Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Severnaya Zemlya

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7549 KB  
Article
Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context
by Petr Semenov, Anfisa Pismeniuk, Anna Kil, Elizaveta Shatrova, Natalia Belova, Petr Gromov, Sergei Malyshev, Wei He, Anastasiia Lodochnikova, Ilya Tarasevich, Irina Streletskaya and Marina Leibman
Geosciences 2024, 14(3), 77; https://doi.org/10.3390/geosciences14030077 - 13 Mar 2024
Cited by 5 | Viewed by 2979
Abstract
Climate-induced changes contribute to the thawing of ice-rich permafrost in the Arctic, which leads to the release of large amounts of organic carbon into the atmosphere in the form of greenhouse gases, mainly carbon dioxide and methane. Ground ice constitutes a considerable volume [...] Read more.
Climate-induced changes contribute to the thawing of ice-rich permafrost in the Arctic, which leads to the release of large amounts of organic carbon into the atmosphere in the form of greenhouse gases, mainly carbon dioxide and methane. Ground ice constitutes a considerable volume of the cryogenically sequestered labile dissolved organic carbon (DOC) subjected to fast mineralization upon thawing. In this work, we collected a unique geochemical database of the ground and glacier ice comprising the samples from various geographic locations in the Russian Arctic characterized by a variety of key parameters, including ion composition, carbon-bearing gases (methane and carbon dioxide), bulk biogeochemical indicators, and fluorescent dissolved organic matter (DOM) fractions. Our results show that interaction with solid material—such as sediments, detritus, and vegetation—is likely the overriding process in enrichment of the ground ice in all the dissolved compounds. Terrigenous humic-like dissolved organic matter was predominant in all the analyzed ice samples except for glacier ice from Bolshevik Island (the Severnaya Zemlya archipelago) and pure (with low sediment content) tabular ground ice from western Yamal. The labile protein-like DOM showed no correlation to humic components and was probably linked to microbial abundance in the ground ice. The sum of the fluorophores deconvoluted by PARAFAC strongly correlates to DOC, which proves the potential of using this approach for differentiation of bulk DOC into fractions with various origins and biogeochemical behaviors. The pure tabular ground ice samples exhibit the highest rate of fresh easily degradable DOM in the bulk DOC, which may be responsible for the amplification of permafrost organic matter decomposition upon thawing. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

17 pages, 9209 KB  
Article
Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry
by Victoria Ershova, Andrei Prokopiev and Daniel Stockli
Geosciences 2024, 14(2), 41; https://doi.org/10.3390/geosciences14020041 - 3 Feb 2024
Cited by 4 | Viewed by 4095
Abstract
Provenance study plays an important role in paleogeographic and tectonic reconstructions. Detrital zircons are commonly used to identify sediment provenance; however, a wide range of detrital zircon ages in clastic rock often represent a fingerprint of reworked older terrigenous successions rather than ages [...] Read more.
Provenance study plays an important role in paleogeographic and tectonic reconstructions. Detrital zircons are commonly used to identify sediment provenance; however, a wide range of detrital zircon ages in clastic rock often represent a fingerprint of reworked older terrigenous successions rather than ages of magmatism and metamorphism in the provenance area. This study focuses on the provenance of detrital rutile grains in the Triassic–Jurassic sandstones from Franz Josef Land and shows the importance of multiproxy approaches for provenance studies. Trace element data demonstrate that most rutile grains were sourced from metapelitic rocks, with a subordinate population having a metamafic origin. The Zr-in-rutile thermometer and U-Pb geochronology suggest that detrital rutile grains were predominantly derived from rocks that underwent amphibolite facies metamorphism during the Paleozoic era, with a predominance of the Carboniferous–Permian ages. Therefore, we suggest that the provenance area for the studied sandstones on Franz Josef Land has a similar geological history to the Taimyr region and Severnaya Zemlya archipelago. We propose that this crustal domain extends across the Kara Sea and forms the basement to the north and east of FJL, representing a proximal provenance for the studied Mesozoic terrigenous rocks. This domain experienced both Middle–Late Ordovician and Carboniferous–Permian metamorphism. The comparison of U-Pb dating and the geochemistry of rutile, U-Th/He, and U-Pb dating of zircons showed that detrital rutiles are the powerful toll in provenance restoration and can give additional constrains when a provenance area locates within collisional-convergent settings. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

