Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = SiC microparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3934 KB  
Article
Microstructure and High-Temperature Compressive Properties of a Core-Shell Structure Dual-MAX-Phases-Reinforced TiAl Matrix Composite
by Shiqiu Liu and Huijun Guo
Crystals 2025, 15(4), 363; https://doi.org/10.3390/cryst15040363 - 16 Apr 2025
Viewed by 444
Abstract
As an advanced high-temperature structural material, TiAl alloy, is often used in the manufacturing of hot-end components of aviation and aerospace engines. However, it is difficult to increase the strength at high temperature, which limits its wider application. Adopting composite material technology is [...] Read more.
As an advanced high-temperature structural material, TiAl alloy, is often used in the manufacturing of hot-end components of aviation and aerospace engines. However, it is difficult to increase the strength at high temperature, which limits its wider application. Adopting composite material technology is one of the effective ways to improve the comprehensive mechanical properties of TiAl alloy. In this work, by adding 3 wt.% SiC micro-particles to Ti-47.5Al-7Nb-0.4W-0.1B (at.%) pre-alloyed powder, a core-shell structure dual-MAX-phase high-temperature strengthened TiAl matrix composite (also known as TiAl-SiC composite) was prepared by combining powder metallurgy and hot forging. The microstructure and high-temperature compressive properties of the prepared TiAl-SiC composites were studied and compared with TiAl alloy prepared by the same process, and the microstructural characteristics of the TiAl-SiC composite and its microstructure evolution during processing were revealed. The results show that the matrix of as-sintered TiAl-SiC composites was mainly composed of γ phase and a small amount of Ti2AlC particles, while the reinforcement phase was a dual-MAX-phase core-shell structure, which was mainly composed of core Ti2AlC phase, shell Ti3SiC2 phase, and small Ti2AlC particles distributed in the outer layer. After hot forging, the microstructure of TiAl-SiC composite became more compact, finer, and more uniform; the phase composition was almost not changed, but the content of Ti2AlC, Ti3SiC2, and TiB2 phases increased significantly; the content of C in each constituent phase decreased obviously, and a granular Si-rich phase was generated in the core of the reinforcement phase. The yield strength of the as-forged TiAl-SiC composite was significantly higher than that of the as-forged TiAl alloy at temperature higher than 859 °C. This is because the core-shell structure dual MAX phases can effectively reduce the softening rate of TiAl alloy in the range of 800–900 °C, thus playing a strengthening role and increasing the service temperature of TiAl alloy. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 10706 KB  
Article
Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles
by Juana Abenojar, Yolanda Ballesteros, Mohsen Bahrami, Miguel Angel Martínez and Juan Carlos del Real
Polymers 2024, 16(7), 878; https://doi.org/10.3390/polym16070878 - 22 Mar 2024
Cited by 7 | Viewed by 2247
Abstract
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of [...] Read more.
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (B4C) were incorporated as reinforcement at 6% and 12% ratios, owing to their exceptional resistance to abrasive wear and high hardness. Microparticles were incorporated to assess the damage incurred during the tests in comparison to nanoparticles. Wear tests were conducted on both bulk samples and coated aluminum sheets with a 1mm of composite. Additionally, cavitation tests were performed on coated aluminum tips until stability of mass loss was achieved. The results indicated a distinct wear behavior between the coatings and the bulk samples. Overall, wear tended to be higher for the coated samples with nanocomposites than bulk, except for the nano-composite material containing 12% SiC and pure resin. With the coatings, higher percentages of nanometric particles correlated with increased wear. The coefficient of friction remained within the range of 0.4 to 0.5 for the coatings. Regarding the accumulated erosion in the cavitation tests for 100 min, it was observed that for all nanocomposite materials, it was lower than in pure resin. Particularly, the composite with 6% B4C was slightly lower than the rest. In addition, the erosion rate was also lower for the composites. Full article
(This article belongs to the Special Issue Modification and Study on the Properties of Epoxy Resin)
Show Figures

