in olfactory signaling, mitochondrial fatty acid β-oxidation, biogenic amine synthesis, transmembrane transport, and choline metabolism. Simoa analysis showed notable alterations in ADRD-related plasma biomarkers. Protein microarray revealed significant differences (p < 0.05) in antibodies targeting neuronal and autoimmune proteins, including Aβ (25–35), GFAP, serotonin, NOVA1, and Siglec-1/CD169. Conclusion: These findings suggest Mn exposure is associated with neurodegenerative biomarker alterations and disrupted biological pathways relevant to cognitive decline. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor–Cognitive Interactions—2nd Edition)
Show Figures

Figure 1

13 pages, 928 KiB  
Article
Blood Biomarkers of Neurodegeneration over Four Decades After Toxic Oil Syndrome: A Case-Control Study
by Mariano Ruiz-Ortiz, José Lapeña-Motilva, Verónica Giménez de Bejar, Fernando Bartolomé, Carolina Alquézar, Minerva Martínez-Castillo, Sonia Wagner-Reguero, Teodoro del Ser, María Antonia Nogales, Sonia Álvarez-Sesmero, Montserrat Morales, Cecilia García-Cena and Julián Benito-León
Int. J. Mol. Sci. 2025, 26(11), 5122; https://doi.org/10.3390/ijms26115122 - 27 May 2025
Viewed by 407
Abstract
Toxic oil syndrome (TOS) is a multisystemic disease that emerged in Spain in 1981 due to the ingestion of aniline-adulterated rapeseed oil fraudulently sold as olive oil. Although neurological sequelae, including cognitive deficits, have been documented in long-term survivors, it remains unclear whether [...] Read more.
Toxic oil syndrome (TOS) is a multisystemic disease that emerged in Spain in 1981 due to the ingestion of aniline-adulterated rapeseed oil fraudulently sold as olive oil. Although neurological sequelae, including cognitive deficits, have been documented in long-term survivors, it remains unclear whether TOS leads to chronic or progressive neurodegeneration. In this case-control study, we measured blood concentrations of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau 217 (pTau217) in 50 individuals with clinically confirmed TOS and 50 matched healthy controls. Biomarkers were quantified using ultrasensitive immunoassay platforms (Quanterix SIMOA SR-X and Fujirebio Lumipulse G600II). Group differences were evaluated using non-parametric tests, and multiple linear regression was applied to assess associations between biomarkers and clinical variables. While NfL levels were slightly higher in TOS patients (p = 0.025), no significant group differences were observed for pTau217 or GFAP. Age was a consistent predictor of biomarker levels, particularly for GFAP and pTau217, and female sex was independently associated with higher GFAP concentrations. Lower educational attainment was linked to increased NfL levels. Clinical status (TOS vs. control) did not significantly predict biomarker concentrations in any model. These findings suggest no evidence of overt or ongoing neurodegeneration in long-term TOS survivors as detected by current blood biomarkers. However, the possibility of subtle, compartmentalized, or slowly evolving neurotoxic processes cannot be excluded. Future longitudinal studies incorporating serial biomarker assessments, advanced neuroimaging, and oxidative stress markers are warranted to clarify the long-term neurological consequences of TOS and to detect subclinical trajectories of delayed neurotoxicity in this population. Full article
(This article belongs to the Special Issue Molecular Diagnostics in Neurological Diseases)
Show Figures

