Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = Si-disordering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1759 KiB  
Article
Membrane Progesterone Receptor Beta Regulates the Decidualization of Endometrial Stromal Cells in Women with Endometriosis
by Dora Maria Velázquez-Hernández, Edgar Ricardo Vázquez-Martínez, Oliver Cruz-Orozco, José Roberto Silvestri-Tomassoni, Brenda Sánchez-Ramírez, Andrea Olguín-Ortega, Luis F. Escobar-Ponce, Mauricio Rodríguez-Dorantes and Ignacio Camacho-Arroyo
Int. J. Mol. Sci. 2025, 26(15), 7297; https://doi.org/10.3390/ijms26157297 - 28 Jul 2025
Abstract
Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterus, leading to dyspareunia, chronic pelvic pain, dysuria, and infertility. The latter has been related to implantation failure associated with alterations in decidualization, a process regulated by sex hormones such [...] Read more.
Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterus, leading to dyspareunia, chronic pelvic pain, dysuria, and infertility. The latter has been related to implantation failure associated with alterations in decidualization, a process regulated by sex hormones such as progesterone. Membrane progesterone receptor β (mPRβ) exhibits a lower expression in endometriotic tissues than in normal endometrial ones. However, the role of mPRβ in decidualization is unknown. This work aimed to investigate whether mPRβ plays a role in the decidualization of endometrial stromal cells (ESCs) derived from women with and without endometriosis. The mPR agonist OrgOD-2 induced the gene expression of key decidualization markers (insulin-like growth factor binding protein 1, prolactin, transcription factor heart and neural crest derivatives-expressed transcript 2, and fork-head transcription factor) in healthy ESCs, eutopic (uterine cavity), and ectopic (outside of the uterine cavity) ESCs from women with endometriosis. Notably, the expression of the decidualization markers was lower in endometriotic cells than in healthy endometrial ones. An siRNA mediated knockdown of mPRβ reduced the expression of decidualization-associated genes in ESCs treated with a decidualization stimuli, regardless of whether cells were derived from healthy women or those with endometriosis. Our data suggest that progesterone, through mPRβ activation, regulates the decidualization process in endometrial stromal cells from women with and without endometriosis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

38 pages, 1630 KiB  
Review
Gene Therapy Approaches for Atherosclerosis Focusing on Targeting Lipid Metabolism and Inflammation
by Evgeny Bezsonov, Nikita Chernyi, Mane Saruhanyan, Dariia Shimchenko, Nikolai Bondar, Darina Gavrilova, Mirza S. Baig and Alexander Malogolovkin
Int. J. Mol. Sci. 2025, 26(14), 6950; https://doi.org/10.3390/ijms26146950 - 19 Jul 2025
Viewed by 235
Abstract
Atherosclerosis is a complex disease characterized by pathological thickening of the arterial intima. The mechanisms underlying the induction and progression of atherosclerosis are convoluted and remain under active investigation, with key components such as lipid accumulation and local inflammation being identified. Several risk [...] Read more.
Atherosclerosis is a complex disease characterized by pathological thickening of the arterial intima. The mechanisms underlying the induction and progression of atherosclerosis are convoluted and remain under active investigation, with key components such as lipid accumulation and local inflammation being identified. Several risk factors (e.g., metabolic disorders, genetic background, diet, infections) have been shown to exacerbate disease progression, but their roles as clinically relevant markers remain to be established. Despite the growing body of evidence on the molecular pathogenesis of atherosclerosis, there is no effective preventive treatment against the development of this disease. In this review, we focus on gene targets for gene therapy as a novel potential approach to cure and prevent atherosclerosis. We critically review recent research demonstrating the therapeutic potential of viral vector-based (adeno-associated virus (AAV) and lentivirus) gene therapy for the treatment of atherosclerosis. We also summarize alternative gene targets and approaches (e.g., non-coding RNA (ncRNA), micro RNA (miRNA), small interfering RNA (siRNA), antisense oligonucleotide (ASO), CRISPR/Cas9) that aim to limit disease progression. We highlight the importance of local inflammation in the pathogenesis of atherosclerosis and propose gene targets with anti-inflammatory activity to inhibit the pathological inflammatory response. In addition, we provide perspectives on the future development of gene therapeutics and their potential applications. We anticipate that recent advances in gene therapy will help to identify new and effective targets to prevent atherosclerosis. Full article
(This article belongs to the Special Issue Genes and Human Diseases: 3rd Edition)
Show Figures

