Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy
Abstract
1. Introduction
2. Results
3. Discussion
Strength and Limitations
4. Materials and Methods
4.1. Identification and Recruitment of Participants
4.2. Patient Data Retrieval and Definitions
4.3. Sample Procedures, Target Analysis, and Measurements
4.4. Statistical Analysis
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velez, G.; Tang, P.H.; Cabral, T.; Cho, G.Y.; Machlab, D.A.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Transl. Vis. Sci. Technol. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.H.; Rissin, D.M.; Kan, C.W.; Fournier, D.R.; Piech, T.; Campbell, T.G.; Meyer, R.E.; Fishburn, M.W.; Cabrera, C.; Patel, P.P.; et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. J. Lab. Autom. 2016, 21, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.R.B.; Olsen, D.A.; Christensen, H.; Hansen, S.B.; Christensen, C.; Brandslund, I. Rhodopsin in plasma from patients with diabetic retinopathy—Development and validation of digital ELISA by Single Molecule Array (Simoa) technology. J. Immunol. Methods 2017, 446, 60–69. [Google Scholar] [CrossRef]
- Xu, H.Z.; Le, Y.Z. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, I.; Van Noorden, C.J.; Schlingemann, R.O. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 2013, 34, 19–48. [Google Scholar] [CrossRef]
- Acharya, N.K.; Qi, X.; Goldwaser, E.L.; Godsey, G.A.; Wu, H.; Kosciuk, M.C.; Freeman, T.A.; Macphee, C.H.; Wilensky, R.L.; Venkataraman, V.; et al. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA(2) inhibitor Darapladib. Diab Vasc. Dis. Res. 2017, 14, 200–213. [Google Scholar] [CrossRef]
- Hernandez, C.; Simo-Servat, O.; Porta, M.; Grauslund, J.; Harding, S.P.; Frydkjaer-Olsen, U.; García-Arumí, J.; Ribeiro, L.; Scanlon, P.; Cunha-Vaz, J.; et al. Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: Results of the EUROCONDOR study. Acta Diabetol. 2023, 60, 837–844. [Google Scholar] [CrossRef]
- Junemann, A.G.; Rejdak, R.; Huchzermeyer, C.; Maciejewski, R.; Grieb, P.; Kruse, F.E.; Zrenner, E.; Rejdak, K.; Petzold, A. Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 2181–2186. [Google Scholar] [CrossRef]
- Bringmann, A.; Wiedemann, P. Muller glial cells in retinal disease. Ophthalmologica 2012, 227, 1–19. [Google Scholar] [CrossRef]
- Xu, Q.A.; Boerkoel, P.; Hirsch-Reinshagen, V.; Mackenzie, I.R.; Hsiung, G.R.; Charm, G.; To, E.F.; Liu, A.Q.; Schwab, K.; Jiang, K.; et al. Muller cell degeneration and microglial dysfunction in the Alzheimer’s retina. Acta Neuropathol. Commun. 2022, 10, 145. [Google Scholar] [CrossRef]
- Biernacki, T.; Kokas, Z.; Sandi, D.; Fuvesi, J.; Fricska-Nagy, Z.; Farago, P.; Kincses, T.Z.; Klivényi, P.; Bencsik, K.; Vécsei, L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int. J. Mol. Sci. 2022, 23, 3383. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wan, Z.; Wang, M.; Wu, X.; Wang, T.; Zhang, Y.; Xue, Y.; Xu, H.; Peng, Q. Association of cognitive function with Neurofilament light chain in the aqueous humor of human eye. Front. Aging Neurosci. 2022, 14, 1027705. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Micera, A.; Bini, S.; Berton, M.; Esposito, G.; Midena, E. Aqueous Humor Biomarkers of Muller Cell Activation in Diabetic Eyes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3913–3918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, S.; Tang, M.; Sun, T.; Zheng, Z.; Ma, M. Aqueous Humor Biomarkers of Retinal Glial Cell Activation in Patients With or Without Age-Related Cataracts and With Different Stages of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2022, 63, 8. [Google Scholar] [CrossRef]