Figure 1

26 pages, 1921 KiB  
Article
Advancing Personalized Medicine in Alzheimer’s Disease: Liquid Biopsy Epigenomics Unveil APOE ε4-Linked Methylation Signatures
by Mónica Macías, Juan José Alba-Linares, Blanca Acha, Idoia Blanco-Luquin, Agustín F. Fernández, Johana Álvarez-Jiménez, Amaya Urdánoz-Casado, Miren Roldan, Maitane Robles, Eneko Cabezon-Arteta, Daniel Alcolea, Javier Sánchez Ruiz de Gordoa, Jon Corroza, Carolina Cabello, María Elena Erro, Ivonne Jericó, Mario F. Fraga and Maite Mendioroz
Int. J. Mol. Sci. 2025, 26(7), 3419; https://doi.org/10.3390/ijms26073419 - 5 Apr 2025
Cited by 2 | Viewed by 1027
Abstract
Recent studies show that patients with Alzheimer’s disease (AD) harbor specific methylation marks in the brain that, if accessible, could be used as epigenetic biomarkers. Liquid biopsy enables the study of circulating cell-free DNA (cfDNA) fragments originated from dead cells, including neurons affected [...] Read more.
Recent studies show that patients with Alzheimer’s disease (AD) harbor specific methylation marks in the brain that, if accessible, could be used as epigenetic biomarkers. Liquid biopsy enables the study of circulating cell-free DNA (cfDNA) fragments originated from dead cells, including neurons affected by neurodegenerative processes. Here, we isolated and epigenetically characterized plasma cfDNA from 35 patients with AD and 35 cognitively healthy controls by using the Infinium® MethylationEPIC BeadChip array. Bioinformatics analysis was performed to identify differential methylation positions (DMPs) and regions (DMRs), including APOE ε4 genotype stratified analysis. Plasma pTau181 (Simoa) and cerebrospinal fluid (CSF) core biomarkers (Fujirebio) were also measured and correlated with differential methylation marks. Validation was performed with bisulfite pyrosequencing and bisulfite cloning sequencing. Epigenome-wide cfDNA analysis identified 102 DMPs associated with AD status. Most DMPs correlated with clinical cognitive and functional tests including 60% for Mini-Mental State Examination (MMSE) and 80% for Global Deterioration Scale (GDS), and with AD blood and CSF biomarkers. In silico functional analysis connected 30 DMPs to neurological processes, identifying key regulators such as SPTBN4 and APOE genes. Several DMRs were annotated to genes previously reported to harbor epigenetic brain changes in AD (HKR1, ZNF154, HOXA5, TRIM40, ATG16L2, ADAMST2) and were linked to APOE ε4 genotypes. Notably, a DMR in the HKR1 gene, previously shown to be hypermethylated in the AD hippocampus, was validated in cfDNA from an orthogonal perspective. These results support the feasibility of studying cfDNA to identify potential epigenetic biomarkers in AD. Thus, liquid biopsy could improve non-invasive AD diagnosis and aid personalized medicine by detecting epigenetic brain markers in blood. Full article
Show Figures

Figure 1

13 pages, 1914 KiB  
Article
Profiling Blood-Based Neural Biomarkers and Cytokines in Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Using Single-Molecule Array Technology
by Insha Zahoor, Sajad Mir and Shailendra Giri
Int. J. Mol. Sci. 2025, 26(7), 3258; https://doi.org/10.3390/ijms26073258 - 1 Apr 2025
Cited by 1 | Viewed by 740
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a preclinical animal model widely used to study multiple sclerosis (MS). Blood-based analytes, including cytokines and neural biomarkers are the predictors of neurodegeneration, disease activity, and disability in patients with MS. However, understudied confounding factors cause variation in [...] Read more.
Experimental autoimmune encephalomyelitis (EAE) is a preclinical animal model widely used to study multiple sclerosis (MS). Blood-based analytes, including cytokines and neural biomarkers are the predictors of neurodegeneration, disease activity, and disability in patients with MS. However, understudied confounding factors cause variation in reports on EAE across animal strains/studies, limiting the utility of these biomarkers for predicting disease activity. In this study, we investigated blood-based analyte profiles, including neural markers (NFL and GFAP) and cytokines (IL-6, IL-17, IL-12p70, IL-10, and TNF-α), in two clinically distinct EAE models: relapsing-remitting (RR)-EAE and chronic-EAE. Ultrasensitive single-molecule array technology (SIMOA, Quanterix) was used to profile the analytes in the blood plasma of mice at the acute, chronic, and progressive phases of disease. In both models, NFL was substantially increased during post-disease onset across all phases, with a pronounced increase observed in chronic-EAE. The leakage of GFAP into peripheral blood was also greater after disease onset in both EAE models, especially in the acute phase of chronic-EAE. Among all cytokines, only IL-10 had consistently lower levels in both EAE models throughout the course of disease. This study suggests NFL, GFAP, and IL-10 as potential translational predictors of disease activity in EAE, making them potential candidates as surrogate markers for the preclinical testing of therapeutic interventions in animal models of MS. Full article
(This article belongs to the Special Issue Insights in Multiple Sclerosis (MS) and Neuroimmunology: 2nd Edition)
Show Figures