Figure 1

20 pages, 967 KiB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 297
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

26 pages, 5282 KiB  
Article
Unraveling the Regulatory Impact of LncRNA Hnf1aos1 on Hepatic Homeostasis in Mice
by Beshoy Armanios, Jing Jin, Holly Kolmel, Ankit P. Laddha, Neha Mishra, Jose E. Manautou and Xiao-Bo Zhong
Non-Coding RNA 2025, 11(4), 52; https://doi.org/10.3390/ncrna11040052 - 4 Jul 2025
Viewed by 342
Abstract
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that [...] Read more.
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that is involved in the regulation of cytochrome P450 enzymes via epigenetic mechanisms. Despite the growing recognition of lncRNAs in liver disease, the comprehensive role of HNF1A-AS1 in liver function remains unclear. This study aimed to investigate the roles of the mouse homolog of the human HNF1A-AS1 lncRNA HNF1A opposite strand 1 (Hnf1aos1) in liver function, gene expression, and cellular processes using a mouse model to identify potential therapeutic targets for liver disorders. Methods: The knockdown of Hnf1aos1 was performed in in vitro mouse liver cell lines using siRNA and in vivo livers of AAV-shRNA complexes. Changes in the global expression landscapes of mRNA and proteins were revealed using RNA-seq and proteomics, respectively. Changes in the selected genes were further validated via real-time quantitative polymerase chain reaction (RT-qPCR). Phenotypic changes were assessed via histological and absorbance-based assays. Results: After the knockdown of Hnf1aos1, RNA-seq and proteomics analysis revealed the differential gene expression of the mRNAs and proteins involved in the processes of molecular transport, liver regeneration, and immune signaling pathways. The downregulation of ABCA1 and SREBF1 indicates their role in cholesterol transport and fatty acid and triglyceride synthesis. Additionally, significant reductions in hepatic triglyceride levels were observed in the Hnf1aos1-knockdown group, underscoring the impact on lipid regulation. Notably, the knockdown of Hnf1aos1 also led to an almost complete depletion of CYP7A1, the rate-limiting enzyme in bile acid synthesis, highlighting its role in cholesterol homeostasis and hepatotoxicity. Histological assessments confirmed these molecular findings, with increased hepatic inflammation, hepatocyte swelling, and disrupted liver architecture observed in the Hnf1aos1-knockdown mice. Conclusions: This study illustrated that Hnf1aos1 is a critical regulator of liver health, influencing both lipid metabolism and immune pathways. It maintains hepatic lipid homeostasis, modulates lipid-induced inflammatory responses, and contributes to viral immunity, indirectly affecting glucose and lipid metabolic balance. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