Figure 1

15 pages, 5988 KB  
Article
Systematic Study on the Synthesis and Magnetism Properties of Manganese Ferrite MnFe2O4 by an Oxidation Roasting Process
by Shanshan Wen, Bing Chen, Junhong Zhang, Wenlong Zhan, Zhijun He and Lihua Gao
Crystals 2023, 13(10), 1509; https://doi.org/10.3390/cryst13101509 - 17 Oct 2023
Cited by 4 | Viewed by 2920
Abstract
A low-cost and high-efficiency solid reaction method has been reported as an effective technology to synthesize manganese ferrite MnFe2O4 with a spinel crystal structure. This work clarified the underlying reason for the influence mechanism of SiO2 and Al2 [...] Read more.
A low-cost and high-efficiency solid reaction method has been reported as an effective technology to synthesize manganese ferrite MnFe2O4 with a spinel crystal structure. This work clarified the underlying reason for the influence mechanism of SiO2 and Al2O3 on the synthesis of MnFe2O4. Synthetic MnFe2O4 polyhedral microparticles with a saturated magnetization of 71.19 emu/g, a ratio of saturation magnetization to residual magnetization (Ms/Mr) of 0.062 and a coercivity (Hc) of 6.50 Oe were successfully obtained at an oxidization roasting temperature of 1100 °C for 60 min. The experimental results indicate that the tetrahedral Mn2+ ions and octahedral Mn3+ ions in the crystal structure of manganese ferrite MnFe2O4 were replaced by tetrahedral Si2+ ions and octahedral Al3+ ions from (Mn2+)x(Fe2+)y(Si2+)1−x−y[Fe3+]2O4 and (Mn2+)[Fe3+]2−x[Al3+]xO4, respectively. In addition, hercynite FexMn1−xAl2O4 with a spinel crystal structure and olivine MnxFe2−xSiO4 with an orthorhombic crystal structure were partially formed in the synthesis of manganese ferrite MnFe2O4, in which some Fe2+ ions were easily replaced by Mn2+ ions to form stable hercynite MnAl2O4 and olivine Mn2SiO4 in these crystal structures. The current research work provides comprehensive insights for synthesizing manganese ferrite MnFe2O4 and continuously advances its technical progress. Full article
(This article belongs to the Special Issue Fabrication and Properties of Magnetic Materials)
Show Figures

Figure 1

11 pages, 4304 KB  
Article
Ag Sinter Bonding to Si Substrate via Temporal Formation and Decomposition of Ag Carboxylate
by Tomoki Matsuda, Rei Kawabata, Takuya Okamoto and Akio Hirose
Nanomaterials 2023, 13(16), 2292; https://doi.org/10.3390/nano13162292 - 9 Aug 2023
Cited by 3 | Viewed by 1633
Abstract
This paper demonstrates the in situ sinter bonding of Ag microparticle pastes to a Si substrate via the temporal formation and decomposition of Ag carboxylate on the surface of Ag microparticles. This was proposed via the investigation of Ag sinter bonding using the [...] Read more.
This paper demonstrates the in situ sinter bonding of Ag microparticle pastes to a Si substrate via the temporal formation and decomposition of Ag carboxylate on the surface of Ag microparticles. This was proposed via the investigation of Ag sinter bonding using the redox reaction between Ag2O and ethylene glycol, which achieved a bonding strength above 30 MPa even for the bonding temperature at 220 °C. Thermal analysis was used to identify the product of the redox reaction between Ag2O and ethylene glycol and determine the bonding temperature because the final reaction facilitates the interfacial sinter bonding with the substrate. Fourier-transform infrared spectroscopy and nuclear magnetic resonance results indicated the in situ formation of Ag salts of carboxylic acids, such as Ag oxalate on the surface of Ag microparticles. Therefore, the sinter bonding process enabled by the in situ formation and subsequent decomposition of these Ag salts was investigated using Ag microparticles and oxalic acid. Observations of the surface and interfacial morphology of the Ag particles after heating revealed the formation of Ag nanoparticles on the surfaces of the microparticles and the formation of sintering necks between the particles. The bonding experiments demonstrated a significant increase in strength with the addition of oxalic acid to the Ag paste due to the enhanced interfacial sinter bonding with the substrate. The in situ formation and decomposition of Ag salts are promising strategies for improving sintered bonds in electronic devices because they can provide enhanced localized sinter bonding using stable insert materials. Full article
Show Figures