Figure 1

14 pages, 426 KiB  
Article
Transient Global Amnesia (TGA): Is It Really Benign? A Pilot Study on Blood Biomarkers
by Fabio Rossini, Tobias Moser, Michael Unterhofer, Michael Khalil, Rina Demjaha, Cansu Tafrali, Maria Martinez-Serrat, Jens Kuhle, David Leppert, Pascal Benkert, Johannes A. R. Pfaff, Eugen Trinka and Slaven Pikija
Int. J. Mol. Sci. 2025, 26(6), 2629; https://doi.org/10.3390/ijms26062629 - 14 Mar 2025
Viewed by 769
Abstract
We aimed to determine whether transient global amnesia (TGA) is associated with alterations in central nervous system (CNS) injury biomarkers—serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP). In a prospective cohort of TGA patients, blood samples were obtained within [...] Read more.
We aimed to determine whether transient global amnesia (TGA) is associated with alterations in central nervous system (CNS) injury biomarkers—serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP). In a prospective cohort of TGA patients, blood samples were obtained within 24–48 h of TGA onset (t0) and 6 weeks thereafter (t1). We assessed sNfL and sGFAP levels using the highly sensitive single-molecule array assay and calculated Z-scores adjusted for age, gender, and body mass index (BMI). Demographics, electroencephalography (EEG), and cerebral magnetic resonance imaging (cMRI) findings were also collected. A total of 20 patients were included (median age: 66 years, 70% women). No significant changes in sNfL or sGFAP levels associated with TGA at t0 and t1 were observed. Median sNfL Z-scores were 0.45 (interquartile range [IQR] −0.09, 1.19) at t0 and 0.60 (IQR −0.61, 1.19) at t1. Median sGFAP Z-scores were 0.27 (IQR −0.45, 0.76) at t0 and 0.44 (IQR −0.27, 0.75) at t1. Similarly, in the subgroup of patients with diffusion-weighted imaging (DWI)-positive hippocampal lesions (n = 5/20[25%]), no elevations in blood biomarkers were detected. Our pilot study on neurological blood biomarkers supports the benign nature of TGA, indicating that no CNS tissue damage occurs. Full article
(This article belongs to the Special Issue Molecular Diagnostics in Neurological Diseases)
Show Figures

Figure 1

14 pages, 3025 KiB  
Article
Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy
by Javad Nouri Hajari, Tomas Ilginis, Tobias Torp Pedersen, Claes Sepstrup Lønkvist, Jon Peiter Saunte, Mikael Hofsli, Diana Chabane Schmidt, Hajer Ahmad Al-abaiji, Yasmeen Ahmed, Daniella Bach-Holm, Line Kessel, Miriam Kolko, Mette Bertelsen, Lars Michael Larsen, Frederik Sørensen, Julie Lyng Forman, Dorte Aalund Olsen, Thomas Rosenberg, Ivan Brandslund and Carina Slidsborg
Int. J. Mol. Sci. 2025, 26(6), 2625; https://doi.org/10.3390/ijms26062625 - 14 Mar 2025
Cited by 2 | Viewed by 952
Abstract
To investigate levels of specific plasma-biomarkers related to neurodegeneration and inflammation in patients with different chronic degenerative retinal diseases, using an ultrasensitive technology called ‘single molecule array’ (SiMoA). Also, to investigate if biomarkers were measurable in the patient’s blood, dependent on age and [...] Read more.
To investigate levels of specific plasma-biomarkers related to neurodegeneration and inflammation in patients with different chronic degenerative retinal diseases, using an ultrasensitive technology called ‘single molecule array’ (SiMoA). Also, to investigate if biomarkers were measurable in the patient’s blood, dependent on age and medical comorbidities, and useful for stratifying the diseases. This exploratory, cross-sectional study recruited 151 adults at the Department of Ophthalmology, Rigshospitalet, Denmark (period 2019 to 2020). Clinical data came from the electronic medical-record system. The study population consisted of 131 patients: 32 with diabetic retinopathy (DR; 51 diabetes, DM), 27 with glaucoma, 53 with inherited retinal degeneration (IRD and 20 healthy controls (HC). Medical comorbidities included organ failure, other active eye diseases, and comorbidities. Three biomarkers, neurofilament-light-chain (NFL), glial-fibrillary-acidic-protein (GFAP), and CXC-motif chemokine ligand 13 (CXCL13), were measured with SiMoA technology. The age-adjusted values were reported as fold differences (FD) with 95% confidence intervals (CI). Increased NFL levels were found in DR patients compared to HCs (FD 1.81 95%CI 1.43, 2.28, p < 0.001, adj-p < 0.001). Similarly increased NFL levels were reported in advanced DR (PDR, DME), compared to both DM (FD 2.52 (95%CI: 1.71; 3.72, p < 0.001, adj-p < 0.001, and FD 2.04 (95%CI: 1.33; 3.12, p < 0.001, adj-p < 0.001), respectively) and HCs (FD 2.35 (95%CI: 1.67; 3.30, p < 0.001, adj-p < 0.001), and FD 1.89 (95%CI: 1.28; 2.79, p < 0.001, adj-p < 0.001) respectively). Independent of comorbidities, decreased NFL-levels were seen in IRD compared to DR (FD 0.49 (95% CI 0.39; 0.61, p < 0.001; adj-p < 0.001), ±comorbidities). Decreased GFAP levels were seen in DM patients compared to HCs (FD 0.69; 95%CI 0.55, 0.87, p = 0.002, adj-p = 0.02), but contrary to an increasing trend in advanced DR compared to DM (-comorbidities). These results imply that these biomarker-tests are useful for detecting and monitoring development of retinopathy in the circulations of diabetes patients. Plasma-biomarkers may be useful to stratify between retinal disease types. Prospective studies are underway to explore this hypothesis in depth. Full article
(This article belongs to the Special Issue Molecular Pathogenesis and Therapeutics in Retinopathy)
Show Figures