27 pages, 8911 KiB  
Article
Unidirectional Crosstalk Between NTRK1 and IGF2 Drives ER Stress in Chronic Pain
by Caixia Zhang, Kaiwen Zhang, Wencui Zhang, Bo Jiao, Xueqin Cao, Shangchen Yu, Mi Zhang and Xianwei Zhang
Biomedicines 2025, 13(7), 1632; https://doi.org/10.3390/biomedicines13071632 - 3 Jul 2025
Viewed by 444
Abstract
Background: Chronic postsurgical pain (CPSP) poses a major clinical challenge due to unresolved links between neurotrophic pathways and endoplasmic reticulum (ER) stress. While Neurotrophic Tyrosine Kinase Receptor Type 1 (NTRK1) modulates ER stress in neuropathic pain, its interaction with Insulin-Like Growth Factor [...] Read more.
Background: Chronic postsurgical pain (CPSP) poses a major clinical challenge due to unresolved links between neurotrophic pathways and endoplasmic reticulum (ER) stress. While Neurotrophic Tyrosine Kinase Receptor Type 1 (NTRK1) modulates ER stress in neuropathic pain, its interaction with Insulin-Like Growth Factor II (IGF2) in CPSP remains uncharacterized, impeding targeted therapy. This study defined the spinal NTRK1-IGF2-ER stress axis in CPSP. Methods: Using a skin/muscle incision–retraction (SMIR) rat model, we integrated molecular analyses and intrathecal targeting of NTRK1 (GW441756) or IGF2 (siRNA). Results: SMIR surgery upregulated spinal NTRK1, IGF2, and ER stress mediators. NTRK1 inhibition reduced both NTRK1/IGF2 expression and ER stress, reversing mechanical allodynia. IGF2 silencing attenuated ER stress and pain but did not affect NTRK1, revealing a unidirectional signaling cascade where NTRK1 drives IGF2-dependent ER stress amplification. These findings expand understanding of stress-response networks in chronic pain. Conclusions: We show that spinal NTRK1 drives IGF2-mediated ER stress to sustain CPSP. The NTRK1-IGF2-ER stress axis represents a novel therapeutic target; NTRK1 inhibitors and IGF2 biologics offer non-opioid strategies for precision analgesia. This work advances CPSP management and demonstrates how decoding unidirectional signaling hierarchies can transform neurological disorder interventions. Full article
Show Figures

Figure 1

17 pages, 6103 KiB  
Article
Development of Certified Reference Material of L-Thyroxine by Using Mass Balance and Quantitative Nuclear Magnetic Resonance
by Qiang Zhao, Weifei Zhang, Dan Song, Xirui Zhou, Xianjiang Li, Huan Yao, Wenjing Xing, Hongmei Li, Jian Ma and Peng Xiao
Molecules 2025, 30(13), 2840; https://doi.org/10.3390/molecules30132840 - 2 Jul 2025
Viewed by 330
Abstract
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal [...] Read more.
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal methods to evaluate the purity of T4, mass balance (MB) and quantitative nuclear magnetic resonance (qNMR), both of which are SI-traceable (International System of Units) approaches. The MB method involved a detailed analysis of impurities, including water, structurally related compounds, and volatile and non-volatile substances. A variety of techniques were employed to characterize T4 and its impurities, including liquid-phase tandem high-resolution mass spectrometry, ultraviolet spectrophotometry, infrared spectroscopy, and both 1H-NMR and 13C-NMR. Additionally, impurities were quantified using Karl Fischer coulometric titration, ion chromatography, gas chromatography–mass spectrometry, and inductively coupled plasma–mass spectrometry. In qNMR, ethylparaben was used as the internal standard for direct value assignment. The results showed T4 purities of 94.92% and 94.88% for the MB and qNMR methods, respectively. The water content was determined to be 3.563% (n = 6), representing the highest impurity content. Ten structurally related organic impurities were successfully separated, and five of them were quantified. Ultimately, a purity of 94.90% was assigned to T4 CRM, with an expanded uncertainty of 0.34% (k = 2). Full article
Show Figures

Figure 1

20 pages, 1856 KiB  
Article
Pharmacological Evaluation of a Traditional Thai Polyherbal Formula for Alzheimer’s Disease: Evidence from In Vitro and In Silico Studies
by Pornthip Waiwut, Pitchayakarn Takomthong, Rutchayaporn Anorach, Nattareeyada Lomaboot, Supawadee Daodee, Yaowared Chulikhit, Orawan Monthakantirat, Charinya Khamphukdee and Chantana Boonyarat
Int. J. Mol. Sci. 2025, 26(13), 6287; https://doi.org/10.3390/ijms26136287 - 29 Jun 2025
Viewed by 332
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by multifactorial pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid (Aβ) aggregation, and neuroinflammation. In this study, we investigated the neuroprotective potential of the Pheka capsule (PC) formula, a traditional Thai polyherbal medicine comprising Oroxylum indicum (OI), Zingiber officinale (ZO), and Boesenbergia rotunda (BR). Phytochemical analysis by HPLC confirmed the presence of key bioactive compounds including baicalein, baicalin, oroxylin A, 6-gingerol, 6-shogaol, pinocembrin, and pinostrobin. The PC formula exhibited strong antioxidant activity, highly selective butyrylcholinesterase (BChE) inhibition with a selectivity index (SI) of BChE > 20, suppression of Aβ aggregation, and protection against H2O2-induced neuronal damage in vitro. Network pharmacology analysis identified multiple AD-relevant targets and pathways, including APP, GSK3B, CASP3, GAPDH, PTGS2, and PPARG, implicating the PC formula in modulating oxidative stress, apoptosis, and inflammation. Notably, OI emerged as the primary contributor to the formula’s multitargeted actions. These findings support the therapeutic potential of the PC formula as a multitarget agent for AD, aligning with the growing interest in polypharmacological strategies for complex neurodegenerative diseases. Further in vivo and clinical studies are warranted to confirm its efficacy and safety. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Figure 1