- Abdelhak, A.; Foschi, M.; Abu-Rumeileh, S.; Yue, J.K.; D’Anna, L.; Huss, A.; Oeckl, P.; Ludolph, A.C.; Kuhle, J.; Petzold, A.; et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat. Rev. Neurol. 2022, 18, 158–172. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shin, K.Y.; Chang, K.A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Stempel, A.J.; Olivas, A.; Franzese, S.E.; Ashander, L.M.; Ma, Y.; Lie, S.; Appukuttan, B.; Smith, J.R. Molecular Signals Involved in Human B Cell Migration into the Retina: In Vitro Investigation of ICAM-1, VCAM-1, and CXCL13. Ocul. Immunol. Inflamm. 2017, 25, 811–819. [Google Scholar] [CrossRef]
- Harrer, C.; Otto, F.; Pilz, G.; Haschke-Becher, E.; Trinka, E.; Hitzl, W.; Wipfler, P.; Harrer, A. The CXCL13/CXCR5-chemokine axis in neuroinflammation: Evidence of CXCR5+CD4 T cell recruitment to CSF. Fluids Barriers CNS 2021, 18, 40. [Google Scholar] [CrossRef]
- Huber, A.K.; Irani, D.N. Targeting CXCL13 During Neuroinflammation. Adv. Neuroimmune Biol. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Akamine, S.; Marutani, N.; Kanayama, D.; Gotoh, S.; Maruyama, R.; Yanagida, K.; Sakagami, Y.; Mori, K.; Adachi, H.; Kozawa, J.; et al. Renal function is associated with blood neurofilament light chain level in older adults. Sci. Rep. 2020, 10, 20350. [Google Scholar] [CrossRef]
- O’Bryant, S.; Petersen, M.; Hall, J.; Johnson, L.; Yaffe, K.; Braskie, M.; Toga, A.W.; Rissman, R.A.; HABLE Study Team. Characterizing plasma NfL in a community-dwelling multi-ethnic cohort: Results from the HABLE study. Alzheimers Dement. 2022, 18, 240–250. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Petersen, M.; Hall, J.; Johnson, L.A.; Team, H.-H.S. Medical comorbidities and ethnicity impact plasma Alzheimer’s disease biomarkers: Important considerations for clinical trials and practice. Alzheimers Dement. 2023, 19, 36–43. [Google Scholar] [CrossRef]
- Vagberg, M.; Norgren, N.; Dring, A.; Lindqvist, T.; Birgander, R.; Zetterberg, H.; Svenningsson, A. Levels and Age Dependency of Neurofilament Light and Glial Fibrillary Acidic Protein in Healthy Individuals and Their Relation to the Brain Parenchymal Fraction. PLoS ONE 2015, 10, e0135886. [Google Scholar] [CrossRef] [PubMed]
- Krogh Nielsen, M.; Subhi, Y.; Rue Molbech, C.; Sellebjerg, F.; Sorensen, T.L. Serum neurofilament light chain in healthy elderly and in patients with age-related macular degeneration. Acta Ophthalmol. 2020, 98, e393–e394. [Google Scholar] [CrossRef] [PubMed]