Figure 1

19 pages, 855 KiB  
Article
Prevalence and Clinical Correlates of Cerebrovascular Alterations in Fabry Disease: A Cross-Sectional Study
by Daniele Di Natale, Salvatore Rossi, Gianmarco Dalla Zanna, Antonio Funcis, Tommaso Filippo Nicoletti, Ludovico Luca Sicignano, Elena Verrecchia, Angela Romano, Maria Gabriella Vita, Naike Caraglia, Francesca Graziani, Federica Re, Gisella Guerrera, Luca Battistini and Gabriella Silvestri
Brain Sci. 2025, 15(2), 166; https://doi.org/10.3390/brainsci15020166 - 7 Feb 2025
Viewed by 988
Abstract
Background/Objectives: Fabry disease (FD) is an inborn error of the glycosphingolipid metabolism with variable kidney, heart, and central nervous system (CNS) involvement. CNS-related FD manifestations include early ischemic stroke and white matter lesions (WMLs) related to cerebral small-vessel disease (CSVD), possibly resulting in [...] Read more.
Background/Objectives: Fabry disease (FD) is an inborn error of the glycosphingolipid metabolism with variable kidney, heart, and central nervous system (CNS) involvement. CNS-related FD manifestations include early ischemic stroke and white matter lesions (WMLs) related to cerebral small-vessel disease (CSVD), possibly resulting in cognitive impairment. We studied 40 adult FD patients (17 male) to assess: (i) prevalence of cerebrovascular and cognitive manifestations in FD and their correlation with heart and renal involvement; and (ii) the potential value of serum neurofilament light chain (NfL) levels as an indicator of WMLs in FD. Methods: Patients underwent detailed diagnostic assessment related to FD, also including Mainz Severity Score Index (MSSI), neuropsychological tests, brain MRI to assess WMLs by the modified Fazekas score (mFS), and NfL determination by single-molecule array (SiMoA) (n = 22 FD patients vs. 15 healthy controls). Results: Overall, 4 FD patients had a history of ischemic stroke and 13/32 patients (40.6%) had an mFS ≥ 1. Almost two-thirds of FD patients (27/39, 69.2%) showed impairment on at least one cognitive test. On univariate analysis, only a reduction in estimated glomerular filtration rate was associated with an increased likelihood of having WMLs on brain MRI. Serum NfL levels were higher in FD patients vs. controls, with a trend toward significance (p = 0.08). Conclusions: Mild-to-moderate CSVD is a characteristic brain “signature” in FD patients. Both cardiac and renal involvement correlate with WML load, but only renal involvement appears to be predictive of CNS damage. Brain microvascular damage is associated with mild cognitive impairment in FD, and serum NfL might represent a potential biomarker of CSVD in FD. Full article
Show Figures