17 pages, 4232 KiB  
Article
NOX2/NLRP3-Inflammasome-Dependent Microglia Activation Promotes As(III)-Induced Learning and Memory Impairments in Developmental Rats
by Linlin Zhang, Yuyao Xiao, Dan Wang, Xuerong Han, Ruoqi Zhou, Huiying Zhang, Kexin Zhu, Junyao Wu, Xiance Sun and Shuangyue Li
Toxics 2025, 13(7), 538; https://doi.org/10.3390/toxics13070538 - 26 Jun 2025
Viewed by 246
Abstract
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the [...] Read more.
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the involvement of the microglia remains unclear. In this study, the effects of sodium arsenite (NaAsO2) on microglial activation and the underlying NLRP3 inflammasome mechanism were determined. Pregnant rats were gavaged with NaAsO2 (0, 1, 4, and 10 mg/kg body weight), which dissociates in aqueous solutions into bioactive arsenite species [As(OH)3], from gestational day 1 (GD1) to postnatal day 21 (PND21). The results showed that As(III) induces learning and memory impairments and microglial activation in the hippocampus of offspring rats (PND21). Increased expression of NLRP3, the activation of caspase-1, and the production of interleukin-1β were observed in both the hippocampus of As(III)-exposed offspring rats and As(III)-exposed microglial BV2 cells under culture conditions. Interestingly, blocking the NLRP3 inflammasome using MCC950 mitigated its activation. Furthermore, inhibition of NADPH oxidase 2 (NOX2) using apocynin or specific siRNA significantly reduced As(III)-induced microglial NLRP3 inflammasome activation. In addition, inactivation of the microglial NLRP3 inflammasome or NOX2 markedly rescued As(III)-induced neurotoxicity in the hippocampal HT22 cells. Taken together, this study reveals that NOX2/NLRP3-inflammasome-dependent microglial activation promotes As(III)-induced learning and memory impairments in developmental rats. Full article
Show Figures

Figure 1

23 pages, 4126 KiB  
Article
Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives
by Nguyen Xuan Phuong Vo, Thuy Phuong Ngo, Van Tri Tran, Ngoc Thuy Luong, Phuc Nguyen Le and Van Chung Cao
Catalysts 2025, 15(7), 620; https://doi.org/10.3390/catal15070620 - 24 Jun 2025
Viewed by 1534
Abstract
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained [...] Read more.
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained among the irradiated samples. A combination of 27Al, 1H magic angle spinning nuclear magnetic resonance and NH3-temperature-programmed desorption methods showed that upon irradiation, some of the framework’s tetrahedral Al atoms were removed as non-framework Al atoms via flexible coordination with Si-OH groups (either framework or non-framework defects), thus increasing the H-ZSM-5 acidity and stability during hydrothermal dealumination. The enhanced selectivity and stability toward propylene production over the irradiated H-ZSM-5 samples were attributed to the integration of the reserved population of medium acid sites into the highly accessible hierarchical network. N2 adsorption–desorption isotherm data showed that the Si-rich H-ZSM-5 samples possessed an obvious ink-bottle-shaped micro-mesopore network and a greater degree of disordered orientation of the straight pore systems toward the exterior surfaces. Micro-activity test data suggested that with an increasing Si/Al ratio, the H-ZSM-5 additives lost some extent of their cracking activity due to the constricted hierarchical pore network toward the exterior surface but gained more stability and selectivity for propylene due to the reserved medium acid sites. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