- Garzone, D.; Finger, R.P.; Mauschitz, M.M.; Santos, M.L.S.; Breteler, M.M.B.; Aziz, N.A. Neurofilament light chain and retinal layers’ determinants and association: A population-based study. Ann. Clin. Transl. Neurol. 2022, 9, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Fridman, V.; Sillau, S.; Ritchie, A.; Bockhorst, J.; Coughlan, C.; Araya, P.; Espinosa, J.M.; Smith, K.; Lange, E.M.; Lange, L.A.; et al. Plasma neurofilament light chain concentrations are elevated in youth-onset type 2 diabetes and associated with neuropathy. J. Peripher. Nerv. Syst. 2023, 28, 460–470. [Google Scholar] [CrossRef]
- Sjobom, U.; Hellstrom, W.; Lofqvist, C.; Nilsson, A.K.; Holmstrom, G.; Pupp, I.H.; Ley, D.; Blennow, K.; Zetterberg, H.; Sävman, K.; et al. Analysis of Brain Injury Biomarker Neurofilament Light and Neurodevelopmental Outcomes and Retinopathy of Prematurity Among Preterm Infants. JAMA Netw. Open 2021, 4, e214138. [Google Scholar] [CrossRef]
- Subramanian, M.L.; Vig, V.; Chung, J.; Fiorello, M.G.; Xia, W.; Zetterberg, H.; Blennow, K.; Zetterberg, M.; Shareef, F.; Siegel, N.H.; et al. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res. Ther. 2020, 12, 111. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Vela, G.; Philip, V.; Trevino, H.; LaRoche, A.; Wang, C.P.; Parent, D.M.; Kautz, T.; Satizabal, C.L.; Tanner, J.; et al. Demographic and Clinical Characteristics Associated With Serum GFAP Levels in an Ethnically Diverse Cohort. Neurology 2023, 101, e1531–e1541. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, G.L.; Cheng, S.; Wang, Z.; Yang, X.L. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog. Retin. Eye Res. 2023, 93, 101169. [Google Scholar] [CrossRef]
- Dittrich, A.; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Zettergren, A.; Simren, J.; Skillbäck, T.; Shams, S.; Machado, A.; Westman, E.; et al. Association of Chronic Kidney Disease With Plasma NfL and Other Biomarkers of Neurodegeneration: The H70 Birth Cohort Study in Gothenburg. Neurology 2023, 101, e277–e288. [Google Scholar] [CrossRef] [PubMed]
- Marutani, N.; Akamine, S.; Kanayama, D.; Gotoh, S.; Yanagida, K.; Maruyama, R.; Mori, K.; Miyamoto, T.; Adachi, H.; Sakagami, Y.; et al. Plasma NfL is associated with mild cognitive decline in patients with diabetes. Psychogeriatrics 2022, 22, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Celikbilek, A.; Tanik, N.; Sabah, S.; Borekci, E.; Akyol, L.; Ak, H.; Adam, M.; Suher, M.; Yilmaz, N. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy. Mol. Biol. Rep. 2014, 41, 4017–4022. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.T.; Tsai, M.J.; Tu, S.T.; Hsieh, M.C. Association of Abnormal Renal Profiles and Proliferative Diabetic Retinopathy and Diabetic Macular Edema in an Asian Population With Type 2 Diabetes. JAMA Ophthalmol. 2018, 136, 68–74. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- RCT. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
Variable | Diabetic Retinopathy (All) | Diabetic Retinopathy (−Comorbidity) | Diabetic Retinopathy (+Comorbidities) | Glaucoma (All) | Glaucoma (−Comorbidities) | Glaucoma (+Comorbidities) | Inherited retinal Degeneration (All) | Inherited Retinal Degeneration (−Comorbidities) | Inherited Retinal Degeneration (+Comorbidities) | HC (−Comorbidities) |
---|---|---|---|---|---|---|---|---|---|---|
Patients (n) | DM, NPDR, PDR, DME (19, 13, 8, 11) | DM, NPDR, PDR, DME (10, 5, 3, 7) | DM, NPDR, PDR, DME (9, 8, 5, 4) | HTG, NTG, IOH (16,7, 4) | HTG, NTG, IOH (11, 5, 3) | HTG, NTG, IOH (5, 2, 1) | RP, STGD (16, 37) | RP, STGD (13, 22) | RP, STGD (3, 15) | HCs (20) |