11 pages, 3120 KB  
Article
Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere
by Ekaterina S. Nagovitsyna, Vassily A. Poddubny, Alexander A. Karasev, Dmitry M. Kabanov, Olga R. Sidorova and Alexander S. Maslovsky
Atmosphere 2023, 14(1), 139; https://doi.org/10.3390/atmos14010139 - 8 Jan 2023
Cited by 6 | Viewed by 2599
Abstract
The results of the research are numerical estimates of the average fields of black carbon mass concentration in the surface layer of the atmosphere of the Arctic region obtained using the numeric technology referred to as fluid location of the atmosphere (FLA). The [...] Read more.
The results of the research are numerical estimates of the average fields of black carbon mass concentration in the surface layer of the atmosphere of the Arctic region obtained using the numeric technology referred to as fluid location of the atmosphere (FLA). The modelling has been based on measurements of the black carbon concentrations in the near-surface atmosphere obtained during the two cruises of the Professor Multanovskiy (28 July–7 September 2019) and Akademik Mstislav Keldysh (31 July–24 August 2020) research vessels. These measurements have been supplemented by measurements at stationary monitoring points located on the Spitsbergen and the Severnaya Zemlya archipelagoes. The simulation in the summertime demonstrates that areas of increased black carbon concentrations were observed over Northern Europe and, in 2019, also over the Laptev Sea basin. The obtained spatial distribution of mass concentrations of black carbon qualitatively agreed with the same data derived from the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) but showed quantitative differences. The average values of mass concentrations of black carbon in the modelling zones are as follows: 85.3 ng/m3 (2019) and 53.6 ng/m3 (2020) for fields reconstructed by the FLA technology; and 261.69 ng/m3 (2019) and 131.8 ng/m3 (2020) for the MERRA-2 data. Full article
(This article belongs to the Special Issue Atmospheric and Ocean Optics: Atmospheric Physics IV)
Show Figures

Figure 1

13 pages, 3399 KB  
Article
Provenance and Stratigraphy of the Upper Carboniferous—Lower Permian Strata of October Revolution Island (Severnaya Zemlya Archipelago): Implications for Geological History of the Russian High Arctic
by Victoria Ershova, Andrei Prokopiev, Daniel Stockli, Daria Zbukova and Anton Shmanyak
Minerals 2022, 12(10), 1325; https://doi.org/10.3390/min12101325 - 20 Oct 2022
Cited by 3 | Viewed by 2875
Abstract
Small depressions across the north-eastern part of October Revolution Island (Severnaya Zemlya archipelago, Kara terrane) are filled with continental terrigenous rocks, dated as Upper Carboniferous–Lower Permian in age based on palynological data. These rocks overlie Ordovician volcaniclastic rocks above a prominent angular unconformity. [...] Read more.
Small depressions across the north-eastern part of October Revolution Island (Severnaya Zemlya archipelago, Kara terrane) are filled with continental terrigenous rocks, dated as Upper Carboniferous–Lower Permian in age based on palynological data. These rocks overlie Ordovician volcaniclastic rocks above a prominent angular unconformity. U-Pb dating of detrital zircons from the Late Carboniferous–Lower Permian rocks reveals that most grains are Ordovician in age, ranging between 475–455 Ma. A subordinate population of Silurian detrital zircons is also present, contributing up to 15% of the dated population, while Precambrian grains mainly yield Neo-Mesoproterozoic ages and do not form prominent peaks. The combined U-Pb and (U-Th)/He ages indicate that most zircon (U-Th)/He ages were reset and average at ca. 317 Ma, suggesting ~6–7 km of Late Carboniferous uplift within the provenance area. This provenance area, mainly comprising Ordovician magmatic and volcanic rocks, was located close to the study area based on the coarse-grained nature of Late Carboniferous–Lower Permian rocks of north-eastern October Revolution Island. Therefore, we propose that Late Paleozoic tectonism significantly affected both the southern margin of the Kara terrane, as previously supposed, and also its north-eastern part. We propose that the Late Paleozoic Uralian suture zone continued to the north-eastern October Revolution Island and was responsible for the significant tectonic uplift of the studied region. This suture zone is now hidden beneath the younger Arctic basins. Full article
Show Figures