12 pages, 2086 KiB  
Article
Radiation Hardness of Oxide Thin Films Prepared by Magnetron Sputtering Deposition
by Marko Škrabić, Marija Majer, Zdravko Siketić, Maja Mičetić, Željka Knežević and Marko Karlušić
Appl. Sci. 2025, 15(13), 7067; https://doi.org/10.3390/app15137067 - 23 Jun 2025
Viewed by 171
Abstract
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by [...] Read more.
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by elastic recoil detection analysis and infrared spectroscopy. It was established that their high radiation hardness is due to a high level of disorder, already present in as-prepared samples, so the high-energy heavy ion irradiation cannot change their structure much. In the case of a-SiO2, this resulted in a completely different response to high-energy heavy ion irradiation found previously in thermally grown a-SiO2. In the case of a-MgO, only gamma-ray irradiation was found to induce significant changes. Full article
Show Figures

Figure 1

19 pages, 6987 KiB  
Article
Study of Retinoic Acid-Induced Osteoarthritis: Integrating RNA-Sequencing, Network Pharmacology, Molecular Docking, and Experimental Validation
by Tao Lu, Zi-Yi Liu, Yang-Shuo Ge, Shuai-Yu Jiang, Qing-Ao Zhao and Dao-Fang Ding
Int. J. Mol. Sci. 2025, 26(12), 5519; https://doi.org/10.3390/ijms26125519 - 9 Jun 2025
Viewed by 685
Abstract
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and disruption of chondrocyte homeostasis. Although retinoic acid (RA) has been used in OA models, its precise targets are not clear. A translational framework was employed, integrating RNA-sequencing results, network pharmacology prediction, [...] Read more.
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and disruption of chondrocyte homeostasis. Although retinoic acid (RA) has been used in OA models, its precise targets are not clear. A translational framework was employed, integrating RNA-sequencing results, network pharmacology prediction, computational ligand-receptor molecular docking, and biological experimental validation, to systematically elucidate RA’s disease-modifying targets in OA pathogenesis. RNA-sequencing of RA-treated chondrocytes revealed 656 differentially expressed genes (DEGs). Protein–protein interaction (PPI) network analysis and functional enrichment [Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)] highlighted key pathways, including extracellular matrix (ECM) reorganization and PI3K-Akt-mediated mechanotransduction and others. Network pharmacology analysis identified 42 shared targets between RA and OA. PPI analysis and functional enrichment (GO/KEGG) highlighted pathways including the renin–angiotensin system and the neuroactive ligand–receptor interaction, among others. Molecular docking ranked candidate targets by binding affinity of RA in descending order as MAPK14 (p38α), PTGER3 (PGE2 receptor), CA2 (CA2), and others. Five intersecting targets CA2, ACE, PTGS1 (COX-1), PGR, and EDNRA (ETAR) were identified by integrating RNA-sequencing (RNA-seq) results and network pharmacology predictions. These interactions were experimentally validated via western blot, RT-qPCR and immunofluorescence. RA increased the expression of MMP13, CA2 and ACE, and decreased the expression of COL2A1 in chondrocytes. siRNA-mediated knockdown of both CA2 (human CA2 homolog) and ACE (human ACE homolog) inhibit cartilage degradation through downregulating MMP13 and upregulating COL2A1. This study not only elucidates potential molecular mechanisms by which RA modulates chondrocyte catabolism but also offers a valuable reference for the development of novel OA therapeutics. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

20 pages, 4809 KiB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 715
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