Age | 56.8 (46.3, 63.7) | 51.7 (39.3, 59.9) | 58.8 (53.7, 64.4) | 73.7 (64.6, 78.7) | 76.7 (64.6, 80.4) | 71.0 (66.6, 73.7) | 43.5 (33.1, 52.5) | 39.2 (31.9, 50.5) | 49.9 (38.7, 63.1) | 34.1 (26.6, 59.9) |
Gender (male) | 28 (55%) | 12 (48%) | 16 (62%) | 12 (44%) | 10 (53%) | 2 (25%) | 30 (57%) | 19 (54%) | 11 (61%) | 21 (45%) |
Duration of diabetes (years) | 19.0 (15.0, 23.0) | 19.0 (15.2, 21.5) | 23.0 (15.0, 31.0) | NA | NA | NA | NA | NA | NA | NA |
VA (right) | 1.0 (0.8, 1.0) | 1.0 (0.8, 1.0) | 1.0 (0.8, 1.0) | 0.9 (0.6, 1.0) | 1.0 (0.8, 1.0) | 0.6 (0.4, 1.0) | 0.1 (0.0, 0.6) | 0.1 (0.0, 0.7) | 0.1 (0.0, 0.2) | 1.0 (1.0, 1.0) |
VA (left) | 1.0 (0.8, 1.0) | 1.0 (0.8, 1.0) | 0.9 (0.9, 0.9) | 1.0 (0.6, 1.0) | 1.0 (0.5, 1.0) | 0.9 (0.7, 1.0) | 1.0 (0.8, 1.0) | 0.1 (0.0, 0.6) | 0.1 (0.0, 0.2) | 1.0 (1.0, 1.0) |
IOP (right) | NA | NA | NA | 13.0 (11.2, 22.5) | 13.0 (10.5, 15.0) | 18.5 (11.8, 25.2) | 1.0 (0.5, 1.0) | 15.0 (10.0, 17.0) | 18.0 (14.0, 19.0) | 15.0 (14.5, 15.8) |
IOP (left) | NA | NA | NA | 13.0 (11.0, 16.5) | 13.0 (10.2, 16.5) | 12.5 (11.8, 14.5) | 15.0 (12.0, 17.0) | 14.0 (11.0, 16.0) | 17.0 (12.0, 19.0) | 16.5 (15.5, 17.2) |
Macular OCT (right, microns) | NA | NA | NA | NA | NA | NA | 204.0 (177.5, 238.5) | 210.0 (176.5, 261.0) | 202.0 (183.2, 220.5) | 266.0 (266.0, 266.0) |
Macular OCT (left, microns) | NA | NA | NA | NA | NA | NA | 209.0 (170.0, 247.5) | 213.0 (166.0, 256.5) | 194.0 (175.8, 220.0) | 271.0 (271.0, 271.0) |
* Papillary OCT (right, microns) | NA | NA | NA | 53.5 (43.0, 61.8) | 53.5 (43.2, 61.5) | 52.5 (42.2, 63.5) | NA | NA | NA | NA |
* Papillary OCT (left, microns) | NA | NA | NA | 50.5 (46.2, 63.0) | 49.5 (46.2, 60.5) | 58.0 (49.8, 64.8) | NA | NA | NA | NA |
* GCL thickness (right, mm) | NA | NA | NA | 0.7 (0.6, 0.9) | 0.8 (0.7, 0.9) | 0.6 (0.5, 0.8) | NA | NA | NA | NA |
* GCL thickness (left, mm) | NA | NA | NA | 0.7 (0.7, 0.9) | 0.7 (0.7, 0.9) | 0.7 (0.6, 0.8) | NA | NA | NA | NA |
VFD (right) | NA | NA | NA | 9.6 (6.8, 20.0) | 9.0 (6.6, 19.4) | 11.8 (9.0, 21.2) | NA | NA | NA | NA |
VFD (left) | NA | NA | NA | 10.1 (4.9, 17.4) | 14.6 (3.6, 18.4) | 7.6 (6.2, 9.9) | NA | NA | NA | NA |
BP (systolic; mmHg) | 135.0 (127.0, 139.0) | 130.5 (127.0, 137.5) | 149.0 (135.0, 151.0) | NA | NA | NA | NA | NA | NA | NA |
BP (diastolic; mmHg) | 78.0 (70.0, 84.0) | 74.0 (70.5, 83.0) | 83.0 (75.0, 93.0) | NA | NA | NA | NA | NA | NA | NA |
Pulse (bpm) | 78.0 (72.0, 86.0) | 77.0 (71.5, 85.2) | 78.0 (74.0, 86.0) | NA | NA | NA | NA | NA | NA | NA |
Biothesiometry (right) | 23.5 (14.5, 45.0) | 18.0 (12.0, 28.0) | 40.0 (18.5, 47.5) | NA | NA | NA | NA | NA | NA | NA |
Biothesiometry (left) | 22.0 (14.8, 42.0) | 17.0 (12.0, 28.0) | 30.0 (18.5, 44.0) | NA | NA | NA | NA | NA | NA | NA |
Weight (kg) | 82.7 (72.0, 96.6) | 82.1 (77.3, 87.2) | 91.4 (68.3, 111.4) | NA | NA | NA | NA | NA | NA | NA |
Height (cm) | 168.0 (164.0, 181.0) | 170.5 (161.0, 184.8) | 165.0 (164.0, 171.0) | NA | NA | NA | NA | NA | NA | NA |
BMI (kg/m2) | 28.3 (26.6, 31.0) | 28.0 (26.7, 30.0) | 28.8 (26.5, 38.0) | NA | NA | NA | NA | NA | NA | NA |