Figure 1

13 pages, 925 KiB  
Article
Plasma Biomarkers in the Distinction of Alzheimer’s Disease and Frontotemporal Dementia
by Estrella Gómez-Tortosa, Pablo Agüero-Rabes, Alicia Ruiz-González, Sonia Wagner-Reguero, Raquel Téllez, Ignacio Mahillo, Andrea Ruiz-Calvo, María José Sainz, Anna Lena Nystrom, Teodoro del Ser and Pascual Sánchez-Juan
Int. J. Mol. Sci. 2025, 26(3), 1231; https://doi.org/10.3390/ijms26031231 - 30 Jan 2025
Viewed by 1107
Abstract
Plasma biomarkers are promising tools for the screening and diagnosis of dementia in clinical settings. We analyzed plasma levels of Alzheimer’s core biomarkers, neurofilament light chain (NfL) and glial fibrillary acid protein (GFAP), through single-molecule Array in 108 patients with Alzheimer’s (AD, cerebrospinal [...] Read more.
Plasma biomarkers are promising tools for the screening and diagnosis of dementia in clinical settings. We analyzed plasma levels of Alzheimer’s core biomarkers, neurofilament light chain (NfL) and glial fibrillary acid protein (GFAP), through single-molecule Array in 108 patients with Alzheimer’s (AD, cerebrospinal fluid with an amyloid+ tau+ neurodegeneration+ profile), 73 patients with frontotemporal dementia (FTD, 24 with genetic diagnosis), and 54 controls. The best area under the curve (AUC) was used to assess the discriminative power. Patients with AD had lower Aß42/40 ratios and NfL levels, along with higher levels of p-tau181 and GFAP, compared with FTD patients. Single biomarkers discriminated well between dementia patients and controls: the Aß42/40 ratio (AUC:0.86) or GFAP (AUC:0.83) was found for AD, and the NfL (AUC:0.84) was found for FTD patients. However, a combination of two (NfL with p-tau181, or the GFAP/NfL ratio, AUCs ~0.87) or three biomarkers (NfL, P-tau181, and Aß42/40 ratio, AUC: 0.90) was required to distinguish between AD and FTD. Biomarker profiles were similar across different FTD phenotypes, except for carriers of PGRN mutations, who had higher levels of NfL than C9orf72 expansion carriers. In our series, NfL alone provided the best distinction between FTD and controls, while a combination of two or three biomarkers was required to obtain good discrimination between AD and FTD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 2450 KiB  
Article
Comparison of Methods of Detecting IL-1β in the Blood of Alzheimer’s Disease Subjects
by Alexandra D. Remnitz, Roey Hadad, Robert W. Keane, W. Dalton Dietrich and Juan Pablo de Rivero Vaccari
Int. J. Mol. Sci. 2025, 26(2), 831; https://doi.org/10.3390/ijms26020831 - 20 Jan 2025
Cited by 1 | Viewed by 1458
Abstract
Interleukin (IL)-1β is a pro-inflammatory cytokine whose levels are increased in the brains of Alzheimer’s disease (AD) patients. Despite the role of IL-1β in the pathology of AD, the fact that it is expressed at very low levels makes it a challenging cytokine [...] Read more.
Interleukin (IL)-1β is a pro-inflammatory cytokine whose levels are increased in the brains of Alzheimer’s disease (AD) patients. Despite the role of IL-1β in the pathology of AD, the fact that it is expressed at very low levels makes it a challenging cytokine to measure, hence limiting its potential use as a reliable biomarker. Moreover, being able to accurately and reliably measure the levels of IL-1 β in blood makes it possible to evaluate this cytokine as a potential biomarker of the inflammatory response in AD. In this study, we compared three quantification methodologies, Meso-Scale Discovery (MSD), both V-Plex and S-Plex versions, and Quanterix’s SIMOA (Single-Molecule Array), to measure IL-1β in the serum of AD patients and age-matched controls. These assays are routinely used to measure IL-1β serum levels with high specificity and sensitivity in human AD patients, yet to the best of our knowledge, no study has compared all three techniques for their accuracy to measure IL-1β as biomarkers. Our findings indicate the two MSD assays can be used to measure IL-1β levels in AD and control serum, but the SIMOA assay showed the highest receiver operating characteristics (ROCs), with an area under the curve (AUC) of 0.9532, which can be compared to the AUC values for the V-Plex assay, 0.5660, and the S-Plex assay, 0.6632. Taken together, these data show that although all technologies are useful in the measurement of IL-1β in the blood, the SIMOA IL-1β 3.0 assay is more reliable and sensitive in measuring biomarkers of AD. Full article
Show Figures