Figure 1

18 pages, 13890 KB  
Article
Aluminium-Based Dissimilar Alloys Surface Composites Reinforced with Functional Microparticles Produced by Upward Friction Stir Processing
by Filipe Moreira, Pedro M. Ferreira, Rui J. C. Silva, Telmo G. Santos and Catarina Vidal
Coatings 2023, 13(5), 962; https://doi.org/10.3390/coatings13050962 - 21 May 2023
Cited by 12 | Viewed by 2500
Abstract
Surface metal matrix composites offer an excellent solution for applications where surface properties play a crucial role in components’ performance and durability, such as greater corrosion resistance, better wear resistance, and high formability. Solid-state processing techniques, such as friction surfacing and friction stir [...] Read more.
Surface metal matrix composites offer an excellent solution for applications where surface properties play a crucial role in components’ performance and durability, such as greater corrosion resistance, better wear resistance, and high formability. Solid-state processing techniques, such as friction surfacing and friction stir welding/processing, offer several advantages over conventional liquid-phase processing methods. This research investigated the feasibility of producing surface composites of aluminium-based dissimilar alloys reinforced with functional microparticles through experimental validation, determined the process parameters that resulted in a more homogeneous distribution of the particles in the surface composites, and enhanced the understanding of Upward Friction Stir Processing (UFSP) technology. The production of aluminium-based dissimilar alloys (AA 7075-T651 and AA 6082-T651) surface composites reinforced with SiC particles was studied, and it was concluded that the macrography and micrography analyses, scanning electron microscopy (SEM) analysis, microhardness measurements, and eddy currents technique reveal an extensive and homogeneous incorporation of SiC particles. In the stirred zone, a decrease of approximately 20 HV 0.5 in hardness was observed compared to the base material. This reduction is attributed to the weakening effect caused by low-temperature annealing during UFSP, which reduces the strengthening effect of the T651 heat treatment. Additionally, the presence of particles did not affect the surface composite hardness in the stirred zone. Furthermore, despite the presence of significant internal defects, SEM analyses revealed evidence of the lower alloy merging with the upper zone, indicating that the lower plate had a role beyond being merely sacrificial. Therefore, the production of bimetallic composites through UFSP may offer advantages over composites produced from a monometallic matrix. The results of the eddy currents testing and microhardness measurements support this finding and are consistent with the SEM/EDS analyses. Full article
Show Figures