Haemoglobin (mmol/L) | 9.1 (7.9, 9.5) | 9.1 (8.6, 9.4) | 8.4 (7.6, 9.4) | 8.9 (8.5; 9.2) | 8.9 (8.5, 9.2) | 8.7 (8.3, 9.1 | 8.6 (8.2, 9.1) | 8.7 (8.35, 9.2) | 8.4 (8.0, 8, 9) | 9.0 (8.8, 9.2) |
Creatinine (µmol/L) | 68.0 (59.5, 81.8) | 62.0 (57.5, 75.0) | 84.0 (72.5, 101.5) | 77 (68.0, 81.0) | 77.0 (68.0, 81.5) | 80.0 (74.5, 94.2) | 71 (64.0, 84.0) | 72.0 (66.5, 83.5) | 70.5 (6.3, 72.8) | 63.5 (59.5, 73.8) |
eGFR (mL/min) | 60.0 (60.0, 60.0) | 60.0 (60.0, 60.0) | 60.0 (55.5, 60.0) | 80.0 (67.0, 87.5) | 73.0, (75.0, 88.0) | 69.0 (62.5, 84.0) | 90.0 (89.0, 90.0) | 90.0 (89.0, 90.0) | 90.0 (84.3, 90.0) | 60.0 (60.0, 60.0) |
ALT (U/L) | 29.0 (21.8, 34.5) | 29.0 (21.0, 34.0) | 29.0 (26.0, 33.5) | 21.0 (16.5, 26.0) | 20.0 (15.5, 24.5) | 24.0 (20.0, 31.0) | 22.0 (18.0, 30.00) | 21.0 (18.0, 29.5) | 23.5 (19.5, 31.8) | 23.0 (18.2, 29.2) |
ALP (U/L) | 88.0 (74.0, 95.5) | 88.0 (74.0, 109.0) | 88.0 (85.0, 89.0) | 71.0 (54.0, 89.0) | 64.0 (49.8, 85.8) | 88.0 (88.0, 93.0) | 67.0 (58.0, 84,0) | 64.0 (54.0, 84.0) | 71.0 (64.5, 83.2) | 60.0 (54.2, 62.0) |
HbA1c (mmol/mol) | 62.0 (51.0, 82.0) | 62.0 (52.2, 79.5) | 67.0 (54.0, 80.5) | NA | NA | NA | NA | NA | NA | 63.5 (60.0, 69.5) |
Glucose (mmol/L) | 9.9 (8.3, 12.7) | 9.9 (8.5, 12.3) | 10.6 (8.8, 12.6) | NA | NA | NA | NA | NA | NA | 9.0 (9.0, 9.0) |
Cholesterol (mmol/L) | 4.1 (3.7, 4.7) | 4.4 (4.0, 4.9) | 3.7 (3.5, 4.2) | NA | NA | NA | NA | NA | NA | 2.4 (1.9, 2.9) |
HDL (mmol/L) | 1.2 (0.9, 1.7) | 1.2 (1.0, 1.5) | 0.9 (0.8, 1.8) | NA | NA | NA | NA | NA | NA | NA |
LDL (mmol/L) | 2.2 (1.9, 2.8) | 2.2 (2.0, 2.8) | 1.9 (1.3, 2.5) | NA | NA | NA | NA | NA | NA | NA |
VLDL (mmol/L) | 0.6 (0.4, 1.0) | 0.5 (0.4, 1.0) | 0.9 (0.7, 1.0) | NA | NA | NA | NA | NA | NA | NA |
TG (mmol/L) | 1.5 (1.1, 2.5) | 1.2 (0.9, 2.8) | 2.1 (1.8, 2.4) | NA | NA | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajari, J.N.; Ilginis, T.; Pedersen, T.T.; Lønkvist, C.S.; Saunte, J.P.; Hofsli, M.; Schmidt, D.C.; Al-abaiji, H.A.; Ahmed, Y.; Bach-Holm, D.; et al. Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy. Int. J. Mol. Sci. 2025, 26, 2625. https://doi.org/10.3390/ijms26062625
Hajari JN, Ilginis T, Pedersen TT, Lønkvist CS, Saunte JP, Hofsli M, Schmidt DC, Al-abaiji HA, Ahmed Y, Bach-Holm D, et al. Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences. 2025; 26(6):2625. https://doi.org/10.3390/ijms26062625
Chicago/Turabian StyleHajari, Javad Nouri, Tomas Ilginis, Tobias Torp Pedersen, Claes Sepstrup Lønkvist, Jon Peiter Saunte, Mikael Hofsli, Diana Chabane Schmidt, Hajer Ahmad Al-abaiji, Yasmeen Ahmed, Daniella Bach-Holm, and et al. 2025. "Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy" International Journal of Molecular Sciences 26, no. 6: 2625. https://doi.org/10.3390/ijms26062625
APA StyleHajari, J. N., Ilginis, T., Pedersen, T. T., Lønkvist, C. S., Saunte, J. P., Hofsli, M., Schmidt, D. C., Al-abaiji, H. A., Ahmed, Y., Bach-Holm, D., Kessel, L., Kolko, M., Bertelsen, M., Larsen, L. M., Sørensen, F., Forman, J. L., Olsen, D. A., Rosenberg, T., Brandslund, I., & Slidsborg, C. (2025). Novel Blood-Biomarkers to Detect Retinal Neurodegeneration and Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences, 26(6), 2625. https://doi.org/10.3390/ijms26062625