Figure 1

24 pages, 18575 KB  
Article
A Three-Year Climatology of the Wind Field Structure at Cape Baranova (Severnaya Zemlya, Siberia) from SODAR Observations and High-Resolution Regional Climate Model Simulations during YOPP
by Günther Heinemann, Clemens Drüe and Alexander Makshtas
Atmosphere 2022, 13(6), 957; https://doi.org/10.3390/atmos13060957 - 12 Jun 2022
Cited by 7 | Viewed by 2927
Abstract
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of [...] Read more.
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of Polar Prediction) project “Boundary layer measurements in the high Arctic” (CATS_BL) within the scope of a joint German–Russian project. In addition to SODAR-derived vertical profiles of wind speed and direction, a suite of complementary measurements at the observatory was available. ABL measurements were used for verification of the regional climate model COSMO-CLM (CCLM) with a 5 km resolution for 2017–2020. The CCLM was run with nesting in ERA5 data in a forecast mode for the measurement period. SODAR measurements were mostly limited to wind speeds <12 m/s since the signal was often lost for higher winds. The SODAR data showed a topographical channeling effect for the wind field in the lowest 100 m and some low-level jets (LLJs). The verification of the CCLM with near-surface data of the observatory showed good agreement for the wind and a negative bias for the 2 m temperature. The comparison with SODAR data showed a positive bias for the wind speed of about 1 m/s below 100 m, which increased to 1.5 m/s for higher levels. In contrast to the SODAR data, the CCLM data showed the frequent presence of LLJs associated with the topographic channeling in Shokalsky Strait. Although SODAR wind profiles are limited in range and have a lot of gaps, they represent a valuable data set for model verification. However, a full picture of the ABL structure and the climatology of channeling events could be obtained only with the model data. The climatological evaluation showed that the wind field at Cape Baranova was not only influenced by direct topographic channeling under conditions of southerly winds through the Shokalsky Strait but also by channeling through a mountain gap for westerly winds. LLJs were detected in 37% of all profiles and most LLJs were associated with channeling, particularly LLJs with a jet speed ≥ 15 m/s (which were 29% of all LLJs). The analysis of the simulated 10 m wind field showed that the 99%-tile of the wind speed reached 18 m/s and clearly showed a dipole structure of channeled wind at both exits of Shokalsky Strait. The climatology of channeling events showed that this dipole structure was caused by the frequent occurrence of channeling at both exits. Channeling events lasting at least 12 h occurred on about 62 days per year at both exits of Shokalsky Strait. Full article
(This article belongs to the Topic The Arctic Atmosphere: Climate and Weather)
Show Figures

Figure 1

22 pages, 65924 KB  
Article
Deep Learning Based Sea Ice Classification with Gaofen-3 Fully Polarimetric SAR Data
by Tianyu Zhang, Ying Yang, Mohammed Shokr, Chunlei Mi, Xiao-Ming Li, Xiao Cheng and Fengming Hui
Remote Sens. 2021, 13(8), 1452; https://doi.org/10.3390/rs13081452 - 9 Apr 2021
Cited by 55 | Viewed by 5925
Abstract
In this paper, the performance of C-band synthetic aperture radar (SAR) Gaofen-3 (GF-3) quad-polarization Stripmap (QPS) data is assessed for classifying late spring and summer sea ice types. The investigation is based on 18 scenes of GF-3 QPS data acquired in the Arctic [...] Read more.
In this paper, the performance of C-band synthetic aperture radar (SAR) Gaofen-3 (GF-3) quad-polarization Stripmap (QPS) data is assessed for classifying late spring and summer sea ice types. The investigation is based on 18 scenes of GF-3 QPS data acquired in the Arctic Ocean in 2017. In this study, floe ice (FI), brash ice (BI) between floes and open water (OW, ice-free area) were classified based on a mini sea ice residual convolutional network, which we call MSI-ResNet. While investigating the optimal patch size for MSI-ResNet, we found that, as the patch size continues to grow, the classification accuracy first increases and then decreases. A patch size of 31 × 31 was found to achieve the best performance. The performance of classification using different polarization combinations from the QPS data was also assessed. The vertical-vertical (VV) polarization input overestimates the FI category while incorrectly identifying most of the BI as FI. The VH polarization produces a synchronous improvement in FI, BI, and OW discrimination, with a higher overall accuracy and kappa coefficient (91.09% and 0.85, respectively) than the VV polarization (83.37% and 0.70, respectively). The combination of VV and vertical-horizontal (VH) polarizations presents a modest precision improvement for BI and OW together with a slight overestimation for FI. With VV, VH, and horizontal-horizontal (HH) polarization data as the inputs, the user’s accuracy improves to 95.12%, 93.42%, and 95.17% for FI, BI, and OW, respectively. The accuracy was assessed against visual interpretation of the sea ice classes in the images using a stratified sampling method. The application of the MSI-ResNet method to data covering the Beaufort Sea and the north of the Severnaya Zemlya archipelago was found to achieve a high overall accuracy (kappa) of 94.62% (±0.92) and 94.23% (±0.90), respectively. This is similar to the classification accuracy obtained in the Fram Strait. From the results of this study, it is shown that the MSI-ResNet method performs better than the classical support vector machine (SVM) classifier for sea ice discrimination. The GF-3 QPS mode data also show more details in discriminating scattered sea ice floes than the coincident Sentinel-1A Extra Wide (EW) swath mode data. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Figure 1