Figure 1

13 pages, 3751 KB  
Article
Effect of Oxyfluorination of PFA-Coated Metal Mesh with Superhydrophobic Properties on the Filtration Performance of SiO2 Microparticles
by Kyung-Soo Kim, Cheol-Hwan Kwak, Seong-Min Ha, Jae-Chun Ryu and Young-Seak Lee
Molecules 2023, 28(7), 3110; https://doi.org/10.3390/molecules28073110 - 30 Mar 2023
Cited by 1 | Viewed by 2575
Abstract
Recently, semiconductor wastewater treatment has received much attention due to the emergence of environmental issues. Acid-resistant coatings are essential for metal prefilters used in semiconductor wastewater treatment. Perfluoroalkoxy alkane is mainly used as an acid-resistant coating agent, since PFA has inherent superhydrophobicity, water [...] Read more.
Recently, semiconductor wastewater treatment has received much attention due to the emergence of environmental issues. Acid-resistant coatings are essential for metal prefilters used in semiconductor wastewater treatment. Perfluoroalkoxy alkane is mainly used as an acid-resistant coating agent, since PFA has inherent superhydrophobicity, water permeability is lowered. To solve this problem, the surface of the PFA-coated metal mesh was treated via an oxyfluorination method in which an injected mixed gas of fluorine and oxygen reacted with the surface functional groups. Surface analysis, water contact angle measurement, and water permeability tests were performed on the surface-treated PFA-coated mesh. Consequently, the superhydrophobic surface was effectively converted to a hydrophobic surface as the PFA coating layer was surface-modified with C-O-OH functional groups via the oxyfluorination reaction. As a result of using simulation solutions that float silica particles of various sizes, the permeability and particle removal rate of the surface-modified PFA-coated stainless-steel mesh were improved compared to those before surface modification. Therefore, the oxyfluorination treatment used in this study was suitable for improving the filtration performance of SiO2 microparticles in the PFA-coated stainless-steel mesh. Full article
(This article belongs to the Special Issue Superhydrophobic and Superoleophobic Materials)
Show Figures

Graphical abstract

10 pages, 11885 KB  
Article
Investigation on Microstructure and Properties of the Electrodeposited Ni-SiC Composite Coating
by Gen Li, Zhixiang Chen, Zhiwen Tan, Ran Tian, Yuantao Zhao, Lianbo Wang, Wenge Li and Yanbo Liu
Coatings 2023, 13(4), 695; https://doi.org/10.3390/coatings13040695 - 29 Mar 2023
Cited by 2 | Viewed by 2166
Abstract
The current work synthesized Ni-SiC composite coating with different SiC microparticle contents. The role of the SiC microparticle in designing the Ni-SiC composite microstructure was revealed. The SiC microparticle physically interrupted the continuous growth of the underlying columnar Ni grains. The columnar Ni [...] Read more.
The current work synthesized Ni-SiC composite coating with different SiC microparticle contents. The role of the SiC microparticle in designing the Ni-SiC composite microstructure was revealed. The SiC microparticle physically interrupted the continuous growth of the underlying columnar Ni grains. The columnar Ni grain between the embedded SiC microparticle grew without disturbance. Only upon SiC microparticles was a new layer starting with refined Ni grains observable. The vertical columnar Ni grains reappeared as the position departed the SiC microparticle upper surface. The increase in the contents of the SiC microparticle led to an increased level of grain refinement and the elimination of the (200) fiber texture. Besides that, the number of V-shaped valleys increased as well. Corrosion testing results show that the corrosion resistance of Ni-SiC composite coating increased with the increased SiC contents, which was mainly due to the optimized microstructure. Full article
Show Figures

Figure 1

13 pages, 3004 KB  
Article
Facile Synthesis of Hollow Glass Microsphere Filled PDMS Foam Composites with Exceptional Lightweight, Mechanical Flexibility, and Thermal Insulating Property
by Tian-Long Han, Bi-Fan Guo, Guo-Dong Zhang and Long-Cheng Tang
Molecules 2023, 28(6), 2614; https://doi.org/10.3390/molecules28062614 - 13 Mar 2023
Cited by 15 | Viewed by 3156
Abstract
The feature of low-density and thermal insulation properties of polydimethylsiloxane (PDMS) foam is one of the important challenges of the silicone industry seeking to make these products more competitive compared to traditional polymer foams. Herein, we report a green, simple, and low-cost strategy [...] Read more.
The feature of low-density and thermal insulation properties of polydimethylsiloxane (PDMS) foam is one of the important challenges of the silicone industry seeking to make these products more competitive compared to traditional polymer foams. Herein, we report a green, simple, and low-cost strategy for synthesizing ultra-low-density porous silicone composite materials via Si-H cross-linking and foaming chemistry, and the sialylation-modified hollow glass microspheres (m-HM) were used to promote the HM/PDMS compatibility. Typically, the presence of 7.5 wt% m-HM decreases the density of pure foam from 135 mg/cm−3 to 104 mg/cm−3 without affecting the foaming reaction between Si-H and Si-OH and produces a stable porous structure. The optimized m-HM-modified PDMS foam composites showed excellent mechanical flexibility (unchanged maximum stress values at a strain of 70% after 100 compressive cycles) and good thermal insulation (from 150.0 °C to 52.1 °C for the sample with ~20 mm thickness). Our results suggest that the use of hollow microparticles is an effective strategy for fabricating lightweight, mechanically flexible, and thermal insulation PDMS foam composite materials for many potential applications. Full article
Show Figures