47 pages, 7533 KiB  
Review
Integrating Artificial Intelligence and Precision Therapeutics for Advancing the Diagnosis and Treatment of Age-Related Macular Degeneration
by Mini Han Wang
Bioengineering 2025, 12(5), 548; https://doi.org/10.3390/bioengineering12050548 - 20 May 2025
Viewed by 1025
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disease influenced by complex molecular mechanisms, including genetic susceptibility, inflammation, oxidative stress, and metabolic dysregulation. While substantial progress has been made in understanding its pathogenesis, the full molecular underpinnings of AMD remain unclear, impeding the [...] Read more.
Age-related macular degeneration (AMD) is a multifactorial retinal disease influenced by complex molecular mechanisms, including genetic susceptibility, inflammation, oxidative stress, and metabolic dysregulation. While substantial progress has been made in understanding its pathogenesis, the full molecular underpinnings of AMD remain unclear, impeding the effectiveness of current therapeutic strategies. This study provides an in-depth exploration of the molecular interactions involved in AMD progression, particularly focusing on genetic predispositions (such as CFH, ARMS2/HTRA1, and APOE), inflammatory pathways (including complement system dysregulation and cytokine responses), lipid metabolism (e.g., cholesterol homeostasis and drusen formation), and angiogenesis (VEGF signaling). Through a systematic review and bibliometric analysis of literature published between 2015 and 2025, the study identifies emerging research trends, existing gaps, and promising future therapeutic directions. It further investigates innovative precision medicine approaches, including gene editing (CRISPR), RNA therapeutics (siRNA, antisense oligonucleotides), immunomodulatory therapies, and nanotechnology-based drug delivery systems. Additionally, the study examines the role of metabolic disorders such as diabetes and dyslipidemia in AMD progression, highlighting the influence of systemic health factors on disease onset. Finally, the potential of artificial intelligence (AI) in enhancing AMD management through biomarker-based risk stratification, predictive modeling, and personalized treatment optimization is assessed. By mapping the intricate molecular networks underlying AMD and evaluating novel therapeutic strategies, this research aims to contribute to the development of more effective, individualized treatment protocols for patients with AMD. Full article
Show Figures

Figure 1

18 pages, 5844 KiB  
Article
Construction of Minigenome Replicon of Nipah Virus and Investigation of Biological Activity
by Fan Wang, Ruyi Chen, Jiayi Zhong, Anqi Zhou, Ran Peng, Bao Xue, Yuan Zhou, Jielin Tang, Xinwen Chen and Qi Yang
Viruses 2025, 17(5), 707; https://doi.org/10.3390/v17050707 - 15 May 2025
Viewed by 874
Abstract
Nipah virus (NiV), a highly lethal zoonotic pathogen causing encephalitis and respiratory diseases with mortality rates up to 40–70%, faces research limitations due to its strict biosafety level 4 (BSL-4) containment requirements, hindering antiviral development. To address this, we generated two NiV minigenome [...] Read more.
Nipah virus (NiV), a highly lethal zoonotic pathogen causing encephalitis and respiratory diseases with mortality rates up to 40–70%, faces research limitations due to its strict biosafety level 4 (BSL-4) containment requirements, hindering antiviral development. To address this, we generated two NiV minigenome replicons (Fluc- and EGFP-based) expressed via helper plasmids encoding viral N, P, and L proteins, enabling replication studies under BSL-2 conditions. The minigenome replicon recapitulated the cytoplasmic inclusion body (IB) formation observed in live NiV infections. We further demonstrated that IB assembly is driven by liquid–liquid phase separation (LLPS), with biochemical analyses identifying the C-terminal N core domain of the N protein, as well as N0 and XD domains and the intrinsically disordered region (IDR) of the P protein, as essential structural determinants for LLPS-mediated IB biogenesis. The targeted siRNA silencing of the 5′ and 3′ untranslated regions (UTRs) significantly reduced replicon-derived mRNA levels, validating the regulatory roles of these regions. Importantly, the minigenome replicon demonstrated sensitivity to type I/II/III interferons and antivirals (remdesivir, azvudine, molnupiravir), establishing its utility for drug screening. This study provides a safe and efficient platform for investigating NiV replication mechanisms and accelerating therapeutic development, circumventing the constraints of BSL-4 facilities while preserving key virological features. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

30 pages, 4446 KiB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 647
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

Back to TopTop