Figure 1

11 pages, 1045 KiB  
Article
Exploring the Link Between Renal Function Fluctuations Within the Physiological Range and Serum/CSF Levels of NfL, GFAP, tTAU, and UCHL1
by Kimberly Koerbel, Yavor Yalachkov, Tabea Rotter, Martin A. Schaller-Paule, Jan Hendrik Schaefer, Lucie Friedauer, Jasmin Jakob, Falk Steffen, Stefan Bittner, Christian Foerch and Michelle Maiworm
Int. J. Mol. Sci. 2025, 26(2), 748; https://doi.org/10.3390/ijms26020748 - 17 Jan 2025
Cited by 1 | Viewed by 1167
Abstract
Impaired renal function can influence biomarker levels through mechanisms involving blood–brain barrier integrity and clearance pathways; however, the impact of variations within normal renal function remains unclear. The main aim of this study was to determine whether adjustment for the specific level of [...] Read more.
Impaired renal function can influence biomarker levels through mechanisms involving blood–brain barrier integrity and clearance pathways; however, the impact of variations within normal renal function remains unclear. The main aim of this study was to determine whether adjustment for the specific level of renal function is necessary when renal function remains within physiological levels. We studied n = 183 patients (NID n = 122; other neurological diseases n = 39; somatoform controls n = 22) who underwent lumbar puncture at University Hospital Frankfurt. Serum and cerebrospinal fluid (CSF) levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tau protein (tTAU), and ubiquitin C-terminal hydrolase-L1 (UCHL1) were measured using the single molecule array (SIMOA) technique. Estimated glomerular filtration rate (eGFR) correlated negatively with CSF GFAP (r = −0.217, p = 0.004) and serum NfL (r = −0.164, p = 0.032). Patients with impaired renal function exhibited higher CSF NfL (p = 0.036) and CSF GFAP (p = 0.026) levels. However, these findings did not remain significant after adjusting for BMI and age. Importantly, in patients with normal renal function, no significant correlations with eGFR and biomarker levels were observed after adjustment. Our findings indicate that serum and CSF concentrations of NfL, GFAP, tTAU, and UCHL1 are not significantly affected by fluctuations in physiological kidney function but emphasize the importance of considering comorbidities in impaired renal function when interpreting biomarker levels. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 6966 KiB  
Article
An Immunocytochemistry Method to Investigate the Translationally Active HIV Reservoir
by Guoxin Wu, Samuel H. Keller, Ryan T. Walters, Yuan Li, Jan Kristoff, Brian C. Magliaro, Paul Zuck, Tracy L. Diamond, Jill W. Maxwell, Carol Cheney, Qian Huang, Carl J. Balibar, Thomas Rush, Bonnie J. Howell and Luca Sardo
Int. J. Mol. Sci. 2025, 26(2), 682; https://doi.org/10.3390/ijms26020682 - 15 Jan 2025
Viewed by 1711
Abstract
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even [...] Read more.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART. Methodologies to quantify the active reservoir are needed. Here, an automated immunocytochemistry (ICC) assay coupled with computational image analysis to detect and quantify intracellular Gag capsid protein (CA) is described (CA-ICC). For this purpose, fixed cells were deposited on microscopy slides by the cytospin technique and stained with antibodies against CA by an automated stainer, followed by slide digitization. Nuclear staining was used to count the number of cells in the specimen, and the chromogenic signal was quantified to determine the percentage of CA-positive cells. In comparative analyses, digital ELISA, qPCR, and flow cytometry were used to validate CA-ICC. The specificity and sensitivity of CA-ICC were assessed by staining a cell line that expresses CA (MOLT IIIB) alongside a control cell line (Jurkat) devoid of this marker, as well as peripheral blood mononuclear cells (PBMCs) from HIV seronegative donors before or after ex vivo infection with an HIV laboratory strain. The sensitivity of CA-ICC was further assayed by spiking MOLT IIIB cells into uninfected Jurkat cells in limiting dilutions. In those analyses, CA-ICC could detect down to 10 CA-positive cells per million with a sensitivity superior to flow cytometry. To demonstrate the application of CA-ICC in pre-clinical research, bulk PBMCs obtained from mouse and non-human primate animal models were stained to detect HIV CA and SIV p27, respectively. The level of intracellular CA quantified by CA-ICC in PBMCs obtained from animal models was associated with plasma viral loads and cell-associated CA measured by qPCR and ELISA, respectively. The application of CA-ICC to evaluate the activity of small-molecule targeted activator of cell-kill (TACK) in clinical specimens is presented. Overall, CA-ICC offers a simple imaging method for specific and sensitive detection of CA-positive cells in bulk cell preparations. Full article
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Functional and Cognitive Impairment in Patients with Relapsing–Remitting Multiple Sclerosis: Cognitive Tests and Plasma Neurofilament Light Chain Levels
by Elina Polunosika, Joel Simren, Arta Akmene, Nikita Klimovskis, Kaj Blennow, Daina Pastare, Henrik Zetterberg, Renars Erts and Guntis Karelis
Medicina 2025, 61(1), 70; https://doi.org/10.3390/medicina61010070 - 3 Jan 2025
Viewed by 1440
Abstract
Background and Objectives: Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient’s daily activities. The aim of our study was to [...] Read more.
Background and Objectives: Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient’s daily activities. The aim of our study was to investigate the correlation between functional status, cognitive functions, and neurofilament light chain levels in plasma in MS patients. Materials and Methods: In a cross-sectional study, MS patients with a relapsing–remitting course (according to McDonald’s criteria, 2017) (n = 42) from Riga East University Hospital and a control group (n = 42) were included. In the MS group, the functional status was determined using the Expanded Disability Status Scale (EDSS), and neurofilament light chain levels in plasma (pNfL) were detected using single molecule array (Simoa) technology. The symbol digit modalities test (SDMT), brief visuospatial memory test—revised (BVMT-R), and the nine-hole peg test (9-HPT) were performed on the MS and control groups, dividing the groups by education level. Results: On the SDMT spreading speed, the MS group performed worse than the control group. The median score for the control group was 94.0, and for the MS group, it was 81.3. Slower performance on the SDMT also correlated with a higher EDSS in the MS group. Cognitive processing speed and memory were better in the control group and among individuals with higher education in both groups. For the BVMT-R, we found no difference between the two groups; both groups were able to learn the task equally well, but we found a weak correlation between age and learning in both groups, which could be related to the normal aging process. Execution reaction speed on the 9-HPT with the dominant hand was slower in the MS group (24.1 s) than in the control group (19.4 s). In the MS group, we observed a trend between SDMT performance and pNfL levels: higher pNfL levels were found in individuals who performed more slowly on the SDMT. Conclusions: Cognitive and fine motor dysfunction correlates with neurological impairment and plasma neurofilament light chain levels in MS patients. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