Figure 1

17 pages, 5120 KB  
Article
The Effect of Accelerated Aging on the Molecular Weight and Thermal and Mechanical Properties of Polyester Yarns Containing Ceramic Particles
by Gabriela Mijas, Marta Riba-Moliner and Diana Cayuela
Polymers 2023, 15(6), 1348; https://doi.org/10.3390/polym15061348 - 8 Mar 2023
Cited by 5 | Viewed by 2543
Abstract
The accelerated aging of polyethylene terephthalate (PET) multifilament yarns containing nano or microparticles of titanium dioxide (TiO2), silicon carbide (SiC), or fluorite (CaF2) at a maximum percentage of 2% has been studied. For this, the yarn samples were introduced [...] Read more.
The accelerated aging of polyethylene terephthalate (PET) multifilament yarns containing nano or microparticles of titanium dioxide (TiO2), silicon carbide (SiC), or fluorite (CaF2) at a maximum percentage of 2% has been studied. For this, the yarn samples were introduced into a climatic chamber at 50 °C, 50% relative humidity, and an ultraviolet A (UVA) irradiance of 1.4 W/m2. They were then removed from the chamber after periods of between 21 and 170 days of exposure. Subsequently, the variation in weight average molecular weight, number molecular weight, and polydispersity was evaluated by gel permeation chromatography (GPC), the surface appearance was evaluated using scanning electron microscopy (SEM), the thermal properties were evaluated using differential scanning calorimetry (DSC), and the mechanical properties were evaluated using dynamometry. The results showed that, at the test conditions, there was degradation in all of the exposed substrates, possibly due to the excision of the chains that make up the polymeric matrix, which resulted in the variation in the mechanical and thermal properties depending on the type and size of the particle used. This study provides insight into the evolution of the properties of PET-based nano- and microcomposites and might be helpful when selecting materials for specific applications, which is of great interest from an industrial point of view. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

15 pages, 5313 KB  
Article
Synthetic Conditions for Obtaining Different Types of Amine-Holding Silica Particles and Their Sorption Behavior
by Inna Melnyk, Veronika Tomina and Nataliya Stolyarchuk
Crystals 2023, 13(2), 190; https://doi.org/10.3390/cryst13020190 - 21 Jan 2023
Cited by 4 | Viewed by 2853
Abstract
The Stöber version of a sol-gel method of co-condensation of two alkoxysilanes (structuring tetraethoxysilane (TEOS) and functionalising N-containing silane) in an ammonia medium was used for the one-pot synthesis of spherical silica particles with ≡Si(CH2)3NH2, ≡Si(CH2 [...] Read more.
The Stöber version of a sol-gel method of co-condensation of two alkoxysilanes (structuring tetraethoxysilane (TEOS) and functionalising N-containing silane) in an ammonia medium was used for the one-pot synthesis of spherical silica particles with ≡Si(CH2)3NH2, ≡Si(CH2)3NH(CH2)2NH2, and ≡[Si(CH2)3NH]2 functional groups with available groups content of 1.3–2.3 mmol/g. The materials were researched by a range of methods, including SEM, TEM, IR spectroscopy, 13C, and 29Si solid-state NMR spectroscopy, acid-base titration, and thermal analysis to identify the peculiarities of the morphology, functional groups content, composition, and thermal resistance of the surface layers in the synthesised samples. The type of N-containing silane was shown to affect the structure and properties of the synthesised spherical particles. The silane with the simplest, 3-aminopropyl, functional group caused the formation of nonporous material composed of large 600–800 nm spherical microparticles. Meanwhile, the complication of functional groups enhanced the emergence of small 15 nm primary particles and the origination of porosity, generated by the slits between particles and particle agglomerates. Thereafter, the sorption properties of the synthesised hybrid materials for nickel(II) and copper(II)ions, and bovine serum albumin (BSA) were also found to be dependent on the structure of the materials and the type of incorporated functional group. The maximal static sorption capacity values towards the targeted adsorbates were shown by the samples with 3-aminopropyl groups (1.27 mmol Ni/g), diamine groups (1.09 mmol Cu/g), and secondary amine groups (204.6 mg BSA/g). The conducted research opens up the prospects of directed one-pot synthesis of amino-functionalised hybrid organosilica materials for different applications. Full article
Show Figures