14 pages, 5219 KB  
Article
U–Pb Age and Hf Isotope Geochemistry of Detrital Zircons from Cambrian Sandstones of the Severnaya Zemlya Archipelago and Northern Taimyr (Russian High Arctic)
by Victoria B. Ershova, Andrei V. Prokopiev, Andrey K. Khudoley, Tom Andersen, Kåre Kullerud and Daniil A. Kolchanov
Minerals 2020, 10(1), 36; https://doi.org/10.3390/min10010036 - 30 Dec 2019
Cited by 16 | Viewed by 3766
Abstract
U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures [...] Read more.
U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 3400 KB  
Article
Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique
by Bala Raju Nela, Debmita Bandyopadhyay, Gulab Singh, Andrey F. Glazovsky, Ivan I. Lavrentiev, Tatiana E. Kromova and Jorge Arigony-Neto
Water 2019, 11(12), 2466; https://doi.org/10.3390/w11122466 - 23 Nov 2019
Cited by 21 | Viewed by 5362
Abstract
Glacier velocity is one of the most important parameters to understand glacier dynamics. The Severnaya Zemlya archipelago is host to many glaciers of which four major ice caps encompassing these glaciers are studied, namely, Academy of Sciences, Rusanov, Karpinsky, and University. In this [...] Read more.
Glacier velocity is one of the most important parameters to understand glacier dynamics. The Severnaya Zemlya archipelago is host to many glaciers of which four major ice caps encompassing these glaciers are studied, namely, Academy of Sciences, Rusanov, Karpinsky, and University. In this study, we adopted the differential interferometric synthetic aperture radar (DInSAR) method utilizing ALOS-2/PALSAR-2 datasets, with a temporal resolution of 14 days. The observed maximum velocity for one of the marine-terminating glaciers in the Academy of Sciences Ice Cap was 72.24 cm/day (≈263 m/a). For the same glacier, an increment of 3.75 times the flow rate was observed in 23 years, compared to a previous study. This has been attributed to deformation in the bed topography of the glacier. Glaciers in other ice caps showed a comparatively lower surface velocity, ranging from 7.43 to 32.12 cm/day. For estimating the error value in velocity, we selected three ice-free regions and calculated the average value of their observed movement rates by considering the fact that there is zero movement for ice-free areas. The average value observed for the ice-free area was 0.09 cm/day, and we added this value in our uncertainty analysis. Further, it was observed that marine-terminating glaciers have a higher velocity than land-terminating glaciers. Such important observations were identified in this research, which are expected to facilitate future glacier velocity studies. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Water Resources in Glacierized Regions)
Show Figures

Figure 1

21 pages, 77801 KB  
Article
Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017
by Tazio Strozzi, Frank Paul, Andreas Wiesmann, Thomas Schellenberger and Andreas Kääb
Remote Sens. 2017, 9(9), 947; https://doi.org/10.3390/rs9090947 - 12 Sep 2017
Cited by 63 | Viewed by 10936
Abstract
We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 [...] Read more.
We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011) and Sentinel-1 (2015–2017) data. In certain cases JERS-1 SAR (1994–1998), TerraSAR-X (2008–2012), Radarsat-2 (2009–2016) and ALOS-2 PALSAR-2 (2015–2016) data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2 Wide Ultra Fine) and ground-based measurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen) have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen). Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s. Full article
(This article belongs to the Special Issue Remote Sensing of Glaciers)
Show Figures

Graphical abstract

Back to TopTop