9 pages, 1184 KiB  
Article
Effect of Natalizumab on sNfL and sGFAP Levels in Multiple Sclerosis Patients
by Raquel Sainz-Amo, Alexander Rodero-Romero, Enric Monreal, Juan Luis Chico-García, Fernando Rodríguez-Jorge, Jose Ignacio Fernández-Velasco, Noelia Villarrubia, Jose Luis Veiga-González, Susana Sainz de la Maza, Jaime Masjuan, Lucienne Costa-Frossard and Luisa Maria Villar
Int. J. Mol. Sci. 2024, 25(23), 13153; https://doi.org/10.3390/ijms252313153 - 7 Dec 2024
Cited by 2 | Viewed by 1120
Abstract
Natalizumab is a highly effective therapy for multiple sclerosis (MS). The aim of this study was to evaluate serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) in patients with relapsing–remitting MS treated with Natalizumab. sNfL and sGFAP were analyzed [...] Read more.
Natalizumab is a highly effective therapy for multiple sclerosis (MS). The aim of this study was to evaluate serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) in patients with relapsing–remitting MS treated with Natalizumab. sNfL and sGFAP were analyzed at baseline, 6 and 12 months post treatment using the single-molecule array (SiMoA) technique. We recruited matched healthy controls for comparison. The study included 54 patients, with a median age of 33 years (Interquartile range (IQR), 29–41), with 32 women (60%) and 76 healthy controls. A decrease in sNfL was observed at 6 (67%, p = 0.005) and 12 (72%, p < 0.0001) months compared to baseline. After two years, six patients experienced evidence of disease activity (EDA-3). The remaining ones had no evidence of disease activity (NEDA-3). NEDA-3 presented a remarkable reduction in sNfL (p < 0.0001) and sGFAP (p = 0.01) after 6 months of treatment that continued to be observed after 12 months compared to baseline. EDA-3 only reached a significant decrease in sNfL after 12 months; there were no significant changes in sGFAP values. Natalizumab leads to a decrease in sNfL, which is higher and occurs earlier in NEDA-3 patients. Patients also showed a significant reduction in sGFAP levels, which was not observed in the EDA-3 group. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 620 KiB  
Article
Serum Tau Species in Progressive Supranuclear Palsy: A Pilot Study
by Costanza Maria Cristiani, Luana Scaramuzzino, Elvira Immacolata Parrotta, Giovanni Cuda, Aldo Quattrone and Andrea Quattrone
Diagnostics 2024, 14(23), 2746; https://doi.org/10.3390/diagnostics14232746 - 5 Dec 2024
Cited by 2 | Viewed by 1292
Abstract
Background/Objectives: Progressive Supranuclear Palsy (PSP) is a tauopathy showing a marked symptoms overlap with Parkinson’s Disease (PD). PSP pathology suggests that tau protein might represent a valuable biomarker to distinguish between the two diseases. Here, we investigated the presence and diagnostic value of [...] Read more.
Background/Objectives: Progressive Supranuclear Palsy (PSP) is a tauopathy showing a marked symptoms overlap with Parkinson’s Disease (PD). PSP pathology suggests that tau protein might represent a valuable biomarker to distinguish between the two diseases. Here, we investigated the presence and diagnostic value of six different tau species (total tau, 4R-tau isoform, tau aggregates, p-tau202, p-tau231 and p-tau396) in serum from 13 PSP and 13 PD patients and 12 healthy controls (HCs). Methods: ELISA commercial kits were employed to assess all the tau species except for t-tau, which was assessed by a single molecule array (SIMOA)-based commercial kit. Possible correlations between tau species and biological and clinical features of our cohorts were also evaluated. Results: Among the six tau species tested, only p-tau396 was detectable in serum. Concentration of p-tau396 was significantly higher in both PSP and PD groups compared to HC, but PSP and PD patients showed largely overlapping values. Moreover, serum concentration of p-tau396 strongly correlated with disease severity in PSP and not in PD. Conclusions: Overall, we identified serum p-tau396 as the most expressed phosphorylated tau species in serum and as a potential tool for assessing PSP clinical staging. Moreover, we demonstrated that other p-tau species may be present at too low concentrations in serum to be detected by ELISA, suggesting that future work should focus on other biological matrices. Full article
Show Figures