Figure 1

18 pages, 4798 KB  
Article
Interactions of Antibacterial Naphthoquinones with Mesoporous Silica Surfaces: A Physicochemical and Theoretical Approach
by César Iván Corpus-Mendoza, Denisse de Loera, Lluvia Itzel López-López, Brenda Acosta, Sarai Vega-Rodríguez and Gabriela Navarro-Tovar
Pharmaceuticals 2022, 15(12), 1464; https://doi.org/10.3390/ph15121464 - 25 Nov 2022
Cited by 3 | Viewed by 2032
Abstract
1,4−naftoquinone (NQ) molecules have been extensively evaluated as potent antibacterial compounds; however, their use is limited, since they have low water solubility and exhibit toxicities in healthy eukaryotic cells. A possible path to overcoming these challenges is the use of particulate vehicles, such [...] Read more.
1,4−naftoquinone (NQ) molecules have been extensively evaluated as potent antibacterial compounds; however, their use is limited, since they have low water solubility and exhibit toxicities in healthy eukaryotic cells. A possible path to overcoming these challenges is the use of particulate vehicles, such as SBA-15, which is a biocompatible and biodegradable mesoporous silica material, that may enhance drug delivery and decrease dosages. In this work, an isotherm model-based adsorption of three NQs into SBA-15 microparticles was evaluated. Interactions between NQs and SBA-15 microparticles were modeled at the B3LYP/6-31+G(d,p) level of theory to understand the nature of such interactions. The results demonstrated that the adsorption of NQ, 2NQ, and 5NQ into SBA-15 fit the Freundlich adsorption model. According to theorical studies, physisorption is mediated by hydrogen bonds, while the most stable interactions occur between the carbonyl group of NQ and silica surfaces. Both experimental and theoretical results contribute to a deeper understanding of the use of SBA-15 or similar particles as nanovehicles in such a way that NQs can be modified in carbonyl or C3 to enhance adsorptions. The theoretical and experimental results were in accordance and contribute to a deeper understanding of how interactions between NQ-type molecules and SiO2 materials occur. Full article
(This article belongs to the Special Issue Naphthoquinone in Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3315 KB  
Article
Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials
by Hechen Liu, Liwei Wei, Fengsheng Gao, Li Tang, Le Li, Zhanglin Sun, Yunpeng Liu and Peng Dong
Nanomaterials 2022, 12(19), 3344; https://doi.org/10.3390/nano12193344 - 25 Sep 2022
Cited by 7 | Viewed by 1779
Abstract
Bird pest control has become a major task for the operation and maintenance of distribution network lines. Epoxy resin that cures quickly at room temperature can be used to coat locations where birds frequently build their nests. However, epoxy resin has enormous internal [...] Read more.
Bird pest control has become a major task for the operation and maintenance of distribution network lines. Epoxy resin that cures quickly at room temperature can be used to coat locations where birds frequently build their nests. However, epoxy resin has enormous internal stress and is brittle, so it is essential to toughen it. In this paper, for a room temperature curing system composed of polyurethane-modified epoxy resin and a polythiol curing agent, three kinds of particles, i.e., Al2O3, SiO2, and Mg(OH)2, were used to modify a polyurethane modified epoxy resin. Orthogonal experiments were designed to study the effects of different fillers on the comprehensive properties of polyurethane-modified epoxy resins. The experimental results showed that there were not only independent effects of different kinds if particles on the resin, but also synergistic effects of multiple particles. Nanoparticles can reduce the defects introduced by microparticles to a certain extent and improve the mechanical and electrical properties of the resin. The overall performance of the resin was optimized when the amounts of SiO2, Al2O3, and Mg(OH)2 were 1.7%, 2.5%, and 7%, respectively. The tensile strength of the resin was increased by 70%, the elongation at a break by 67.53%, and the breakdown strength by 20.31% compared with before the addition of filler. The microscopic morphology and thermal properties of the resin before and after the addition of filler were also studied. Adding fillers caused more cracks to absorb part of the energy when the resin matrix was stressed and increased the rigidity of the resin matrix and the resin’s glass transition temperature (Tg) by 13.48 °C. Still, the temperature corresponding to the maximum rate of weight loss (Tmax) remained unchanged. Full article
Show Figures