Figure 1

25 pages, 9855 KiB  
Article
Assessing the Impact of Environmental Conditions on Reflectance Values in Inland Waters Using Multispectral UAS Imagery
by Daniel Henrique Carneiro Salim, Gabriela Rabelo Andrade, Alexandre Flávio Assunção, Pedro Henrique de Menezes Cosme, Gabriel Pereira and Camila C. Amorim
Limnol. Rev. 2024, 24(4), 466-490; https://doi.org/10.3390/limnolrev24040027 - 29 Oct 2024
Viewed by 1248
Abstract
This study investigates the impact of environmental conditions on reflectance values obtained from multispectral Unmanned Aerial System (UAS) imagery in inland waters, focusing on sun glint, cloud glint, wind-generated waves, and cloud shading projections. Conducted in two reservoirs with differing water qualities, UAS [...] Read more.
This study investigates the impact of environmental conditions on reflectance values obtained from multispectral Unmanned Aerial System (UAS) imagery in inland waters, focusing on sun glint, cloud glint, wind-generated waves, and cloud shading projections. Conducted in two reservoirs with differing water qualities, UAS platforms equipped with MicaSense Altum and DJI Phantom 4 Multispectral sensors were used to collect multispectral images. The results show that sun glint significantly increases reflectance variability as solar elevation rises, particularly beyond 54°, compromising data quality. Optimal flight operations should occur within a solar elevation angle range of 25° to 47° to minimize these effects. Cloud shading introduces complex variability, reducing median reflectance. Wind-generated waves enhance sun glint, increasing variability across all spectral bands, while cloud glints amplify reflectance non-uniformly, leading to inconsistent data variability. These findings underscore the need for precise correction techniques and strategic UAS deployment to mitigate environmental interferences. This study offers valuable insights for improving UAS-based monitoring and guiding future research in diverse aquatic environments. Full article
Show Figures

Figure 1

Back to TopTop