Figure 1

22 pages, 17256 KB  
Article
Parametric Optimisation of Friction-Stir-Spot-Welded Al 6061-T6 Incorporated with Silicon Carbide Using a Hybrid WASPAS–Taguchi Technique
by Neeru Chaudhary, Sarbjit Singh, Mohinder Pal Garg, Harish Kumar Garg, Shubham Sharma, Changhe Li, Elsayed Mohamed Tag Eldin and Samah El-Khatib
Materials 2022, 15(18), 6427; https://doi.org/10.3390/ma15186427 - 16 Sep 2022
Cited by 13 | Viewed by 2476
Abstract
Friction stir spot welding (FSSW) is one of the most popular fusion joining processes. The process is a solid-state welding process that allows welding of weldable as well as non-weldable materials. As a part of this investigation, weld samples of Al6061-T6 were reinforced [...] Read more.
Friction stir spot welding (FSSW) is one of the most popular fusion joining processes. The process is a solid-state welding process that allows welding of weldable as well as non-weldable materials. As a part of this investigation, weld samples of Al6061-T6 were reinforced with silicon carbide (SiC) powder with an average particle size of 45 µm. Initially, a Taguchi L9 orthogonal array was developed with three factors, i.e., rotational speed of the tool, pre-dwelling time, and diameter of the hole that was filled with SiC before welding. The effects of the SiC particles and process parameters were investigated as tensile–shear load and micro-hardness. The optimisation of parameters in order to maximise the output responses—i.e., strength and hardness of the welded joints—was performed using a hybrid WASPAS–Taguchi method. The optimised process parameters obtained were a 3.5 mm guiding hole diameter, 1700 rpm tool rotation speed, and 14 s of pre-dwelling time. Full article
Show Figures

Figure 1

24 pages, 7950 KB  
Article
A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties
by Hasan Sohail Syed, Abba Abdulhamid Abubakar and Abbas Saeed Hakeem
Nanomaterials 2022, 12(13), 2176; https://doi.org/10.3390/nano12132176 - 24 Jun 2022
Cited by 4 | Viewed by 2932
Abstract
α-SiAlON is commonly used to machine superalloys owing to its desirable thermal and structural properties. α-SiAlON is among the crystalline forms of SiAlON and has more favorable properties than β-SiAlON. However, it becomes fragile during the machining of hard-to-cut materials due to its [...] Read more.
α-SiAlON is commonly used to machine superalloys owing to its desirable thermal and structural properties. α-SiAlON is among the crystalline forms of SiAlON and has more favorable properties than β-SiAlON. However, it becomes fragile during the machining of hard-to-cut materials due to its low fracture toughness and machinability. Recent research efforts focus on improving the thermal and structural properties of α-SiAlON using suitable dopants, nano-sized precursors, and the addition of metallic/ceramic reinforcement particles. The present study presents a material-by-design approach to designing and developing ceramic and metal-particle-reinforced Ca-α-SiAlON composites with properties tailored for the cutting tool applications. The mean-field homogenization theories and effective medium approximations implemented in an in-house code are used to effectively optimize the thermal and structural properties of the Ca-α-SiAlON composite by varying essential parameters such as inclusion material, volume fraction, porosity, particulate size, and thermal interface resistance. Individual properties of the matrix and reinforcements are considered in the computations of effective properties such as thermal conductivity, thermal expansion coefficient, modulus of elasticity, and fracture toughness. The main objective of the study is to enhance the thermal conductivity and fracture toughness of Ca-α-SiAlON, while lowering its thermal expansion coefficient. At the same time, the elastic modulus and hardness/strength must be maintained within an acceptable range. As a validation, Ni/Ca-α-SiAlON and SiC/Ca-α-SiAlON composites are synthesized from the nano-sized precursors, CaO dopant, and Ni/SiC microparticles via spark plasma sintering (SPS) process. The thermal conductivity, coefficient of thermal expansion, and elastic modulus of the composites are measured and compared with the computational predictions. The computational predictions are found to be comparable to that of the experimental measurements. Moreover, the studies show that WC, SiC, and Cr can be suitable reinforcement materials for enhancing the thermal and structural properties of Ca-α-SiAlON material for the cutting tool inserts. Full article
Show Figures

Figure 1

16 pages, 4266 KB  
Article
Mineralizing Gelatin Microparticles as Cell Carrier and Drug Delivery System for siRNA for Bone Tissue Engineering
by Sandra Hinkelmann, Alexandra H. Springwald, Sabine Schulze, Ute Hempel, Franziska Mitrach, Christian Wölk, Michael C. Hacker and Michaela Schulz-Siegmund
Pharmaceutics 2022, 14(3), 548; https://doi.org/10.3390/pharmaceutics14030548 - 28 Feb 2022
Cited by 6 | Viewed by 3910
Abstract
The local release of complexed siRNA from biomaterials opens precisely targeted therapeutic options. In this study, complexed siRNA was loaded to gelatin microparticles cross-linked (cGM) with an anhydride-containing oligomer (oPNMA). We aggregated these siRNA-loaded cGM with human mesenchymal stem cells (hMSC) to microtissues [...] Read more.
The local release of complexed siRNA from biomaterials opens precisely targeted therapeutic options. In this study, complexed siRNA was loaded to gelatin microparticles cross-linked (cGM) with an anhydride-containing oligomer (oPNMA). We aggregated these siRNA-loaded cGM with human mesenchymal stem cells (hMSC) to microtissues and stimulated them with osteogenic supplements. An efficient knockdown of chordin, a BMP-2 antagonist, caused a remarkably increased alkaline phosphatase (ALP) activity in the microtissues. cGM, as a component of microtissues, mineralized in a differentiation medium within 8–9 days, both in the presence and in the absence of cells. In order to investigate the effects of our pre-differentiated and chordin-silenced microtissues on bone homeostasis, we simulated in vivo conditions in an unstimulated co-culture system of hMSC and human peripheral blood mononuclear cells (hPBMC). We found enhanced ALP activity and osteoprotegerin (OPG) secretion in the model system compared to control microtissues. Our results suggest osteoanabolic effects of pre-differentiated and chordin-silenced microtissues. Full article
Show Figures

Graphical abstract

Back to TopTop